
Constraint Satisfaction Problems (CSPs)

This lecture topic (two lectures)
Chapter 6.1 – 6.4, except 6.3.3

Next lecture topic (two lectures)

Chapter 7.1 – 7.5

(Please read lecture topic material before and after
each lecture on that topic)

Outline

• What is a CSP

• Backtracking for CSP

• Local search for CSPs

• (Removed) Problem structure and decomposition

You Will Be Expected to Know

• Basic definitions (section 6.1)

• Node consistency, arc consistency, path consistency (6.2)

• Backtracking search (6.3)

• Variable and value ordering: minimum-remaining values,
degree heuristic, least-constraining-value (6.3.1)

• Forward checking (6.3.2)

• Local search for CSPs: min-conflict heuristic (6.4)

Constraint Satisfaction Problems

• What is a CSP?
– Finite set of variables X1, X2, …, Xn

– Nonempty domain of possible values for each variable

D1, D2, …, Dn

– Finite set of constraints C1, C2, …, Cm

• Each constraint Ci limits the values that variables can take,
• e.g., X1 ≠ X2

– Each constraint Ci is a pair <scope, relation>
• Scope = Tuple of variables that participate in the constraint.
• Relation = List of allowed combinations of variable values.
 May be an explicit list of allowed combinations.
 May be an abstract relation allowing membership testing and listing.

• CSP benefits
– Standard representation pattern
– Generic goal and successor functions
– Generic heuristics (no domain specific expertise).

Sudoku as a Constraint Satisfaction Problem (CSP)

• Variables: 81 variables
– A1, A2, A3, …, I7, I8, I9
– Letters index rows, top to bottom
– Digits index columns, left to right

• Domains: The nine positive digits
– A1 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}
– Etc.

• Constraints: 27 Alldiff constraints
– Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9)
– Etc.

A
B
C
D
E
F
G
H
I

1 2 3 4 5 6 7 8 9

CSPs --- what is a solution?

• A state is an assignment of values to some or all variables.

– An assignment is complete when every variable has a value.
– An assignment is partial when some variables have no values.

• Consistent assignment

– assignment does not violate the constraints

• A solution to a CSP is a complete and consistent assignment.

• Some CSPs require a solution that maximizes an objective function.

• Examples of Applications:
– Scheduling the time of observations on the Hubble Space Telescope
– Airline schedules
– Cryptography
– Computer vision -> image interpretation
– Scheduling your MS or PhD thesis exam

CSP example: map coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di={red,green,blue}
• Constraints:adjacent regions must have different colors.

• E.g. WA ≠ NT

CSP example: map coloring

• Solutions are assignments satisfying all constraints, e.g.
 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

Graph coloring

• More general problem than map coloring

• Planar graph = graph in the 2d-plane with no edge crossings

• Guthrie’s conjecture (1852)
 Every planar graph can be colored with 4 colors or less

– Proved (using a computer) in 1977 (Appel and Haken)

Constraint graphs

• Constraint graph:

• nodes are variables

• arcs are binary constraints

• Graph can be used to simplify search
 e.g. Tasmania is an independent subproblem

 (will return to graph structure later)

Varieties of CSPs

• Discrete variables

– Finite domains; size d ⇒O(dn) complete assignments.

• E.g. Boolean CSPs: Boolean satisfiability (NP-complete).

– Infinite domains (integers, strings, etc.)
• E.g. job scheduling, variables are start/end days for each job
• Need a constraint language e.g StartJob1 +5 ≤ StartJob3.
• Infinitely many solutions
• Linear constraints: solvable
• Nonlinear: no general algorithm

• Continuous variables
– e.g. building an airline schedule or class schedule.
– Linear constraints solvable in polynomial time by LP methods.

Varieties of constraints

• Unary constraints involve a single variable.
– e.g. SA ≠ green

• Binary constraints involve pairs of variables.

– e.g. SA ≠ WA

• Higher-order constraints involve 3 or more variables.
– Professors A, B,and C cannot be on a committee together
– Can always be represented by multiple binary constraints

• Preference (soft constraints)

– e.g. red is better than green often can be represented by a cost for
each variable assignment

– combination of optimization with CSPs

CSPs Only Need Binary Constraints!!

• Unary constraints: Just delete values from variable’s domain.
• Higher order (3 variables or more): reduce to binary constraints.
• Simple example:

– Three example variables, X, Y, Z.
– Domains Dx={1,2,3}, Dy={1,2,3}, Dz={1,2,3}.
– Constraint C[X,Y,Z] = {X+Y=Z} = {(1,1,2), (1,2,3), (2,1,3)}.
– Plus many other variables and constraints elsewhere in the CSP.

– Create a new variable, W, taking values as triples (3-tuples).
– Domain of W is Dw = {(1,1,2), (1,2,3), (2,1,3)}.

• Dw is exactly the tuples that satisfy the higher order constraint.
– Create three new constraints:

• C[X,W] = { [1, (1,1,2)], [1, (1,2,3)], [2, (2,1,3)] }.
• C[Y,W] = { [1, (1,1,2)], [2, (1,2,3)], [1, (2,1,3)] }.
• C[Z,W] = { [2, (1,1,2)], [3, (1,2,3)], [3, (2,1,3)] }.

– Other constraints elsewhere involving X, Y, or Z are unaffected.

CSP Example: Cryptharithmetic puzzle

CSP Example: Cryptharithmetic puzzle

CSP as a standard search problem

• A CSP can easily be expressed as a standard search problem.

• Incremental formulation

– Initial State: the empty assignment {}

– Actions (3rd ed.), Successor function (2nd ed.): Assign a value to an

unassigned variable provided that it does not violate a constraint

– Goal test: the current assignment is complete

 (by construction it is consistent)

– Path cost: constant cost for every step (not really relevant)

• Can also use complete-state formulation
– Local search techniques (Chapter 4) tend to work well

CSP as a standard search problem

• Solution is found at depth n (if there are n variables).

• Consider using BFS
– Branching factor b at the top level is nd
– At next level is (n-1)d
– ….

• end up with n!dn leaves even though there are only dn complete
assignments!

Commutativity

• CSPs are commutative.

– The order of any given set of actions has no effect on the outcome.

– Example: choose colors for Australian territories one at a time

• [WA=red then NT=green] same as [NT=green then WA=red]

• All CSP search algorithms can generate successors by

considering assignments for only a single variable at each node
in the search tree
 ⇒ there are dn leaves

(will need to figure out later which variable to assign a value to at

each node)

Backtracking search

• Similar to Depth-first search, generating children one at a time.

• Chooses values for one variable at a time and backtracks when a
variable has no legal values left to assign.

• Uninformed algorithm
– No good general performance

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp]

 then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

21

Backtracking search

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

22

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

23

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

24

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

25

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

26

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

27

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

28

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

29

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

30

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

31

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

32

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search (Figure 6.5)

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp]

 then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Comparison of CSP algorithms on different problems

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring
n-queens: n = 2 to 50
Zebra: see exercise 6.7 (3rd ed.); exercise 5.13 (2nd ed.)

Random Binary CSP
(adapted from http://www.unitime.org/csp.php)

• A random binary CSP is defined by a four-tuple (n, d, p1, p2)
– n = the number of variables.
– d = the domain size of each variable.
– p1 = probability a constraint exists between two variables.
– p2 = probability a pair of values in the domains of two variables

connected by a constraint is incompatible.
• Note that R&N lists compatible pairs of values instead.
• Equivalent formulations; just take the set complement.

• (n, d, p1, p2) are used to generate randomly the binary
constraints among the variables.

• The so called model B of Random CSP (n, d, n1, n2)
– n1 = p1n(n-1)/2 pairs of variables are randomly and uniformly

selected and binary constraints are posted between them.
– For each constraint, n2 = p2d^2 randomly and uniformly selected

pairs of values are picked as incompatible.
• The random CSP as an optimization problem (minCSP).

– Goal is to minimize the total sum of values for all variables.

Improving CSP efficiency

• Previous improvements on uninformed search
 → introduce heuristics

• For CSPS, general-purpose methods can give large gains in

speed, e.g.,
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?
– Can we take advantage of problem structure?

Note: CSPs are somewhat generic in their formulation, and so the

heuristics are more general compared to methods in Chapter 4

Minimum remaining values (MRV)

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

• A.k.a. most constrained variable heuristic

• Heuristic Rule: choose variable with the fewest legal moves
– e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial variable

• Heuristic Rule: select variable that is involved in the largest number of
constraints on other unassigned variables.

• Degree heuristic can be useful as a tie breaker.

• In what order should a variable’s values be tried?

Least constraining value for value-ordering

• Least constraining value heuristic

• Heuristic Rule: given a variable choose the least constraining value
– leaves the maximum flexibility for subsequent variable assignments

Forward checking

• Can we detect inevitable failure early?
– And avoid it later?

• Forward checking idea: keep track of remaining legal values for

unassigned variables.

• Terminate search when any variable has no legal values.

Forward checking

• Assign {WA=red}

• Effects on other variables connected by constraints to WA
– NT can no longer be red
– SA can no longer be red

Forward checking

• Assign {Q=green}

• Effects on other variables connected by constraints with WA
– NT can no longer be green
– NSW can no longer be green
– SA can no longer be green

• MRV heuristic would automatically select NT or SA next

Forward checking

• If V is assigned blue

• Effects on other variables connected by constraints with WA
– NSW can no longer be blue
– SA is empty

• FC has detected that partial assignment is inconsistent with the constraints and

backtracking can occur.

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ , , , }

X4
{ , ,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , , , }

X2
{ , ,3,4}

Comparison of CSP algorithms on different problems

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring
n-queens: n = 2 to 50
Zebra: see exercise 5.13

Constraint propagation

• Solving CSPs with combination of heuristics plus forward checking is
more efficient than either approach alone

• FC checking does not detect all failures.
– E.g., NT and SA cannot be blue

Constraint propagation

• Techniques like CP and FC are in effect eliminating parts of the
search space
– Somewhat complementary to search

• Constraint propagation goes further than FC by repeatedly

enforcing constraints locally
– Needs to be faster than actually searching to be effective

• Arc-consistency (AC) is a systematic procedure for constraint
propagation

Arc consistency

• An Arc X → Y is consistent if
 for every value x of X there is some value y consistent with x
 (note that this is a directed property)

• Consider state of search after WA and Q are assigned:

 SA → NSW is consistent if
 SA=blue and NSW=red

Arc consistency

• X → Y is consistent if
 for every value x of X there is some value y consistent with x

• NSW → SA is consistent if
 NSW=red and SA=blue
 NSW=blue and SA=???

Arc consistency

• Can enforce arc-consistency:
 Arc can be made consistent by removing blue from NSW

• Continue to propagate constraints….

– Check V → NSW
– Not consistent for V = red
– Remove red from V

Arc consistency

• Continue to propagate constraints….

• SA → NT is not consistent

– and cannot be made consistent

• Arc consistency detects failure earlier than FC

Arc consistency checking

• Can be run as a preprocessor or after each assignment
– Or as preprocessing before search starts

• AC must be run repeatedly until no inconsistency remains

• Trade-off

– Requires some overhead to do, but generally more effective than
direct search

– In effect it can eliminate large (inconsistent) parts of the state
space more effectively than search can

• Need a systematic method for arc-checking
– If X loses a value, neighbors of X need to be rechecked:

 i.e. incoming arcs can become inconsistent again
 (outgoing arcs will stay consistent).

Arc consistency algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, else true, may reduce csp domains
 inputs: csp, a binary CSP with variables {X1, X2, …, Xn}
 local variables: queue, a queue of arcs, initially all the arcs in csp
 /* initial queue must contain both (Xi, Xj) and (Xj, Xi) */
 while queue is not empty do
 (Xi, Xj) ← REMOVE-FIRST(queue)
 if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then
 if size of Di = 0 then return false
 for each Xk in NEIGHBORS[Xi] − {Xj} do
 add (Xk, Xi) to queue if not already there
 return true

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) returns true iff we delete a
 value from the domain of Xi
 removed ← false
 for each x in DOMAIN[Xi] do
 if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints
 between Xi and Xj
 then delete x from DOMAIN[Xi]; removed ← true
 return removed

(from Mackworth, 1977)

Complexity of AC-3

• A binary CSP has at most n2 arcs

• Each arc can be inserted in the queue d times (worst case)
– (X, Y): only d values of X to delete

• Consistency of an arc can be checked in O(d2) time

• Complexity is O(n2 d3)

• Although substantially more expensive than Forward Checking,

Arc Consistency is usually worthwhile.

K-consistency

• Arc consistency does not detect all inconsistencies:
– Partial assignment {WA=red, NSW=red} is inconsistent.

• Stronger forms of propagation can be defined using the notion of k-

consistency.

• A CSP is k-consistent if for any set of k-1 variables and for any
consistent assignment to those variables, a consistent value can
always be assigned to any kth variable.
– E.g. 1-consistency = node-consistency
– E.g. 2-consistency = arc-consistency
– E.g. 3-consistency = path-consistency

• Strongly k-consistent:

– k-consistent for all values {k, k-1, …2, 1}

Trade-offs

• Running stronger consistency checks…
– Takes more time
– But will reduce branching factor and detect more inconsistent

partial assignments

– No “free lunch”
• In worst case n-consistency takes exponential time

• Generally helpful to enforce 2-Consistency (Arc Consistency)

• Sometimes helpful to enforce 3-Consistency

• Higher levels may take more time to enforce than they save.

Further improvements

• Checking special constraints
– Checking Alldif(…) constraint

• E.g. {WA=red, NSW=red}
– Checking Atmost(…) constraint

• Bounds propagation for larger value domains

• Intelligent backtracking
– Standard form is chronological backtracking i.e. try different value for

preceding variable.
– More intelligent, backtrack to conflict set.

• Set of variables that caused the failure or set of previously assigned
variables that are connected to X by constraints.

• Backjumping moves back to most recent element of the conflict set.
• Forward checking can be used to determine conflict set.

Local search for CSPs

• Use complete-state representation
– Initial state = all variables assigned values
– Successor states = change 1 (or more) values

• For CSPs

– allow states with unsatisfied constraints (unlike backtracking)
– operators reassign variable values
– hill-climbing with n-queens is an example

• Variable selection: randomly select any conflicted variable

• Value selection: min-conflicts heuristic

– Select new value that results in a minimum number of conflicts with the
other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
 inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

 current ← an initial complete assignment for csp
 for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen, conflicted variable from VARIABLES[csp]
 value ← the value v for var that minimize CONFLICTS(var,v,current,csp)
 set var = value in current
 return failure

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

Min-conflicts example 2

• A two-step solution for an 8-queens problem using min-conflicts heuristic

• At each stage a queen is chosen for reassignment in its column

• The algorithm moves the queen to the min-conflict square breaking ties
randomly.

Comparison of CSP algorithms on different problems

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring
n-queens: n = 2 to 50
Zebra: see exercise 6.7 (3rd ed.); exercise 5.13 (2nd ed.)

Advantages of local search

• Local search can be particularly useful in an online setting

– Airline schedule example
• E.g., mechanical problems require than 1 plane is taken out of service
• Can locally search for another “close” solution in state-space
• Much better (and faster) in practice than finding an entirely new

schedule

• The runtime of min-conflicts is roughly independent of problem size.
– Can solve the millions-queen problem in roughly 50 steps.

– Why?

• n-queens is easy for local search because of the relatively high
density of solutions in state-space

Hard satisfiability problems

Hard satisfiability problems

• Median runtime for 100 satisfiable random
3-CNF sentences, n = 50

Graph structure and problem complexity

• Solving disconnected subproblems
– Suppose each subproblem has c variables out of a total of n.

– Worst case solution cost is O(n/c dc), i.e. linear in n

• Instead of O(d n), exponential in n

• E.g. n= 80, c= 20, d=2
– 280 = 4 billion years at 1 million nodes/sec.
– 4 * 220= .4 second at 1 million nodes/sec

Tree-structured CSPs

• Theorem:
– if a constraint graph has no loops then the CSP can be solved

in O(nd 2) time
– linear in the number of variables!

• Compare difference with general CSP, where worst case is O(d n)

Summary

• CSPs
– special kind of problem: states defined by values of a fixed set of variables,

goal test defined by constraints on variable values

• Backtracking=depth-first search with one variable assigned per node

• Heuristics
– Variable ordering and value selection heuristics help significantly

• Constraint propagation does additional work to constrain values and

detect inconsistencies
– Works effectively when combined with heuristics

• Iterative min-conflicts is often effective in practice.

• Graph structure of CSPs determines problem complexity

– e.g., tree structured CSPs can be solved in linear time.

	Constraint Satisfaction Problems (CSPs)
	Outline
	You Will Be Expected to Know
	Constraint Satisfaction Problems
	Sudoku as a Constraint Satisfaction Problem (CSP)
	CSPs --- what is a solution?
	CSP example: map coloring
	CSP example: map coloring
	Graph coloring
	Constraint graphs
	Varieties of CSPs
	Varieties of constraints
	CSPs Only Need Binary Constraints!!
	CSP Example: Cryptharithmetic puzzle
	CSP Example: Cryptharithmetic puzzle
	CSP as a standard search problem
	CSP as a standard search problem
	Commutativity
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search (Figure 6.5)
	Comparison of CSP algorithms on different problems
	Random Binary CSP�(adapted from http://www.unitime.org/csp.php)
	Improving CSP efficiency
	Minimum remaining values (MRV)
	Degree heuristic for the initial variable
	Least constraining value for value-ordering
	Forward checking
	Forward checking
	Forward checking
	Forward checking
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Comparison of CSP algorithms on different problems
	Constraint propagation
	Constraint propagation
	Arc consistency
	Arc consistency
	Arc consistency
	Arc consistency
	Arc consistency checking
	Arc consistency algorithm (AC-3)
	Complexity of AC-3
	K-consistency
	Trade-offs
	Further improvements
	Local search for CSPs
	Local search for CSP
	Min-conflicts example 1
	Min-conflicts example 2
	Comparison of CSP algorithms on different problems
	Advantages of local search
	Slide Number 74
	Hard satisfiability problems
	Hard satisfiability problems
	Graph structure and problem complexity
	Tree-structured CSPs
	Summary

