## CS-171, Intro to A.I. - Quiz\#4 — Fall Quarter, 2016 - 20 minutes

YOUR NAME:
YOUR ID: $\qquad$ ROW \& SEAT: $\qquad$ (1pt)

1. (10 pts) Definition of conditional probability. Write down the definition of $\mathrm{P}(\mathrm{H} \mid \mathrm{D})$ in terms of $\mathrm{P}(\mathrm{H})$, $\mathrm{P}(\mathrm{D}), \mathrm{P}(\mathrm{H} \wedge \mathrm{D})$, and $\mathrm{P}(\mathrm{H} \vee \mathrm{D})$.

$$
\mathrm{P}(\mathrm{H} \mid \mathrm{D})=
$$

2. ( $\mathbf{1 0} \mathbf{~ p t s )}$ Bayes' Rule. Write down the result of applying Bayes' Rule to $P(H \mid D)$, i.e., write down $P(H \mid D)$ in terms of $P(H), P(D)$, and $P(D \mid H)$.

$$
\mathrm{P}(\mathrm{H} \mid \mathrm{D})=
$$

3. ( $\mathbf{2 0}$ pts total, $\mathbf{- 5}$ for each error, but not negative) Bayesian Networks. Shown below is the Bayesian network corresponding to the Burglar Alarm problem, $\mathrm{P}(\mathrm{J} \mid \mathrm{A}) \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{E})$.


Write down an expression that will evaluate to $P(J=t \wedge M=f \wedge A=t \wedge B=f \wedge E=t)$. Express your answer as a series of numbers (numerical probabilities) separated by multiplication symbols. You do not need to carry out the multiplication to produce a single number (probability). SHOW YOUR WORK.

$$
P(J=t \wedge M=f \wedge A=t \wedge B=f \wedge E=t)
$$

$=$
4. (15 pts total, $\mathbf{- 5}$ for each error, but not negative) Bayesian Networks. Write down the factored conditional probability expression corresponding to this Bayesian Network.

5. ( $\mathbf{1 5}$ pts total, $\mathbf{- 5}$ for each error, but not negative) Bayesian Networks. Draw the Bayesian Network corresponding to this factored conditional probability expression. Draw left-to-right, as in Problem 4.

$$
P(A \mid C) P(B \mid D, E) P(C \mid E) P(D \mid E, F) P(E \mid H) P(F \mid G, H) P(G) P(H \mid G)
$$

## 5. (29 pts total) Decision Tree Learning.

You are an agricultural robot given the following set of plant examples. Each is assigned a class label of + or - depending on whether or not it is a member of the target class:

| Example | Vine? | Fruit? | Leaf? | Class |
| :--- | :--- | :--- | :--- | :--- |
| Watermelon | Yes | Yes | Curly | + |
| Ivy | Yes | No | Curly | - |
| Bougainvillea | Yes | No | Flat | - |
| Kudzu | Yes | No | Flat | - |
| Maple | No | No | Curly | + |
| Oak | No | No | Flat | + |
| Sycamore | No | No | Flat | + |
| Apple | No | Yes | Curly | - |

5.a. ( 15 pts ) Draw the decision tree that would be constructed by recursively applying information gain to select roots of sub-trees, as in the Decision-Tree-Learning algorithm.
5.b. (7 pts) What class is Grape? (Vine=Yes, Fruit=Yes, Leaf=Curly) $\qquad$

5c. (7 pt) What class is Orange? (Vine=No, Fruit=Yes, Leaf=Curly) $\qquad$

