
ICS 121 Lecture Notes

Topic 10
Formal Methods

Topic 10
Formal Methods

1

ICS 121

What are Formal Methods?

● Formal Method (FM) =

 specification language + formal reasoning

● Body of techniques supported by
– precise mathematics

– powerful analysis tools

● Rigorous effective mechanisms for system
– modeling

– synthesis

– analysis

Specification Implementation

synthesis

analysis

modeling

Topic 10
Formal Methods

2

ICS 121

What are Formal Methods?

● Use of formalisms
– e.g., logic, discrete mathematics, finite state machines

● In system descriptions
– e.g., system models, constraints, specifications, designs

● For broad range of effects
– e.g., highly reliable, secure, safe systems and more effective

production

● And varying levels of use
– guidance: structuring what to say

– documentation: unambiguous communication

– rigor: formal specification and proofs

– mechanisms: proof assistance, testing

Topic 10
Formal Methods

3

ICS 121

Formal Specification in
Software Development

● Formal specifications ground the software
development process in the well-defined basis of
computer science

● Emphasis switches from customer to developer

● Formal specification expressed in language whose
syntax and semantics are formally defined

– hierarchical decomposition

– mathematical foundation

– graphical presentation

– accompanied by informal description

Topic 10
Formal Methods

4

ICS 121

Goals and Objectives

● Requirements Specification
– clarify customer's requirements
– reveal ambiguity, inconsistency, incompleteness

● System/Software Design
– decomposition structural specifications of component relations and

behavioral specification of components
– refinement demonstrating that next level of abstraction satisfies

higher level

● Verification
– proving a specificand (implementation) satisfies its specification

● Validation
– testing and debugging

● Documentation
– communication between specifier, implementor, customer, clients

Topic 10
Formal Methods

5

ICS 121

Specification and Design

Requirements-
Analysis and

Definition

Requirements-
Specification Design

Increasing contractor involvement
Decreasing client involvement

DESIGN

SPECIFICATION

Topic 10
Formal Methods

6

ICS 121

Benefits of Using
Formal Specifications and Methods

● higher quality software
● verifiability of implementation
● insight and understanding
● minimized maintenance and cost
● automated assistance
● simulation, animation, execution
● formal analysis
● guidance for testing
● transformation technology
● reduced liability and risks
● standard satisfaction

ICS 121 Lecture Notes

Topic 10
Formal Methods

Topic 10
Formal Methods

7

ICS 121

Formal Specifications
are not yet widely used

● Reasons
– emerging technology with unclear payoff
– little experience
– lack of automated support
– not especially user friendly
– too many in-place techniques and tools

● Excuses
– high learning curve
– mathematical sophistication required
– techniques not widely applicable
– ignorance of advances

Topic 10
Formal Methods

8

ICS 121

Formal Specification Languages

● A formal specification language consists of
– syntax (the notation)

– semantics (the meaning)

– satisfies (relation defining which objects satisfy which notations)

● A formal specification defines
– syntax (signature of the mapping)

– semantics (meaning of the mapping)

– exceptions (undefined/erroneous mappings)

● If sat(syn,sem) then
– syn is a specification of sem

– sem is a specificand of syn

Topic 10
Formal Methods

9

ICS 121

Desirable Properties

● Consistency
– a specificand exists that satisfies a specification

● Completeness (incrementally)
– all aspects of specificands are specified

● Unambiguous
– exactly one specificand satisfies a specification (may be a set if

specification is not complete)

● Inference
– consequence relation used to prove properties about the

specificands that satisfy a specification

Topic 10
Formal Methods

10

ICS 121

Types of Formal Specifications

● Behavioral specifications describe constraints on
behavior of specificand – e.g.,

– functionality

– safety

– security

– performance

● Structural specifications describe constraints on
internal composition of specificand

– module interconnection

– uses and is-composed-of

– dependence relations

Topic 10
Formal Methods

11

ICS 121

Characteristics

● Model-oriented Specifications
– specify system behavior by constructing a model in terms of well-

defined mathematical constructs

● Property-oriented Specifications
– specify system behavior in terms of properties that must be

satisfied

● Visual Specifications
– specify system behavior and structure by graphical depictions

● Executable Specifications
– specify system behavior completely enough that specifications

can run on a computer

● Tool Support
– syntactic checking
– model checking
– proof checking

Topic 10
Formal Methods

12

ICS 121

Basic Specification
Language Types

➊ Abstract Model Specifications
– defines operations in terms of well-defined mathematical model

➋ Algebraic Specifications
– defines operations by a collection of equivalence relations

➌ State Transition Specifications
– defines operations in terms of states and transitions

➍ Axiomatic Specifications
– defines operations by logical assertions

ICS 121 Lecture Notes

Topic 10
Formal Methods

Topic 10
Formal Methods

13

ICS 121

Formal Specification Languages:
Clock Example

☞ Initially, the time is midnight, the bell is off, and the
alarm is disabled.

☞ Whenever the current time is the same as the alarm
time and the alarm is enabled, the bell starts ringing.

This is the only condition under which the bell begins
to ring.

☞ The alarm time can be set at any time.
☞ Only when the alarm is enabled can it be disabled.
☞ If the alarm is disabled while the bell is ringing, the bell

stops ringing.
☞ Resetting the clock and enabling or disabling the alarm

are considered to be done instantaneously.

Topic 10
Formal Methods

14

ICS 121

➊ Abstract Model Specifications

● Explicitly describes behavior in terms of a model using
well-defined types (sets, sequences, relations,
functions) and defines operations by showing effects on
model

● Specification includes
– type: syntax of object being specified
– model: underlying structure
– invariant: properties of modeled object
– pre/post conditions: semantics of operations

● Pros and Cons
– state is made explicit in model
– suggests an implementation
– widely applicable because of modeling orientation

● Various notations: VDM, Z, RAISE

Topic 10
Formal Methods

15

ICS 121

Abstract Model Specifications

● Objects specified by effect of operations on a model
in terms of well-understood mathematical entities

(e.g., sets, sequences, relations, functions)
● State is explicit in the model
● Objects can be built hierarchically
● Specification using Z abstract model specifications

– 1. establish the object schemas (objects and attributes)
• including invariant properties of objects

– 2. establish the operation schemas
• schema modifiability (² vs. E schema)
• operation signatures (input? vs. output!)
• state modifications (attribute vs. attribute')

Topic 10
Formal Methods

16

ICS 121

Abstract Model Specifications:
the Z Notation

specification name [generic parameters]

signature

predicate

● a Z specification is a collection of schemas
● a schema introduces some entities and invariant properties
● the signature may make a defined schema visible
● the schema signature defines each entity's name and type

(syntax)
● the predicate defines the relationships between the entities that

must always hold (semantics)
● should be supported by informal description

Topic 10
Formal Methods

17

ICS 121

Abstract Model Specifications:
Z Clock - 1

BellStatus: {quiet, ringing}, AlarmStatus: {disabled, enabled}
Clock
time, alarm_time: N
bell: BellStatus
alarm: AlarmStatus

InitClock
∆ Clock

(time ′ = midnight) ∧ (bell ′ = quiet) ∧ (alarm ′ = disabled)

Tick

∆ Clock

(time ′ = succ(time))
(alarm_time ′ = time ′) ∧ (alarm ′ = enabled) => (bell ′ = ringing)
(~((alarm_time ′ = time ′) ∧ (alarm ′ = enabled)) => (bell ′ = bell)
(alarm ′ = alarm) ∧ (alarm_time ′ = alarm_time)

Topic 10
Formal Methods

18

ICS 121
SetAlarmTime
∆ Clock
new_time ?: Ν

(alarm_time ′ = new_time?)
((alarm_time ′ = time ′) ∧ (alarm ′ = enabled) => (bell ′ = ringing)
(~((alarm_time ′ = time ′) ∧ (alarm ′ = enabled)) => (bell ′ = bell)
(time ′ = time) ∧ (alarm ′ = alarm)

EnableAlarm
∆ Clock

(alarm = disabled) => (alarm ′ = enabled) ∧
((alarm_time ′= time ′) => (bell ′ = ringing) ∧
(~(alarm_time ′ = time ′)) => (bell ′ = bell)) ∧
(time ′ = time) ∧ (alarm_time ′ = alarm_time)

DisableAlarm
 ∆ Clock
(alarm = enabled) => (alarm ′ = disabled) ∧ (bell ′ = quiet) ∧

(time ′ = time) ∧ (alarm ′ = alarm) ∧ (alarm_time ′ = alarm_time)

Abstract Model Specifications:

Z Clock - 2

ICS 121 Lecture Notes

Topic 10
Formal Methods

Topic 10
Formal Methods

19

ICS 121

➋ Algebraic Specification

● Objects specified as algebraic sorts in terms of
equivalence relations between associated operations

● State is concealed in objects

● Objects can be built hierarchically

● Specification using algebraic sorts
1. establish the sorts (objects and attributes)

2. establish the necessary operations
• constructor operations

• access operations

3. establish the equivalence relations
• rule of thumb: a relation for each access over each constructor

• simplified when constructors defined in terms of imports

Topic 10
Formal Methods

20

ICS 121

Algebraic Specifications - 2

● Specification includes
– functionality: syntax and legal constructions

– relations: semantics by equivalence classes

● Pros and Cons
– only pure functions described (no side effects)

– supports extensibility of data abstractions

– often hard to comprehend and construct

– particularly applicable to abstract data types

● Various notations: OBJ, Larch, Clear, Anna

Topic 10
Formal Methods

21

ICS 121

Algebraic Specifications:
a simple notation

specification name (generic parameters)

sort name

imports list of specification names

operation signatures

relations

● an algebraic specification is a collection of sorts
● a sort specifies an object class (or abstract data type)
● importing specifications makes their defined sorts visible
● the operation signatures define each operation's name and the

sorts of parameters and results (syntax)
● the relations define the effect of applying operations (semantics)
● should be supported by informal description

Topic 10
Formal Methods

22

ICS 121

Algebraic Specifications:
Algebraic CLOCK

operation signatures
init: –> CLOCK

tick: CLOCK –> CLOCK

setalarm: CLOCK x TIME –> CLOCK

enable: CLOCK –> CLOCK

disable: CLOCK –> CLOCK

time: CLOCK –> TIME

alarm_time: CLOCK –> TIME

bell: CLOCK –> {ringing, quiet}

alarm: CLOCK –> {on, off}

Topic 10
Formal Methods

23

ICS 121

Algebraic Specifications:
Algebraic CLOCK - 2

relations
time(init) –> midnight

time(tick(C)) –> time(C) + 1

time(setalarm(C,T)) –> time(C)

time(enable(C)) –> time(C)

time(disable(C)) –> time(C)

alarm_ time(init) –> midnight

alarm_ time(tick(C)) –> alarm_ time(C)

alarm_ time(setalarm(C,T)) –> T

alarm_ time(enable(C)) –> alarm_ time(C)

alarm_ time(disable(C)) –> alarm_ time(C)

Topic 10
Formal Methods

24

ICS 121

Algebraic Specifications:
Algebraic CLOCK - 3

bell(init) –> quiet
bell(tick(C)) –> (if alarm_time(tick(C)) = time(tick(C)) and alarm(C) = on

 then ringing else quiet)
bell(setalarm(C,T)) –> (if T = time(C) and alarm(C) = on

then ringing else quiet)
bell(enable(C)) –> (if alarm_time(C) = time(tick(C))

 then ringing else quiet)
bell(disable(C)) –> quiet

alarm(init) –> off
alarm(tick(C)) –> alarm(C)
alarm(setalarm(C,T)) –> alarm(C)
alarm(enable(C)) –> (if alarm(C) = off then on)
alarm(disable(C)) –> (if alarm(C) = on then off)

ICS 121 Lecture Notes

Topic 10
Formal Methods

Topic 10
Formal Methods

25

ICS 121

➌ State Transition Specifications

● Explicitly describes system behavior by a set of
states and defines operations as transitions between
states or observations on state

● Specification includes
– states: possible values
– transitions: semantics by state transformations and observations

● Pros and Cons
– free of representational details (except augmentations)
– state explosion is common
– extensions to minimize states and modularize
– particularly applicable to control systems, languages, hardware

● Graphical as well as textual notations: StateCharts,
ASLAN, Paisley,InaJo, Special

Topic 10
Formal Methods

26

ICS 121

State Transition Specifications:
State Charts Clock

off

ringing

CLOCK

tick alarm

up

quiet

on

[alarm_time
 = time]

enabled disabled

time'
:= succ(time)

time' :=
midnight

gettime
disabled

Topic 10
Formal Methods

27

ICS 121

State Transition Specifications:
ASLAN Clock

SPECIFICATION Clock

LEVEL Top_Level

TYPE BellStatus IS (quiet, ringing), AlarmStatus IS (disabled, enabled)

VARIABLE time, alarm_time: INTEGER, bell: BellStatus, alarm: AlarmStatus

INITIAL (time = midnight) & (bell = quiet) & (alarm = disabled)

INVARIANT TRUE

TRANSITION tick
ENTRY TRUE

EXIT (time = succ(time ′))
& (if ((alarm_time = time) & (alarm = enabled))
 then (bell = ringing) else (bell = bell ′) fi)
& (alarm = alarm ′) & (alarm_time = alarm_time ′)

Topic 10
Formal Methods

28

ICS 121

State Transition Specifications:
ASLAN Clock - 2

TRANSITION set_alarm (new_time: INTEGER)
ENTRY TRUE
EXIT (alarm_time = new_time)

& (if ((alarm_time = time) & (alarm = enabled))
 then (bell = ringing) else (bell = bell ′) fi)
& (time = time ′) & (alarm = alarm ′)

TRANSITION enable_alarm
ENTRY alarm = disabled
EXIT (alarm = enabled)

& (if (alarm_time = time)
 then (bell = ringing) else (bell = bell ′) fi)
& (time = time ′) & (alarm_time = alarm_time ′)

TRANSITION disable_alarm
ENTRY alarm = enabled
EXIT (alarm = disabled) & (bell = quiet)

END Top_Level

END Clock

Topic 10
Formal Methods

29

ICS 121

➍ Axiomatic Specifications

● Implicitly defines behavior in terms of [first-order] logic
formulas specifying input/output assertions (and
possibly intermediate assertions)

● Specification includes
– operation interfaces: input/output parameters
– operation axioms: pre/post assertions on input/output

● Pros and Cons
– fairly easy to understand
– widely applicable (although hard to scale up)
– most widely used technique in proving (inductive assertion method)
– foundation of mathematics in software development

● Many languages support this type of specification:
– VDM, Anna
– Extensions include various logics for specific application domains (e.g.,

temporal logic: RTIL, GIL)

Topic 10
Formal Methods

30

ICS 121

Axiomatic Specifications:
VDM Clock

INIT()
ext wr time: N, bell: {quiet, ringing}, alarm: {disabled, enabled}
pre true
post (time ′ = midnight) ∧ (bell ′ = quiet) ∧ (alarm ′= disabled)

TICK()
ext wr time: N, bell: {quiet, ringing}
rd alarm_time: N, alarm: {disabled, enabled}
pre true
post (time ′ = succ(time)) ∧ (if (alarm_time ′ = time ′) ∧ (alarm ′ =

enabled) then (bell ′ = ringing) else (bell ′ = bell)

ICS 121 Lecture Notes

Topic 10
Formal Methods

Topic 10
Formal Methods

31

ICS 121

Axiomatic Specifications:
VDM Clock - 2
SETALARMTIME(new_time: N)
ext wr alarm_time: N, bell: {quiet, ringing}
rd time: N, alarm: {disabled, enabled}
pre true
post (alarm_time ′ = new_time) ∧ (if (alarm_time ′ = time ′) ∧ (alarm ′ =

enabled)
then (bell ′ = ringing) else (bell ′ = bell)

ENABLEALARM()
ext wr alarm: {disabled, enabled}, bell: {quiet, ringing}
rd time: N, alarm_time: N
pre alarm = disabled
post (alarm ′ = enabled) ∧ (if (alarm_time ′ = time ′)

then (bell ′ = ringing) else (bell ′ = bell)

DISABLEALARM()
ext wr alarm: {disabled, enabled}, bell: {quiet, ringing}
pre alarm = enabled
post (alarm ′ = disabled) ∧ (bell ′ = quiet)

