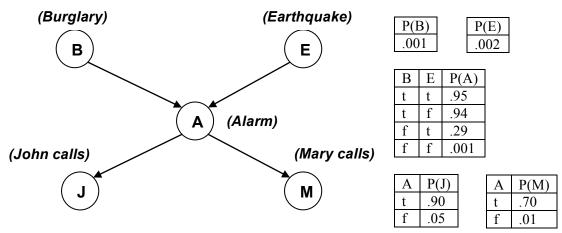
CS-171, Intro to A.I. — Quiz	#4 — Fall Quarter, 2016 — 20 min	utes
YOUR NAME:		
YOUR ID:	ROW & SEAT:	(1pt)

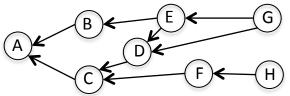

1. (10 pts) Definition of conditional probability. Write down the definition of P(H | D) in terms of P(H), P(D), $P(H \land D)$, and $P(H \lor D)$.

 $P(H \mid D) =$

2. (10 pts) Bayes' Rule. Write down the result of applying Bayes' Rule to P(H | D), i.e., write down P(H | D) in terms of P(H), P(D), and P(D | H).

 $P(H \mid D) =$

3. (20 pts total, -5 for each error, but not negative) Bayesian Networks. Shown below is the Bayesian network corresponding to the Burglar Alarm problem, P(J | A) P(M | A) P(A | B, E) P(B) P(E).



Write down an expression that will evaluate to P($J=t \land M=f \land A=t \land B = f \land E = t$). Express your answer as a series of numbers (numerical probabilities) separated by multiplication symbols. You do not need to carry out the multiplication to produce a single number (probability). **SHOW YOUR WORK.**

$$P(J=t \land M=f \land A=t \land B=f \land E=t)$$

=

4. (15 pts total, -5 for each error, but not negative) Bayesian Networks. Write down the factored conditional probability expression corresponding to this Bayesian Network.

5. (15 pts total, -5 for each error, but not negative) Bayesian Networks. Draw the Bayesian Network corresponding to this factored conditional probability expression. Draw left-to-right, as in Problem 4.

P(A | C) P(B | D, E) P(C | E) P(D | E, F) P(E | H) P(F | G, H) P(G) P(H | G)

5. (29 pts total) Decision Tree Learning.

You are an agricultural robot given the following set of plant examples. Each is assigned a class label of + or — depending on whether or not it is a member of the target class:

Example	Vine?	Fruit?	Leaf?	Class
Watermelon	Yes	Yes	Curly	+
Ivy	Yes	No	Curly	
Bougainvillea	Yes	No	Flat	
Kudzu	Yes	No	Flat	
Maple	No	No	Curly	+
Oak	No	No	Flat	+
Sycamore	No	No	Flat	+
Apple	No	Yes	Curly	

5.a. (15 pts) Draw the decision tree that would be constructed by recursively applying information gain to select roots of sub-trees, as in the Decision-Tree-Learning algorithm.

5.b. (7 pts) What class is Grape? (Vine=Yes, Fruit=Yes, Leaf=Curly)_____

5c. (7 pt) What class is Orange? (Vine=No, Fruit=Yes, Leaf=Curly)_____