
Game-Playing & Adversarial Search

This lecture topic:
Game-Playing & Adversarial Search (two lectures)

Chapter 5.1-5.5

Next lecture topic:
Constraint Satisfaction Problems (two lectures)

Chapter 6.1-6.4, except 6.3.3

(Please read lecture topic material before and after each lecture on that topic)

Overview

• Minimax Search with Perfect Decisions
– Impractical in most cases, but theoretical basis for analysis

• Minimax Search with Cut-off

– Replace terminal leaf utility by heuristic evaluation function

• Alpha-Beta Pruning
– The fact of the adversary leads to an advantage in search!

• Practical Considerations

– Redundant path elimination, look-up tables, etc.

• Game Search with Chance
– Expectiminimax search

You Will Be Expected to Know

• Basic definitions (section 5.1)

• Minimax optimal game search (5.2)

• Alpha-beta pruning (5.3)

• Evaluation functions, cutting off search (5.4.1, 5.4.2)

• Expectiminimax (5.5)

Types of Games

battleship
Kriegspiel

Not Considered: Physical games like tennis, croquet,
ice hockey, etc.
(but see “robot soccer” http://www.robocup.org/)

Typical assumptions

• Two agents whose actions alternate

• Utility values for each agent are the opposite of the other
– This creates the adversarial situation

• Fully observable environments

• In game theory terms:

– “Deterministic, turn-taking, zero-sum games of perfect information”

• Generalizes to stochastic games, multiple players, non zero-sum, etc.

• Compare to, e.g., “Prisoner’s Dilemma” (p. 666-668, R&N 3rd ed.)
– “Deterministic, NON-turn-taking, NON-zero-sum game of IMperfect

information”

Game tree (2-player, deterministic, turns)

How do we search this tree to find the optimal move?

Search versus Games

• Search – no adversary
– Solution is (heuristic) method for finding goal
– Heuristics and CSP techniques can find optimal solution
– Evaluation function: estimate of cost from start to goal through given node
– Examples: path planning, scheduling activities

• Games – adversary

– Solution is strategy
• strategy specifies move for every possible opponent reply.

– Time limits force an approximate solution
– Evaluation function: evaluate “goodness” of game position

– Examples: chess, checkers, Othello, backgammon

Games as Search

• Two players: MAX and MIN

• MAX moves first and they take turns until the game is over
– Winner gets reward, loser gets penalty.
– “Zero sum” means the sum of the reward and the penalty is a constant.

• Formal definition as a search problem:

– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess.
– Player(s): Defines which player has the move in a state.
– Actions(s): Returns the set of legal moves in a state.
– Result(s,a): Transition model defines the result of a move.
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.)
– Terminal-Test(s): Is the game finished? True if finished, false otherwise.
– Utility function(s,p): Gives numerical value of terminal state s for player p.

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe.
• E.g., win (+1), lose (0), and draw (1/2) in chess.

• MAX uses search tree to determine next move.

An optimal procedure: The Min-Max method

Designed to find the optimal strategy for Max and find best move:

• 1. Generate the whole game tree, down to the leaves.

• 2. Apply utility (payoff) function to each leaf.

• 3. Back-up values from leaves through branch nodes:

– a Max node computes the Max of its child values
– a Min node computes the Min of its child values

• 4. At root: choose the move leading to the child of highest value.

Game Trees

Two-Ply Game Tree

Two-Ply Game Tree

Two-Ply Game Tree

The minimax decision

Minimax maximizes the utility for the worst-case outcome for max

Pseudocode for Minimax Algorithm

function MINIMAX-DECISION(state) returns an action
 inputs: state, current state in game
return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a))

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← +∞
 for a in ACTIONS(state) do
 v ← MIN(v,MAX-VALUE(Result(state,a)))
 return v

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← −∞
 for a in ACTIONS(state) do
 v ← MAX(v,MIN-VALUE(Result(state,a)))
 return v

Properties of minimax

• Complete?
– Yes (if tree is finite).

• Optimal?
– Yes (against an optimal opponent).
– Can it be beaten by an opponent playing sub-optimally?

• No. (Why not?)

• Time complexity?
– O(bm)

• Space complexity?

– O(bm) (depth-first search, generate all actions at once)
– O(m) (backtracking search, generate actions one at a time)

Game Tree Size

• Tic-Tac-Toe
– b ≈ 5 legal actions per state on average, total of 9 plies in game.

• “ply” = one action by one player, “move” = two plies.
– 59 = 1,953,125
– 9! = 362,880 (Computer goes first)
– 8! = 40,320 (Computer goes second)
 exact solution quite reasonable

• Chess

– b ≈ 35 (approximate average branching factor)
– d ≈ 100 (depth of game tree for “typical” game)
– bd ≈ 35100 ≈ 10154 nodes!!
 exact solution completely infeasible

• It is usually impossible to develop the whole search tree.

(Static) Heuristic Evaluation Functions

• An Evaluation Function:
– Estimates how good the current board configuration is for a player.
– Typically, evaluate how good it is for the player, how good it is for

the opponent, then subtract the opponent’s score from the player’s.
– Often called “static” because it is called on a static board position.
– Othello: Number of white pieces - Number of black pieces
– Chess: Value of all white pieces - Value of all black pieces

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

• If the board evaluation is X for a player, it’s -X for the opponent

– “Zero-sum game”

Applying MiniMax to tic-tac-toe

• The static heuristic evaluation function

Backup Values

Alpha-Beta Pruning
Exploiting the Fact of an Adversary

• If a position is provably bad:
– It is NO USE expending search time to find out exactly how bad

• If the adversary can force a bad position:

– It is NO USE expending search time to find out the good positions
that the adversary won’t let you achieve anyway

• Bad = not better than we already know we can achieve elsewhere.

• Contrast normal search:
– ANY node might be a winner.
– ALL nodes must be considered.
– (A* avoids this through knowledge, i.e., heuristics)

Tic-Tac-Toe Example with Alpha-Beta Pruning

Backup Values

Another Alpha-Beta Example

[-∞, +∞]

[-∞,+∞]

Range of possible values

Do DF-search until first leaf

Alpha-Beta Example (continued)

[-∞,3]

[-∞,+∞]

Alpha-Beta Example (continued)

[-∞,3]

[-∞,+∞]

Alpha-Beta Example (continued)

[3,+∞]

[3,3]

Alpha-Beta Example (continued)

[-∞,2]

[3,+∞]

[3,3]

This node is
worse for MAX

Alpha-Beta Example (continued)

[-∞,2]

[3,14]

[3,3] [-∞,14]

,

Alpha-Beta Example (continued)

[−∞,2]

[3,5]

[3,3] [-∞,5]

,

Alpha-Beta Example (continued)

[2,2] [−∞,2]

[3,3]

[3,3]

Alpha-Beta Example (continued)

[2,2] [-∞,2]

[3,3]

[3,3]

General alpha-beta pruning

• Consider a node n in the tree ---

• If player has a better choice at:
– Parent node of n
– Or any choice point further up

• Then n will never be reached in play.

• Hence, when that much is known

about n, it can be pruned.

Alpha-beta Algorithm

• Depth first search
– only considers nodes along a single path from root at any time

 α = highest-value choice found at any choice point of path for MAX
 (initially, α = −infinity)
 β = lowest-value choice found at any choice point of path for MIN
 (initially, β = +infinity)

• Pass current values of α and β down to child nodes during search.
• Update values of α and β during search:

– MAX updates α at MAX nodes
– MIN updates β at MIN nodes

• Prune remaining branches at a node when α ≥ β

When to Prune

• Prune whenever α ≥ β.

– Prune below a Max node whose alpha value becomes greater than
or equal to the beta value of its ancestors.

• Max nodes update alpha based on children’s returned values.

– Prune below a Min node whose beta value becomes less than or
equal to the alpha value of its ancestors.

• Min nodes update beta based on children’s returned values.

Alpha-Beta Example Revisited

α, β, initial values
Do DF-search until first leaf

α=−∞
β =+∞

α=−∞
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

MIN updates β, based on kids

α=−∞
β =+∞

α=−∞
β =3

Alpha-Beta Example (continued)

α=−∞
β =3

MIN updates β, based on kids.
No change.

α=−∞
β =+∞

Alpha-Beta Example (continued)

MAX updates α, based on kids.
α=3
β =+∞

3 is returned
as node value.

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =2

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =2

α ≥ β,
so prune.

α=3
β =+∞

Alpha-Beta Example (continued)

2 is returned
as node value.

MAX updates α, based on kids.
No change. α=3

β =+∞

Alpha-Beta Example (continued)

,
α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

,

α=3
β =14

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

,

α=3
β =5

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =+∞ 2 is returned

as node value.

2

Alpha-Beta Example (continued)

Max calculates the
same node value, and
makes the same move!

2

Effectiveness of Alpha-Beta Search

• Worst-Case
– branches are ordered so that no pruning takes place. In this case

alpha-beta gives no improvement over exhaustive search

• Best-Case
– each player’s best move is the left-most child (i.e., evaluated first)
– in practice, performance is closer to best rather than worst-case
– E.g., sort moves by the remembered move values found last time.
– E.g., expand captures first, then threats, then forward moves, etc.
– E.g., run Iterative Deepening search, sort by value last iteration.

• In practice often get O(b(d/2)) rather than O(bd)

– this is the same as having a branching factor of sqrt(b),
• (sqrt(b))d = b(d/2),i.e., we effectively go from b to square root of b

– e.g., in chess go from b ~ 35 to b ~ 6
• this permits much deeper search in the same amount of time

Final Comments about Alpha-Beta Pruning

• Pruning does not affect final results

• Entire subtrees can be pruned.

• Good move ordering improves effectiveness of pruning

• Repeated states are again possible.
– Store them in memory = transposition table

Example

3 4 1 2 7 8 5 6

-which nodes can be pruned?

Answer to Example

3 4 1 2 7 8 5 6

-which nodes can be pruned?

Answer: NONE! Because the most favorable nodes for both are
explored last (i.e., in the diagram, are on the right-hand side).

Max

Min

Max

Second Example
(the exact mirror image of the first example)

6 5 8 7 2 1 3 4

-which nodes can be pruned?

Answer to Second Example
(the exact mirror image of the first example)

6 5 8 7 2 1 3 4

-which nodes can be pruned?

Min

Max

Max

Answer: LOTS! Because the most favorable nodes for both are
explored first (i.e., in the diagram, are on the left-hand side).

Iterative (Progressive) Deepening

• In real games, there is usually a time limit T on making a move

• How do we take this into account?
• using alpha-beta we cannot use “partial” results with any

confidence unless the full breadth of the tree has been searched
– So, we could be conservative and set a conservative depth-limit

which guarantees that we will find a move in time < T
• disadvantage is that we may finish early, could do more search

• In practice, iterative deepening search (IDS) is used

– IDS runs depth-first search with an increasing depth-limit
– when the clock runs out we use the solution found at the previous

depth limit

Heuristics and Game Tree Search: limited horizon

• The Horizon Effect
– sometimes there’s a major “effect” (such as a piece being captured)

which is just “below” the depth to which the tree has been
expanded.

– the computer cannot see that this major event could happen
because it has a “limited horizon”.

– there are heuristics to try to follow certain branches more deeply to
detect such important events

– this helps to avoid catastrophic losses due to “short-sightedness”

• Heuristics for Tree Exploration
– it may be better to explore some branches more deeply in the

allotted time
– various heuristics exist to identify “promising” branches

Eliminate Redundant Nodes

• On average, each board position appears in the search tree
approximately ~10150 / ~1040 ≈ 10100 times.
=> Vastly redundant search effort.

• Can’t remember all nodes (too many).

=> Can’t eliminate all redundant nodes.

• However, some short move sequences provably lead to a
redundant position.
– These can be deleted dynamically with no memory cost

• Example:

1. P-QR4 P-QR4; 2. P-KR4 P-KR4
leads to the same position as
1. P-QR4 P-KR4; 2. P-KR4 P-QR4

The State of Play

• Checkers:
– Chinook ended 40-year-reign of human world champion Marion

Tinsley in 1994.

• Chess:
– Deep Blue defeated human world champion Garry Kasparov in a

six-game match in 1997.

• Othello:
– human champions refuse to compete against computers: they are

too good.

• Go:
– human champions refuse to compete against computers: they are

too bad
– b > 300 (!)

• See (e.g.) http://www.cs.ualberta.ca/~games/ for more information

http://www.cs.ualberta.ca/~games/

Deep Blue

• 1957: Herbert Simon
– “within 10 years a computer will beat the world chess champion”

• 1997: Deep Blue beats Kasparov

• Parallel machine with 30 processors for “software” and 480 VLSI

processors for “hardware search”

• Searched 126 million nodes per second on average
– Generated up to 30 billion positions per move
– Reached depth 14 routinely

• Uses iterative-deepening alpha-beta search with transpositioning

– Can explore beyond depth-limit for interesting moves

Moore’s Law in Action?

Summary
• Game playing is best modeled as a search problem

• Game trees represent alternate computer/opponent moves

• Evaluation functions estimate the quality of a given board configuration

for the Max player.

• Minimax is a procedure which chooses moves by assuming that the
opponent will always choose the move which is best for them

• Alpha-Beta is a procedure which can prune large parts of the search
tree and allow search to go deeper

• For many well-known games, computer algorithms based on heuristic
search match or out-perform human world experts.

	Game-Playing & Adversarial Search�
	Overview
	You Will Be Expected to Know
	Types of Games
	Typical assumptions
	Game tree (2-player, deterministic, turns)
	Search versus Games
	Games as Search
	An optimal procedure: The Min-Max method
	Game Trees
	Two-Ply Game Tree
	Two-Ply Game Tree
	Two-Ply Game Tree
	Pseudocode for Minimax Algorithm
	Properties of minimax
	Game Tree Size
	(Static) Heuristic Evaluation Functions
	Slide Number 18
	Slide Number 19
	Applying MiniMax to tic-tac-toe
	Backup Values
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Alpha-Beta Pruning�Exploiting the Fact of an Adversary
	Tic-Tac-Toe Example with Alpha-Beta Pruning
	Another Alpha-Beta Example
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	General alpha-beta pruning
	Alpha-beta Algorithm
	When to Prune
	Alpha-Beta Example Revisited
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Effectiveness of Alpha-Beta Search
	Final Comments about Alpha-Beta Pruning
	Example
	Answer to Example
	Second Example�(the exact mirror image of the first example)
	Answer to Second Example�(the exact mirror image of the first example)
	Iterative (Progressive) Deepening
	Heuristics and Game Tree Search: limited horizon
	Eliminate Redundant Nodes
	Slide Number 64
	Slide Number 65
	Slide Number 66
	�The State of Play
	Slide Number 68
	Deep Blue
	Moore’s Law in Action?
	Summary

