Game-Playing & Adversarial Search

This lecture topic:
Game-Playing & Adversarial Search (two lectures)
Chapter 5.1-5.5

Next lecture topic:
Constraint Satisfaction Problems (two lectures)
Chapter 6.1-6.4, except 6.3.3

(Please read lecture topic material before and after each lecture on that topic)



Overview

« Minimax Search with Perfect Decisions
— Impractical in most cases, but theoretical basis for analysis

 Minimax Search with Cut-off
— Replace terminal leaf utility by heuristic evaluation function

 Alpha-Beta Pruning
— The fact of the adversary leads to an advantage in search!

=+ =~ Practicalr Considerations— -~~~ -

— Redundant path elimination, look-up tables, etc.
——Game SearchrwithrChance——

— Expectiminimax search



You Will Be Expected to Know

 Basic definitions (section 5.1)
« Minimax optimal game search (5.2)
 Alpha-beta pruning (5.3)

- —e« —Evaluation-functions; cotting-off search(5.4.1, 542y - - - - -
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Types of Games

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleship bridge, poker, scrabble
. . nuclear war
Kriegspiel

Not Considered: Physical games like tennis, croquet,

ice hockey, etc.
(but see “robot soccer” http://www.robocup.org/)



Typical assumptions

Two agents whose actions alternate

Utility values for each agent are the opposite of the other
— This creates the adversarial situation

Fully observable environments

In game theory terms:

— “Deterministic, turn-taking, zero-sum games of perfect information”
Generalizes to stochastic games, multiple players, non zero-sum, etc.

Compare to, e.g., “Prisoner’s Dilemma” (p. 666-668, R&N 39 ed.)

— “Deterministic, NON-turn-taking, NON-zero-sum game of IMperfect
information”



Game tree (2-player, deterministic, turns)

MAX (X)
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MIN (O) X X X
X X X
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Utility A 0 1

How do we search this tree to find the optimal move?



Search versus Games

e Search —no adversary

Solution is (heuristic) method for finding goal

Heuristics and CSP techniques can find optimal solution

Evaluation function: estimate of cost from start to goal through given node
Examples: path planning, scheduling activities

« Games — adversary

Solution is strategy

» strategy specifies move for every possible opponent reply.
Time limits force an approximate solution
Evaluation function: evaluate “goodness” of game position

Examples: chess, checkers, Othello, backgammon



Games as Search

Two players: MAX and MIN

MAX moves first and they take turns until the game is over

Winner gets reward, loser gets penalty.
“Zero sum” means the sum of the reward and the penalty is a constant.

Formal definition as a search problem:

Initial state: Set-up specified by the rules, e.g., initial board configuration of chess.
Player(s): Defines which player has the move in a state.
Actions(s): Returns the set of legal moves in a state.
Result(s,a): Transition model defines the result of a move.
(2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.)
Terminal-Test(s): Is the game finished? True if finished, false otherwise.
Utility function(s,p): Gives numerical value of terminal state s for player p.
 E.g.,win (+1), lose (-1), and draw (0) in tic-tac-toe.
 E.g.,win (+1), lose (0), and draw (1/2) in chess.

MAX uses search tree to determine next move.



An optimal procedure: The Min-Max method

Designed to find the optimal strategy for Max and find best move:

1. Generate the whole game tree, down to the leaves.

2. Apply utility (payoff) function to each leaf.

3. Back-up values from leaves through branch nodes:
— a Max node computes the Max of its child values
— a Min node computes the Min of its child values

4. At root: choose the move leading to the child of highest value.



Game Trees

MAX

MIN

Figure 52 A two-ply game tree as generated by the minimax algorithm. The A nodes are
moves by MAX and the V nodes are moves by MIN. The terminal nodes show the utility value for
MAX computed by the utility function (i.e., by the rules of the game), whereas the utilities of the

other nodes are computed by the minimax algorithm from the utilities of their successors. MAX's
best move is A;, and MIN’s best reply is A ;.




Two-Ply Game Tree

MAX

MIN




Two-Ply Game Tree

MAX

MIN




Two-Ply Game Tree

Minimax maximizes the utility for the worst-case outcome for max

The minimax decision 3
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Pseudocode for Minimax Algorithm

function MINIMAX-DECISION(state) returns an action

__inputs: state, current state in game
return arg max, . ACTIONS(state) MIN-VALUE(Result(state,a))

function MAX-VALUE(state) returns a utility value
If TERMINAL-TEST (state) then return UTILITY (state)
V¢ —©
for a in ACTIONS(state) do
v <« MAX(v,MIN-VALUE(Result(state,a)))
returnv

function MIN-VALUE(state) returns a utility value
If TERMINAL-TEST (state) then return UTILITY (state)
V <— +00
for a in ACTIONS(state) do
v < MIN(v,MAX-VALUE(Result(state,a)))
—returnv




Properties of minimax

Complete?
— Yes (if tree is finite).

Optimal?
— Yes (against an optimal opponent).
— Can it be beaten by an opponent playing sub-optimally?
 No. (Why not?)

Time complexity?
— O(bm)

Space complexity?
— O(bm) (depth-first search, generate all actions at once)
— O(m) (backtracking search, generate actions one at a time)




Game Tree Size

Tic-Tac-Toe
— b = 5 legal actions per state on average, total of 9 plies in game.
* “ply” = one action by one player, “move” = two plies.
— 59=1,953,125
— 91 =362,880 (Computer goes first)
— 8! =40,320 (Computer goes second)
-> exact solution quite reasonable

Chess
— b = 35 (approximate average branching factor)
— d =100 (depth of game tree for “typical” game)
— bd = 35100 = 10154 nodes!!
-> exact solution completely infeasible

It is usually impossible to develop the whole search tree.



(Static) Heuristic Evaluation Functions

e An Evaluation Function:

Estimates how good the current board configuration is for a player.

Typically, evaluate how good it is for the player, how good it is for
the opponent, then subtract the opponent’s score from the player’s.

Often called “static” because it is called on a static board position.
Othello: Number of white pieces - Number of black pieces
Chess: Value of all white pieces - Value of all black pieces

 Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

 If the board evaluation is X for a player, it's -X for the opponent

‘Zero-sum game”



Evaluation functions

Black to move White to move

White slightly better Black winning
For chess, typically linear weighted sum of features
Eval(s) = wifi(s) + wafo(s) + ... + wufuls)

e.g., w; = 9 with
f1(s) = (number of white queens) — (number of black queens), etc.

Chapter 5, Sections 1-5 14



Cutting off search

MINIMAXCUTOFF is identical to MINIMAXVALUE except
1. TERMINAL? is replaced by CUTOFF?
2. UTILITY is replaced by EVAL

Does it work in practice?
b" =10°, b=35 = m=4
4-ply lookahead is a hopeless chess player!

4-ply =~ human novice
8-ply = typical PC, human master
12-ply ~ Deep Blue, Kasparov

Chapler 5, Secliong




Applying MiniMax to tic-tac-toe

The static heuristic evaluation function

X has 6 possible win paths: - 1>c1-}

X ol
O - of G R

O has 5 possible wins: R i) g

E(n)=6-5=1 1ol

X has 4 possible win paths;
O has 6 possible wins

X|O
E(nN)=4-6=-2
[®) X has 5 possible win paths:
X O has 4 possible wins

E(n)=5-4=1

Heuristic is E(n) = M(n) — O(n
where M(n) is the total of My possible winning lines
O(n) is total of Opponent's possible winning lines
E(n) is the total Evaluation for state n

Figure 4.16 Heuristic measuring conflict applied to states
" of tic-tac-toe.



Backup Values

@ Start

node

| MAX's move
\ .

X1 (D | ©)

1@

X X X Q
O o, X
O O O
6-5=1 5-5=06-5=15-5=04-5=-1 5-4=16-4=2

0, O Q
X X X o) o

5-6=-15-5=05-6=-16-6=04-6=-2

Figure 4.17 Two-ply minimax applied to the opening
move of tic-tac-toe.
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Figure 4.18 Two-ply minimax applied to X's second
move of tic-tac-toe.



MAX's move @ X0 start

/ : node

O

3:2=12-2=03-2=1 —~e  2-1=1 3-122 3-1=2

=5 =

—~e 2-2=02-2=03-2=1

Figure 4.19 Two-ply minimax applied to X's move near
end game.



Digression: Exact values don’t matter

MAX
MIN ‘R 1K 20
4 1 0 2 400

Behaviour is preserved under any monotonic transformation of EVAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Chapter 5, Secliong 1-35 L5



Alpha-Beta Pruning
Exploiting the Fact of an Adversary

If a position is provably bad:
— Itis NO USE expending search time to find out exactly how bad

If the adversary can force a bad position:

— Itis NO USE expending search time to find out the good positions
that the adversary won't let you achieve anyway

Bad = not better than we already know we can achieve elsewhere.

Contrast normal search:
— ANY node might be a winner.
— ALL nodes must be considered.
— (A* avoids this through knowledge, i.e., heuristics)



Tic-Tac-Toe Example with Alpha-Beta Pruning

@ Start

node

/ | MAX's move.
- WINE) | \ ©)

Backup Values

X X Q
ES o OIX
o O o]

6-5=15-5=06-5=15-5=04-5=-1 5-4=1 6-4=2

, 9, Q
X [X X Q }
5-6=-1\5-5=05-6=-16-6=04-6=-2

Figure 4.17 Two-ply minimax applied to the opening
move of tic-tac-toe.




Another Alpha-Beta Example

Do DF-search until first leaf

Range of possible values

MAX




Alpha-Beta Example (continued)

MAX

MIN




Alpha-Beta Example (continued)

MAX

MIN




Alpha-Beta Example (continued)
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Alpha-Beta Example (continued)

MAX [3,+00)]
This node 1s
worse for MAX

MIN



Alpha-Beta Example (continued)
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MIN
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Alpha-Beta Example (continued)
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Alpha-Beta Example (continued)
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Alpha-Beta Example (continued)
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General alpha-beta pruning

Consider anode n in the tree ---

If player has a better choice at: Player
— Parent node of n
— Or any choice point further up
Opponent

Then n will never be reached in play

Hence, when that much is known
about n, it can be pruned. Plaver

Opponent



Alpha-beta Algorithm

 Depth first search
— only considers nodes along a single path from root at any time

o = highest-value choice found at any choice point of path for MAX
(initially, oo = —infinity)

B = lowest-value choice found at any choice point of path for MIN
(initially, B = +infinity)

 Pass current values of a and B down to child nodes during search.
« Update values of a and B during search:

— MAX updates o at MAX nodes

— MIN updates  at MIN nodes
« Pruneremaining branches at a node when a. 2 3



When to Prune

« Prunewhenever a 2 B.

— Prune below a Max node whose alpha value becomes greater than
or equal to the beta value of its ancestors.

« Max nodes update alpha based on children’s returned values.

— Prune below a Min node whose beta value becomes less than or
equal to the alpha value of its ancestors.

 Min nodes update beta based on children’s returned values.



Alpha-Beta Example Revisited

Do DF-search until first leaf
a, B, initial values
Ol——00

MAX B =+o0

a, [, passed to kids

MIN



Alpha-Beta Example (continued)

MAX

MIN




Alpha-Beta Example (continued)

OL=—00

MAX

NI OL=—00
p=3

MIN updates S, based on kids.
No change.



Alpha-Beta Example (continued)

MAX updates o, based on kids.
o=3
B =40

MAX

3is returned
as node value.

MIN



Alpha-Beta Example (continued)

MAX

a, [, passed to kids

MIN NV B =+w




Alpha-Beta Example (continued)

MAX
MIN updates [,
based on kids.
o=3
MIN B =2




Alpha-Beta Example (continued)

MAX

a2 f,

SO prune.

MIN




Alpha-Beta Example (continued)

MAX updates «, based on kids.

No change. —
MAX =3
B =+o0
2 is returned
as node value.
MIN <2



Alpha-Beta Example (continued)

=3
MAX |
Wssed to kids
MIN <2 =3
B =+00




Alpha-Beta Example (continued)

MAX

MIN

MIN updates [,
based on kids.

a=3
B =14



Alpha-Beta Example (continued)

VAX
MIN updates [,
based on kids.

a=3

B =5

IVITN




Alpha-Beta Example (continued)

AKX

MIN

2 is returned

as node value.



Alpha-Beta Example (continued)

Max calculates the
same node value, and

MAX makes the same movel

MIN




Effectiveness of Alpha-Beta Search

e Worst-Case

branches are ordered so that no pruning takes place. In this case
alpha-beta gives no improvement over exhaustive search

e Best-Case

each player’'s best move is the left-most child (i.e., evaluated first)
in practice, performance is closer to best rather than worst-case
E.g., sort moves by the remembered move values found last time.
E.g., expand captures first, then threats, then forward moves, etc.
E.g., run lterative Deepening search, sort by value last iteration.

« In practice often get O(b@2) rather than O(b9)
— this is the same as having a branching factor of sqrt(b),

o (sgrt(b))d = b2 je., we effectively go from b to square root of b

— e.g.,inchessgofromb~35to b~6

 this permits much deeper search in the same amount of time



Final Comments about Alpha-Beta Pruning

Pruning does not affect final results

Entire subtrees can be pruned.

Good move ordering improves effectiveness of pruning

Repeated states are again possible.
— Store them in memory = transposition table



Example

-which nodes can be pruned?



Answer to Example

-which nodes can be pruned?

Max
Min
P A A A
3 4 1 2 7 8 5 6

Answer: NONE! Because the most favorable nodes for both are
explored last (1.e., in the diagram, are on the right-hand side).



Second Example
(the exact mirror image of the first example)

-which nodes can be pruned?



Answer to Second Example
(the exact mirror image of the first example)

-whi 2
Max which nodes can be pruned

Min

A A AN

6 5 8 X 2 L X X

Answer: LOTS! Because the most favorable nodes for both are
explored first (1.e., in the diagram, are on the left-hand side).



lterative (Progressive) Deepening

In real games, there is usually a time limit T on making a move

How do we take this into account?

using alpha-beta we cannot use “partial” results with any
confidence unless the full breadth of the tree has been searched

— S0, we could be conservative and set a conservative depth-limit
which guarantees that we will find a move intime <T

» disadvantage is that we may finish early, could do more search

In practice, iterative deepening search (IDS) is used
— IDS runs depth-first search with an increasing depth-limit

— when the clock runs out we use the solution found at the previous
depth limit



Heuristics and Game Tree Search: limited horizon

The Horizon Effect

sometimes there’s a major “effect” (such as a piece being captured)
which is just “below” the depth to which the tree has been
expanded.

the computer cannot see that this major event could happen
because it has a “limited horizon”.

there are heuristics to try to follow certain branches more deeply to
detect such important events

this helps to avoid catastrophic losses due to “short-sightedness”

Heuristics for Tree Exploration

it may be better to explore some branches more deeply in the
allotted time

various heuristics exist to identify “promising” branches



Eliminate Redundant Nodes

On average, each board position appears in the search tree
approximately ~10%%0 / ~1040 = 10190 times.

=> Vastly redundant search effort.

Can’t remember all nodes (too many).
=> Can't eliminate all redundant nodes.

However, some short move sequences provably lead to a
redundant position.

— These can be deleted dynamically with no memory cost

Example:
1. P-QR4 P-QR4; 2. P-KR4 P-KR4
leads to the same position as
1. P-QR4 P-KR4; 2. P-KR4 P-QR4



Nondeterministic games: backgammon

aaalls &

25 24 23 22 21 20 19 18 17 16 15 14 13

Chapler 5, Secliong



Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping:

MAX

CHANCE

MIN




Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

if state is a MAX node then

return the highest EXPECTIMINIMAX- VALUE of SUCCESSORS(state)
if stale is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS( state)
if state is a chance node then

return average of EXPECTIMINIMAX- VALUE of SUCCESSORS(state)

Chapter 5, Secliong 1-35 28



The State of Play

Checkers:

— Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994,

Chess:

— Deep Blue defeated human world champion Garry Kasparov in a
Six-game match in 1997.

Othello:

— human champions refuse to compete against computers: they are
too good.

Go:

— human champions refuse to compete against computers: they are
too bad

— b>300 (M

See (e.g.) http://www.cs.ualberta.ca/~games/ for more information



http://www.cs.ualberta.ca/~games/

PHILADELPHIA (Reuter) -

IBM chess computer Deep Blue made chess
history Saturday when it defeated world cham-
pion Garry Kasparov, the first time a com-
puter program has beaten a grandmaster un-

der strict tournament conditions.

IBEM Deep Blue - Kasparov,G [B22]
Philadelphia (1), 1996

l.ed ¢5 2.c3 d5 3.exd5 QxdS5 4.d4 Nf6 5.Nf3 Bg4 6.Be2 6 7.h3
BhS 8.0-0 Nc6 9.Be3 cxd4 10.cxd4 Bb4 11.a3 Bab 12.Nc3 Qd6
13.Nb5 Qe7 14.Ne5 Bxe2 15.Qxe2 0-0 16.Racl Rac8 17.Bg5 Bbé
18.Bxf6 gxfé 19.Nc4 RfdB 20.Nxb6 axb6 21.Rfdl f5 22.Qe3 Qf6
23.d5 Rxd5 24.Rxd5 exd5 25.b3 Kh8 26.Qxb6 RgB8 27.Qch d4
2B.Nd6 f4 29.Nxb7 Ne5 30.Qd5 f3 31.g3 Nd3 22.Rc7 Res8 23 Ndé

Rel+4 34.Kh2 Nxf2 35.Nxf74 Kg7 36.Ng5+ Khé 37.Rxh7+ 1-0



Deep Blue

1957: Herbert Simon
— “within 10 years a computer will beat the world chess champion”

1997. Deep Blue beats Kasparov

Parallel machine with 30 processors for “software” and 480 VLSI
processors for “hardware search”

Searched 126 million nodes per second on average
— Generated up to 30 billion positions per move
— Reached depth 14 routinely

Uses iterative-deepening alpha-beta search with transpositioning
— Can explore beyond depth-limit for interesting moves



Moore’'s Law Iin Action?
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Figure 5.12




Summary

Game playing is best modeled as a search problem
Game trees represent alternate computer/opponent moves

Evaluation functions estimate the quality of a given board configuration
for the Max player.

Minimax is a procedure which chooses moves by assuming that the
opponent will always choose the move which is best for them

Alpha-Beta is a procedure which can prune large parts of the search
tree and allow search to go deeper

For many well-known games, computer algorithms based on heuristic
search match or out-perform human world experts.



	Game-Playing & Adversarial Search�
	Overview
	You Will Be Expected to Know
	Types of Games
	Typical assumptions
	Game tree (2-player, deterministic, turns)
	Search versus Games
	Games as Search
	An optimal procedure: The Min-Max method
	Game Trees
	Two-Ply Game Tree
	Two-Ply Game Tree
	Two-Ply Game Tree
	Pseudocode for Minimax Algorithm
	Properties of minimax
	Game Tree Size
	(Static) Heuristic Evaluation Functions
	Slide Number 18
	Slide Number 19
	Applying MiniMax to tic-tac-toe
	Backup Values
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Alpha-Beta Pruning�Exploiting the Fact of an Adversary
	Tic-Tac-Toe Example with Alpha-Beta Pruning
	Another Alpha-Beta Example
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	General alpha-beta pruning
	Alpha-beta Algorithm
	When to Prune 
	Alpha-Beta Example Revisited
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Effectiveness of Alpha-Beta Search
	Final Comments about Alpha-Beta Pruning
	Example
	Answer to Example
	Second Example�(the exact mirror image of the first example)
	Answer to Second Example�(the exact mirror image of the first example)
	Iterative (Progressive) Deepening
	Heuristics and Game Tree Search: limited  horizon
	Eliminate Redundant Nodes
	Slide Number 64
	Slide Number 65
	Slide Number 66
	�The State of Play
	Slide Number 68
	Deep Blue
	Moore’s Law in Action?
	Summary

