
Game-Playing & Adversarial Search 
 

This lecture topic: 
Game-Playing & Adversarial Search (two lectures) 

Chapter 5.1-5.5 
 

Next lecture topic: 
Constraint Satisfaction Problems (two lectures) 

Chapter 6.1-6.4, except 6.3.3 
 

(Please read lecture topic material before and after each lecture on that topic) 
 



Overview 

• Minimax Search with Perfect Decisions 
– Impractical in most cases, but theoretical basis for analysis 

 
• Minimax Search with Cut-off 

– Replace terminal leaf utility by heuristic evaluation function 
 

• Alpha-Beta Pruning 
– The fact of the adversary leads to an advantage in search! 

 
• Practical Considerations 

– Redundant path elimination, look-up tables, etc. 
 

• Game Search with Chance 
– Expectiminimax search 



You Will Be Expected to Know 

• Basic definitions (section 5.1) 
 

• Minimax optimal game search (5.2) 
 

• Alpha-beta pruning (5.3) 
 

• Evaluation functions, cutting off search (5.4.1, 5.4.2) 
 

• Expectiminimax (5.5) 
 



Types of Games 

battleship 
Kriegspiel 

Not Considered:  Physical games like tennis, croquet, 
ice hockey, etc. 
(but see “robot soccer” http://www.robocup.org/) 



Typical assumptions 

• Two agents whose actions alternate 
 

• Utility values for each agent are the opposite of the other 
– This creates the adversarial situation 

 
• Fully observable environments 

 
• In game theory terms:  

– “Deterministic, turn-taking, zero-sum games of perfect information” 
 
 

• Generalizes to stochastic games, multiple players, non zero-sum, etc. 
 

• Compare to, e.g., “Prisoner’s Dilemma” (p. 666-668, R&N 3rd ed.) 
– “Deterministic, NON-turn-taking, NON-zero-sum game of IMperfect 

information” 
 

 
 
 



Game tree (2-player, deterministic, turns) 

How do we search this tree to find the optimal move? 



Search versus Games 

• Search – no adversary 
– Solution is (heuristic) method for finding goal 
– Heuristics and CSP techniques can find optimal solution 
– Evaluation function: estimate of cost from start to goal through given node 
– Examples: path planning, scheduling activities 

 
• Games – adversary 

– Solution is strategy  
• strategy specifies move for every possible opponent reply. 

– Time limits force an approximate solution 
– Evaluation function: evaluate “goodness” of game position 

– Examples: chess, checkers, Othello, backgammon  
 



Games as Search 

• Two players: MAX and MIN 
 

• MAX moves first and they take turns until the game is over 
– Winner gets reward, loser gets penalty. 
– “Zero sum” means the sum of the reward and the penalty is a constant. 

 
• Formal definition as a search problem: 

– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess. 
– Player(s): Defines which player has the move in a state. 
– Actions(s): Returns the set of legal moves in a state. 
– Result(s,a): Transition model defines the result of a move. 
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.) 
– Terminal-Test(s): Is the game finished?  True if finished, false otherwise. 
– Utility function(s,p): Gives numerical value of terminal state s for player p. 

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe. 
• E.g., win (+1), lose (0), and draw (1/2) in  chess. 

 
• MAX uses  search tree to determine next move. 

 



An optimal procedure: The Min-Max method 

 
Designed to find the optimal strategy for Max and find best move: 
 
• 1. Generate the whole game tree, down to the leaves. 

 
• 2. Apply utility (payoff) function to each leaf. 

 
• 3.  Back-up values from leaves through branch nodes: 

– a Max node computes the Max of its child values 
– a Min node computes the Min of its child values 

 
• 4. At root: choose the move leading to the child of highest value. 

 



Game Trees 



Two-Ply Game Tree 



Two-Ply Game Tree 



Two-Ply Game Tree 

The minimax decision 

Minimax maximizes the utility for the worst-case outcome for max 



Pseudocode for Minimax Algorithm 

function MINIMAX-DECISION(state) returns an action 
   inputs: state, current state in game 
return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a)) 

function MIN-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← +∞ 
   for a  in ACTIONS(state) do 
      v ← MIN(v,MAX-VALUE(Result(state,a))) 
   return v 

function MAX-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← −∞ 
   for a  in ACTIONS(state) do 
      v ← MAX(v,MIN-VALUE(Result(state,a))) 
   return v 



Properties of minimax 

• Complete?    
– Yes (if tree is finite). 
 

• Optimal?  
– Yes (against an optimal opponent). 
– Can it be beaten by an opponent playing sub-optimally? 

• No.  (Why not?) 
 

• Time complexity? 
– O(bm) 

 
• Space complexity? 

– O(bm)   (depth-first search, generate all actions at once) 
– O(m)   (backtracking search, generate actions one at a time) 

 



Game Tree Size 

• Tic-Tac-Toe 
– b ≈ 5 legal actions per state on average, total of 9 plies in game. 

• “ply” = one action by one player, “move” = two plies. 
– 59 = 1,953,125 
– 9! = 362,880  (Computer goes first) 
– 8! = 40,320 (Computer goes second) 
 exact solution quite reasonable 

 
• Chess 

– b ≈ 35 (approximate average branching factor) 
– d ≈ 100 (depth of game tree for “typical” game) 
– bd ≈ 35100 ≈ 10154 nodes!! 
 exact solution completely infeasible 

 
• It is usually impossible to develop the whole search tree. 



(Static) Heuristic Evaluation Functions 

• An Evaluation Function: 
– Estimates how good the current board configuration is for a player. 
– Typically, evaluate how good it is for the player, how good it is for 

the opponent, then subtract the opponent’s score from the player’s. 
– Often called “static” because it is called on a static board position. 
– Othello: Number of white pieces - Number of black pieces 
– Chess:  Value of all white pieces - Value of all black pieces 
 

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1]. 
 
• If the board evaluation  is X for a player, it’s -X for the opponent 

– “Zero-sum game” 







Applying MiniMax to tic-tac-toe 

• The static  heuristic evaluation function 



Backup Values 









Alpha-Beta Pruning 
Exploiting the Fact of an Adversary 

• If a position is provably bad: 
– It is NO USE expending search time to find out exactly how bad 

 
• If the adversary can force a bad position: 

– It is NO USE expending search time to find out the good positions 
that the adversary won’t let you achieve anyway 
 

• Bad = not better than we already know we can achieve elsewhere. 
 

• Contrast normal search: 
– ANY node might be a winner. 
– ALL nodes must be considered. 
– (A* avoids this through knowledge, i.e., heuristics) 



Tic-Tac-Toe Example with Alpha-Beta Pruning 

Backup Values 



Another Alpha-Beta Example 

[-∞, +∞] 

[-∞,+∞] 

Range of possible values 

Do DF-search until first leaf 



Alpha-Beta Example (continued) 

[-∞,3] 

[-∞,+∞] 



Alpha-Beta Example (continued) 

[-∞,3] 

[-∞,+∞] 



Alpha-Beta Example (continued) 

[3,+∞] 

[3,3] 



Alpha-Beta Example (continued) 

[-∞,2] 

[3,+∞] 

[3,3] 

This node is 
worse for MAX 



Alpha-Beta Example (continued) 

[-∞,2] 

[3,14] 

[3,3] [-∞,14] 

, 



Alpha-Beta Example (continued) 

[−∞,2] 

[3,5] 

[3,3] [-∞,5] 

, 



Alpha-Beta Example (continued) 

[2,2] [−∞,2] 

[3,3] 

[3,3] 



Alpha-Beta Example (continued) 

[2,2] [-∞,2] 

[3,3] 

[3,3] 



General alpha-beta pruning 

• Consider a node n in the tree --- 
 

• If player has a better choice at: 
– Parent node of n 
– Or any choice point further up 

 
• Then n will never be reached in play. 

 
• Hence, when that much is known 

about n, it can be pruned. 



Alpha-beta Algorithm 

• Depth first search 
– only considers nodes along a single path from root at any time 

 
 α =  highest-value choice found at any choice point of path for MAX 
  (initially, α =  −infinity) 
 β = lowest-value choice found at any choice point of path for MIN 
   (initially, β =  +infinity) 
 
•  Pass current values of α and β down to child nodes during search. 
• Update values of α and β during search: 

– MAX updates α at MAX nodes 
– MIN updates β at MIN nodes 

•  Prune remaining branches at a node when α ≥ β 



When to Prune  

 
 
 

• Prune whenever α ≥ β. 
 

– Prune below a Max node whose alpha value becomes greater than 
or equal to the beta value of its ancestors. 

• Max nodes update alpha based on children’s returned values. 
 

– Prune below a Min node whose beta value becomes less than or 
equal to the alpha value of its ancestors. 

• Min nodes update beta based on children’s returned values. 



Alpha-Beta Example Revisited 

α, β, initial values 
Do DF-search until first leaf 

α=−∞ 
β =+∞ 

α=−∞ 
β =+∞ 

α, β, passed to kids 



Alpha-Beta Example (continued) 

MIN updates β, based on kids 

α=−∞ 
β =+∞ 

α=−∞ 
β =3 



Alpha-Beta Example (continued) 

α=−∞ 
β =3 

MIN updates β, based on kids. 
No change. 

α=−∞ 
β =+∞ 



Alpha-Beta Example (continued) 

MAX updates α, based on kids. 
α=3 
β =+∞ 

3 is returned 
as node value. 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 

α=3 
β =+∞ 

α, β, passed to kids 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 

α=3 
β =2 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

α=3 
β =2 

α ≥ β, 
so prune. 

α=3 
β =+∞ 



Alpha-Beta Example (continued) 

2 is returned 
as node value. 

MAX updates α, based on kids. 
No change. α=3 

β =+∞ 



Alpha-Beta Example (continued) 

, 
α=3 
β =+∞ 

α=3 
β =+∞ 

α, β, passed to kids 



Alpha-Beta Example (continued) 

, 

α=3 
β =14 

α=3 
β =+∞ 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

, 

α=3 
β =5 

α=3 
β =+∞ 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 2 is returned 

as node value. 

2 



Alpha-Beta Example (continued) 

Max calculates the 
same node value, and 
makes the same move! 

2 



Effectiveness of Alpha-Beta Search 

• Worst-Case 
– branches are ordered so that no pruning takes place. In this case 

alpha-beta gives no improvement over exhaustive search 
 

• Best-Case 
– each player’s best move is the left-most child (i.e., evaluated first) 
– in practice, performance is closer to best rather than worst-case 
– E.g., sort moves by the remembered move values found last time. 
– E.g., expand captures first, then threats, then forward moves, etc. 
– E.g., run Iterative Deepening search, sort by value last iteration. 

 
• In practice often get O(b(d/2)) rather than O(bd)  

– this is the same as having a branching factor of sqrt(b),  
• (sqrt(b))d =  b(d/2),i.e., we effectively go from b to square root of b 

– e.g., in chess go from b ~ 35  to  b ~ 6 
• this permits much deeper search in the same amount of time 



Final Comments about Alpha-Beta Pruning 

• Pruning does not affect final results 
 

• Entire subtrees can be pruned. 
 

• Good move ordering improves effectiveness of pruning 
 

• Repeated states are again possible. 
– Store them in memory = transposition table 

 



Example 

3 4 1 2 7 8 5 6 

-which nodes can be pruned? 
 



Answer to Example 

3 4 1 2 7 8 5 6 

-which nodes can be pruned? 
 

Answer:  NONE! Because the most favorable nodes for both are 
explored last (i.e., in the diagram, are on the right-hand side). 

Max 

Min 

Max 



Second Example 
(the exact mirror image of the first example) 

6 5 8 7 2 1 3 4 

-which nodes can be pruned? 
 



Answer to Second Example 
(the exact mirror image of the first example) 

6 5 8 7 2 1 3 4 

-which nodes can be pruned? 
 

Min 

Max 

Max 

Answer:  LOTS! Because the most favorable nodes for both are 
explored first (i.e., in the diagram, are on the left-hand side). 



Iterative (Progressive) Deepening 

• In real games, there is usually a time limit T on making a move 
 

• How do we take this into account?  
• using alpha-beta we cannot use “partial” results with any 

confidence unless the full breadth of the tree has been searched 
–  So, we could be conservative and set a conservative depth-limit 

which guarantees that we will find a move in time < T 
• disadvantage is that we may finish early, could do more search 

 
• In practice, iterative deepening search (IDS) is used 

– IDS runs depth-first search with an increasing depth-limit 
– when the clock runs out we use the solution found at the previous 

depth limit  



Heuristics and Game Tree Search: limited  horizon 

• The Horizon Effect 
– sometimes there’s a major “effect” (such as a piece being captured) 

which is just “below” the depth to which the tree has been 
expanded. 

– the computer cannot see that this major event could happen 
because it has a “limited horizon”. 

– there are heuristics to try to follow certain branches more deeply to 
detect such important events 

– this helps to avoid catastrophic losses due to “short-sightedness” 
 

• Heuristics for Tree Exploration 
– it may be better to explore some branches more deeply in the 

allotted time 
– various heuristics exist to identify “promising” branches 



Eliminate Redundant Nodes 

• On average, each board position appears in the search tree 
approximately ~10150 / ~1040 ≈ 10100 times. 
=> Vastly redundant search effort. 

 
• Can’t remember all nodes (too many). 

=> Can’t eliminate all redundant nodes. 
 

• However, some short move sequences provably lead to a 
redundant position. 
– These can be deleted dynamically with no memory cost 

 
• Example: 

1. P-QR4 P-QR4;  2. P-KR4 P-KR4 
leads to the same position as 
1. P-QR4 P-KR4;  2. P-KR4 P-QR4 









 
The State of Play 

• Checkers:  
– Chinook ended 40-year-reign of human world champion Marion 

Tinsley in 1994.  
 

• Chess:  
– Deep Blue defeated human world champion Garry Kasparov in a 

six-game match in 1997.  
 

• Othello:  
– human champions refuse to compete against computers: they are 

too good. 
 

• Go:  
– human champions refuse to compete against computers: they are 

too bad 
– b > 300 (!) 

 
• See (e.g.) http://www.cs.ualberta.ca/~games/ for more information 

 

http://www.cs.ualberta.ca/~games/




Deep Blue 

• 1957: Herbert Simon 
– “within 10 years a computer will beat the world chess champion” 

 
• 1997: Deep Blue beats Kasparov 

 
• Parallel machine with 30 processors for “software” and 480 VLSI 

processors for “hardware search” 
 

• Searched 126 million nodes per second on average 
– Generated up to 30 billion positions per move 
– Reached depth 14 routinely 

 
• Uses iterative-deepening alpha-beta search with transpositioning 

– Can explore beyond depth-limit for interesting moves 



Moore’s Law in Action? 



Summary 
• Game playing is best modeled as a search problem 

 
• Game trees represent alternate computer/opponent moves 

 
• Evaluation functions estimate the quality of a given board configuration 

for the Max player.  
 

• Minimax is a procedure which chooses moves by assuming that the 
opponent will always choose the move which is best for them 
 

• Alpha-Beta is a procedure which can prune large parts of the search 
tree and allow search to go deeper  
 

• For many well-known games, computer algorithms based on heuristic 
search match or out-perform human world experts. 
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