Constraint Satisfaction Problems (CSPs)

This lecture topic (two lectures) Chapter 6.1 – 6.4, except 6.3.3

Next lecture topic (two lectures) Chapter 7.1 – 7.5

(Please read lecture topic material before and after each lecture on that topic)

Outline

- What is a CSP
- Backtracking for CSP
- Local search for CSPs
- (Removed) Problem structure and decomposition

You Will Be Expected to Know

- Basic definitions (section 6.1)
- Node consistency, arc consistency, path consistency (6.2)
- Backtracking search (6.3)
- Variable and value ordering: minimum-remaining values, degree heuristic, least-constraining-value (6.3.1)
- Forward checking (6.3.2)
- Local search for CSPs: min-conflict heuristic (6.4)

Constraint Satisfaction Problems

- What is a CSP?
 - Finite set of variables $X_1, X_2, ..., X_n$
 - Nonempty domain of possible values for each variable $D_1, D_2, ..., D_n$
 - Finite set of constraints $C_1, C_2, ..., C_m$
 - Each constraint C_i limits the values that variables can take,
 - e.g., $X_1 \neq X_2$
 - Each constraint C_i is a pair < scope, relation>
 - Scope = Tuple of variables that participate in the constraint.
 - Relation = List of allowed combinations of variable values.
 May be an explicit list of allowed combinations.
 May be an abstract relation allowing membership testing and listing.
- CSP benefits
 - Standard representation pattern
 - Generic goal and successor functions
 - Generic heuristics (no domain specific expertise).

Sudoku as a Constraint Satisfaction Problem (CSP)

- Variables: 81 variables
 - A1, A2, A3, ..., I7, I8, I9
 - Letters index rows, top to bottom
 - Digits index columns, left to right

123456789

- Domains: The nine positive digits
 - $-A1 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Etc.
- Constraints: 27 *Alldiff* constraints – *Alldiff*(A1, A2, A3, A4, A5, A6, A7, A8, A9)
 - Etc.

- A *state* is an *assignment* of values to some or all variables.
 - An assignment is *complete* when every variable has a value.
 - An assignment is *partial* when some variables have no values.
- Consistent assignment
 - assignment does not violate the constraints
- A *solution* to a CSP is a complete and consistent assignment.
- Some CSPs require a solution that maximizes an *objective function*.
- Examples of Applications:
 - Scheduling the time of observations on the Hubble Space Telescope
 - Airline schedules
 - Cryptography
 - Computer vision -> image interpretation
 - Scheduling your MS or PhD thesis exam ©

CSP example: map coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D_i={red,green,blue}
- Constraints: adjacent regions must have different colors.
 - E.g. $WA \neq NT$

CSP example: map coloring

 Solutions are assignments satisfying all constraints, e.g. {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

Graph coloring

- More general problem than map coloring
- Planar graph = graph in the 2d-plane with no edge crossings
- Guthrie's conjecture (1852) Every planar graph can be colored with 4 colors or less
 - Proved (using a computer) in 1977 (Appel and Haken)

Constraint graphs

- Constraint graph:
 - nodes are variables
 - arcs are binary constraints

Graph can be used to simplify search
 e.g. Tasmania is an independent subproblem

(will return to graph structure later)

- Discrete variables
 - Finite domains; size $d \Rightarrow O(d^n)$ complete assignments.
 - E.g. Boolean CSPs: Boolean satisfiability (NP-complete).
 - Infinite domains (integers, strings, etc.)
 - E.g. job scheduling, variables are start/end days for each job
 - Need a constraint language e.g $StartJob_1 + 5 \leq StartJob_3$.
 - Infinitely many solutions
 - Linear constraints: solvable
 - Nonlinear: no general algorithm
- Continuous variables
 - e.g. building an airline schedule or class schedule.
 - Linear constraints solvable in polynomial time by LP methods.

Varieties of constraints

- Unary constraints involve a single variable.
 e.g. SA ≠ green
- Binary constraints involve pairs of variables.
 - e.g. $SA \neq WA$
- Higher-order constraints involve 3 or more variables.
 - Professors A, B, and C cannot be on a committee together
 - Can always be represented by multiple binary constraints
- Preference (soft constraints)
 - e.g. *red* is better than *green* often can be represented by a cost for each variable assignment
 - combination of optimization with CSPs

CSPs Only Need Binary Constraints!!

- Unary constraints: Just delete values from variable's domain.
- Higher order (3 variables or more): reduce to binary constraints.
- Simple example:
 - Three example variables, X, Y, Z.
 - Domains $Dx = \{1, 2, 3\}$, $Dy = \{1, 2, 3\}$, $Dz = \{1, 2, 3\}$.
 - Constraint $C[X,Y,Z] = \{X+Y=Z\} = \{(1,1,2), (1,2,3), (2,1,3)\}.$
 - Plus many other variables and constraints elsewhere in the CSP.
 - Create a new variable, W, taking values as triples (3-tuples).
 - Domain of W is $Dw = \{(1,1,2), (1,2,3), (2,1,3)\}.$
 - Dw is exactly the tuples that satisfy the higher order constraint.
 - Create three new constraints:
 - $C[X,W] = \{ [1, (1,1,2)], [1, (1,2,3)], [2, (2,1,3)] \}.$
 - $C[Y,W] = \{ [1, (1,1,2)], [2, (1,2,3)], [1, (2,1,3)] \}.$
 - $C[Z,W] = \{ [2, (1,1,2)], [3, (1,2,3)], [3, (2,1,3)] \}.$
 - Other constraints elsewhere involving X, Y, or Z are unaffected.

CSP Example: Cryptharithmetic puzzle

Variables: $F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3$ Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Constraints *alldiff*(F, T, U, W, R, O) $O + O = R + 10 \cdot X_1$, etc.

CSP Example: Cryptharithmetic puzzle

Variables: $F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3$ Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Constraints *alldiff*(F, T, U, W, R, O) $O + O = R + 10 \cdot X_1$, etc.

CSP as a standard search problem

- A CSP can easily be expressed as a standard search problem.
- Incremental formulation
 - Initial State: the empty assignment { }
 - Actions (3rd ed.), Successor function (2nd ed.): Assign a value to an unassigned variable provided that it does not violate a constraint
 - Goal test: the current assignment is complete (by construction it is consistent)
 - *Path cost*: constant cost for every step (not really relevant)
- Can also use complete-state formulation
 - Local search techniques (Chapter 4) tend to work well

CSP as a standard search problem

- Solution is found at depth *n* (if there are *n* variables).
- Consider using BFS
 - Branching factor *b* at the top level is *nd*
 - At next level is (n-1)d
 -
- end up with n!dⁿ leaves even though there are only dⁿ complete assignments!

- CSPs are commutative.
 - The order of any given set of actions has no effect on the outcome.
 - Example: choose colors for Australian territories one at a time
 - [WA=red then NT=green] same as [NT=green then WA=red]
- All CSP search algorithms can generate successors by considering assignments for only a single variable at each node in the search tree
 - \Rightarrow there are d^n leaves

(will need to figure out later which variable to assign a value to at each node)

- Similar to Depth-first search, generating children one at a time.
- Chooses values for one variable at a time and backtracks when a variable has no legal values left to assign.
- Uninformed algorithm
 - No good general performance

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp]
 then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment

return failure

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.

function BACKTRACKING-SEARCH(*csp*) **return** a solution or failure **return** RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$ for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment according to CONSTRAINTS[csp] then add {var=value} to assignment result \leftarrow RECURSIVE-BACTRACKING(assignment, csp) **if** result \neq failure **then return** result remove {*var=value*} from *assignment*

return failure

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA	(> 1,000K)	(> 1,000K)	2K	60	64
<i>n</i> -Queens	(> 40,000K)	13,500K	(> 40,000K)	817K	4K
Zebra	3,859K	1K	35K	0.5K	2K
Random 1	415K	3K	26K	2K	
Random 2	942K	27K	77K	15K	

Median number of consistency checks over 5 runs to solve problem

```
Parentheses -> no solution found
```

```
USA: 4 coloring
n-queens: n = 2 to 50
Zebra: see exercise 6.7 (3<sup>rd</sup> ed.); exercise 5.13 (2<sup>nd</sup> ed.)
```

Random Binary CSP (adapted from http://www.unitime.org/csp.php)

- A random binary CSP is defined by a four-tuple (n, d, p1, p2)
 - n = the number of variables.
 - d = the domain size of each variable.
 - p1 = probability a constraint exists between two variables.
 - p2 = probability a pair of values in the domains of two variables connected by a constraint is incompatible.
 - Note that R&N lists compatible pairs of values instead.
 - Equivalent formulations; just take the set complement.
- (n, d, p1, p2) are used to generate randomly the binary constraints among the variables.
- The so called model B of Random CSP (n, d, n1, n2)
 - n1 = p1n(n-1)/2 pairs of variables are randomly and uniformly selected and binary constraints are posted between them.
 - For each constraint, n2 = p2d^2 randomly and uniformly selected pairs of values are picked as incompatible.
- The random CSP as an optimization problem (minCSP).
 - Goal is to minimize the total sum of values for all variables.

Improving CSP efficiency

- Previous improvements on uninformed search
 → introduce heuristics
- For CSPS, general-purpose methods can give large gains in speed, e.g.,
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?
 - Note: CSPs are somewhat generic in their formulation, and so the heuristics are more general compared to methods in Chapter 4
Minimum remaining values (MRV)

var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[*csp*], *assignment*, *csp*)

- A.k.a. most constrained variable heuristic
- *Heuristic Rule*: choose variable with the fewest legal moves
 - e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial variable

- *Heuristic Rule*: select variable that is involved in the largest number of constraints on other unassigned variables.
- Degree heuristic can be useful as a tie breaker.
- In what order should a variable's values be tried?

Least constraining value for value-ordering

- Least constraining value heuristic
- Heuristic Rule: given a variable choose the least constraining value
 - leaves the maximum flexibility for subsequent variable assignments

- Can we detect inevitable failure early?
 - And avoid it later?
- Forward checking idea: keep track of remaining legal values for unassigned variables.
- Terminate search when any variable has no legal values.

- Assign {*WA=red*}
- Effects on other variables connected by constraints to WA
 - NT can no longer be red
 - SA can no longer be red

- Assign {*Q*=green}
- Effects on other variables connected by constraints with WA
 - NT can no longer be green
 - NSW can no longer be green
 - SA can no longer be green
- MRV heuristic would automatically select NT or SA next

- If V is assigned blue
- Effects on other variables connected by constraints with WA
 - NSW can no longer be blue
 - SA is empty
- FC has detected that partial assignment is *inconsistent* with the constraints and backtracking can occur.

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA	(> 1,000K)	(> 1,000K)	2K	60	64
<i>n</i> -Queens	(> 40,000K)	13,500K	(> 40,000K)	817K	4K
Zebra	3,859K	1K	35K	0.5K	2K
Random 1	415K	3K	26K	2K	
Random 2	942K	27K	77K	15K	

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring n-queens: n = 2 to 50 Zebra: see exercise 5.13

Constraint propagation

- Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone
- FC checking does not detect all failures.
 - E.g., NT and SA cannot be blue

Constraint propagation

- Techniques like CP and FC are in effect eliminating parts of the search space
 - Somewhat complementary to search
- Constraint propagation goes further than FC by repeatedly enforcing constraints locally
 - Needs to be faster than actually searching to be effective
- Arc-consistency (AC) is a systematic procedure for constraint propagation

• An Arc $X \rightarrow Y$ is consistent if

for *every* value *x* of *X* there is some value *y* consistent with *x* (note that this is a directed property)

• Consider state of search after WA and Q are assigned:

 $SA \rightarrow NSW$ is consistent if SA=blue and NSW=red

• $X \rightarrow Y$ is consistent if

for *every* value *x* of *X* there is some value *y* consistent with *x*

 NSW → SA is consistent if NSW=red and SA=blue NSW=blue and SA=???

• Can enforce arc-consistency:

Arc can be made consistent by removing *blue* from *NSW*

- Continue to propagate constraints....
 - Check $V \rightarrow NSW$
 - Not consistent for V = red
 - Remove red from V

- Continue to propagate constraints....
- $SA \rightarrow NT$ is not consistent
 - and cannot be made consistent
- Arc consistency detects failure earlier than FC

Arc consistency checking

- Can be run as a preprocessor or after each assignment
 Or as preprocessing before search starts
- AC must be run repeatedly until no inconsistency remains
- Trade-off
 - Requires some overhead to do, but generally more effective than direct search
 - In effect it can eliminate large (inconsistent) parts of the state space more effectively than search can
- Need a systematic method for arc-checking
 - If X loses a value, neighbors of X need to be rechecked:

i.e. incoming arcs can become inconsistent again (outgoing arcs will stay consistent).

Arc consistency algorithm (AC-3)

```
function AC-3(csp) returns false if inconsistency found, else true, may reduce csp domains
    inputs: csp, a binary CSP with variables \{X_1, X_2, ..., X_n\}
    local variables: queue, a queue of arcs, initially all the arcs in csp
           /* initial queue must contain both (X_i, X_i) and (X_i, X_i) */
    while queue is not empty do
           (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
           if REMOVE-INCONSISTENT-VALUES(X_i, X_i) then
                      if size of D_i = 0 then return false
                      for each X_k in NEIGHBORS[X_i] – {X<sub>i</sub>} do
                                 add (X_{k}, X_{i}) to queue if not already there
    return true
function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff we delete a
          value from the domain of X_i
    removed \leftarrow false
    for each x in DOMAIN[X_i] do
           if no value y in DOMAIN[X<sub>i</sub>] allows (x, y) to satisfy the constraints
                      between X_i and X_i
           then delete x from DOMAIN[X<sub>i</sub>]; removed \leftarrow true
    return removed
```

(from Mackworth, 1977)

Complexity of AC-3

- A binary CSP has at most n² arcs
- Each arc can be inserted in the queue d times (worst case)
 (X, Y): only d values of X to delete
- Consistency of an arc can be checked in O(d²) time
- Complexity is O(n² d³)
- Although substantially more expensive than Forward Checking, Arc Consistency is usually worthwhile.

K-consistency

- Arc consistency does not detect all inconsistencies:
 - Partial assignment { WA=red, NSW=red } is inconsistent.
- Stronger forms of propagation can be defined using the notion of kconsistency.
- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
 - E.g. 1-consistency = node-consistency
 - E.g. 2-consistency = arc-consistency
 - E.g. 3-consistency = path-consistency
- Strongly k-consistent:
 - k-consistent for all values {k, k-1, ...2, 1}

Trade-offs

- Running stronger consistency checks...
 - Takes more time
 - But will reduce branching factor and detect more inconsistent partial assignments
 - No "free lunch"
 - In worst case n-consistency takes exponential time
- Generally helpful to enforce 2-Consistency (Arc Consistency)
- Sometimes helpful to enforce 3-Consistency
- Higher levels may take more time to enforce than they save.

Further improvements

- Checking special constraints
 - Checking Alldif(...) constraint
 - E.g. {WA=red, NSW=red}
 - Checking Atmost(...) constraint
 - Bounds propagation for larger value domains
- Intelligent backtracking
 - Standard form is chronological backtracking i.e. try different value for preceding variable.
 - More intelligent, backtrack to conflict set.
 - Set of variables that caused the failure or set of previously assigned variables that are connected to X by constraints.
 - Backjumping moves back to most recent element of the conflict set.
 - Forward checking can be used to determine conflict set.

Local search for CSPs

- Use complete-state representation
 - Initial state = all variables assigned values
 - Successor states = change 1 (or more) values
- For CSPs
 - allow states with unsatisfied constraints (unlike backtracking)
 - operators **reassign** variable values
 - hill-climbing with n-queens is an example
- Variable selection: randomly select any conflicted variable
- Value selection: *min-conflicts heuristic*
 - Select new value that results in a minimum number of conflicts with the other variables

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current \leftarrow an initial complete assignment for *csp*

for *i* = 1 to *max_steps* **do**

if *current* is a solution for *csp* then return *current*

var ← a randomly chosen, conflicted variable from VARIABLES[*csp*]

value \leftarrow the value v for var that minimize CONFLICTS(var, v, current, csp)

set *var = value* in *current*

return failure

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

Min-conflicts example 2

- A two-step solution for an 8-queens problem using min-conflicts heuristic
- At each stage a queen is chosen for reassignment in its column
- The algorithm moves the queen to the min-conflict square breaking ties randomly.

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA	(> 1,000K)	(> 1,000K)	2K	60	64
<i>n</i> -Queens	(> 40,000K)	13,500K	(> 40,000K)	817K	4K
Zebra	3,859K	1K	35K	0.5K	2K
Random 1	415K	3K	26K	2K	
Random 2	942K	27K	77K	15K	

Median number of consistency checks over 5 runs to solve problem

```
Parentheses -> no solution found
```

```
USA: 4 coloring
n-queens: n = 2 to 50
Zebra: see exercise 6.7 (3<sup>rd</sup> ed.); exercise 5.13 (2<sup>nd</sup> ed.)
```

- Local search can be particularly useful in an online setting
 - Airline schedule example
 - E.g., mechanical problems require than 1 plane is taken out of service
 - Can locally search for another "close" solution in state-space
 - Much better (and faster) in practice than finding an entirely new schedule
- The runtime of min-conflicts is roughly independent of problem size.
 - Can solve the millions-queen problem in roughly 50 steps.
 - Why?
 - n-queens is easy for local search because of the relatively high density of solutions in state-space
Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

Hard satisfiability problems

Hard satisfiability problems

• Median runtime for 100 satisfiable random 3-CNF sentences, n = 50

Graph structure and problem complexity

- Solving disconnected subproblems
 - Suppose each subproblem has c variables out of a total of n.
 - Worst case solution cost is $O(n/c d^c)$, i.e. linear in n
 - Instead of O(dⁿ), exponential in n
- E.g. *n*= 80, *c*= 20, *d*=2
 - 2⁸⁰ = 4 billion years at 1 million nodes/sec.
 - 4 * 2^{20} = .4 second at 1 million nodes/sec

Tree-structured CSPs

- Theorem:
 - if a constraint graph has no loops then the CSP can be solved in O(nd²) time
 - linear in the number of variables!
- Compare difference with general CSP, where worst case is $O(d^n)$

Summary

- CSPs
 - special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking=depth-first search with one variable assigned per node
- Heuristics
 - Variable ordering and value selection heuristics help significantly
- Constraint propagation does additional work to constrain values and detect inconsistencies
 - Works effectively when combined with heuristics
- Iterative min-conflicts is often effective in practice.
- Graph structure of CSPs determines problem complexity
 - e.g., tree structured CSPs can be solved in linear time.