Knowledge Representation using First-Order Logic

Reading: Chapter 8, 9.1-9.2 First lecture slides read: 8.1-8.2 Second lecture slides read: 8.3-8.4 Third lecture slides read: Chapter 9.1-9.2 (lecture slides spread across two class sessions)

(Please read lecture topic material before and after each lecture on that topic)

Review: KB | = S means | = (KB \Rightarrow S)

- KB |= S is read "KB entails S."
 - Means "S is true in every world (model) in which KB is true."
 - Means "In the world, S follows from KB."
- KB |= S is equivalent to |= (KB ⇒ S)
 Means "(KB ⇒ S) is true in every world (i.e., is valid)."
- And so: $\{\} = S \text{ is equivalent to } = (\{\} \Rightarrow S)$
- So what does ({ } \Rightarrow S) mean?
 - Means "True implies S."
 - Means "S is valid."
 - In Horn form, means "S is a fact." p. 256 (3rd ed.; p. 281, 2nd ed.)
- Why does {} mean True here, but False in resolution proofs?

Review: (True \Rightarrow S) means "S is a fact."

- By convention,
 - The null conjunct is "syntactic sugar" for True.
 - The null disjunct is "syntactic sugar" for False.
 - Each is assigned the truth value of its identity element.
 - For conjuncts, True is the identity: $(A \land True) = A$
 - For disjuncts, False is the identity: $(A \lor False) = A$
- A KB is the conjunction of all of its sentences.
 - So in the expression: $\{\} = S$
 - We see that {} is the null conjunct and means True.
 - The expression means "S is true in every world where True is true."
 - I.e., "S is valid."
 - Better way to think of it: {} does not exclude any worlds (models).
- In Conjunctive Normal Form each clause is a disjunct.

- So in, say, $KB = \{ (PQ) (\neg QR) () (XY \neg Z) \}$

• We see that () is the null disjunct and means False.

Side Trip: Functions AND, OR, and null values (Note: These are "syntactic sugar" in logic.)

function AND(arglist) returns a truth-value
 return ANDOR(arglist, True)

function OR(arglist) returns a truth-value
 return ANDOR(arglist, False)

function ANDOR(arglist, nullvalue) returns a truth-value

/* nullvalue is the identity element for the caller. */

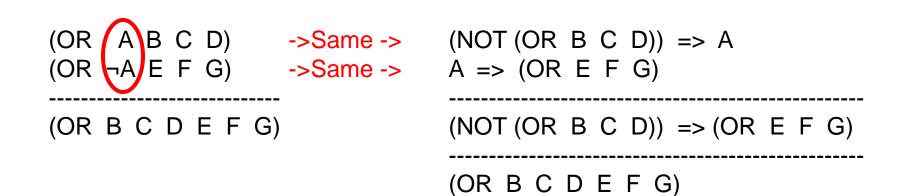
if (*arglist* = { })

then return *nullvalue*

if (FIRST(*arglist*) = NOT(*nullvalue*))

then return NOT(*nullvalue*)

return ANDOR(REST(arglist))



- Propositional Logic is **Useful** --- but has **Limited Expressive Power**
- First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
 - FOPC has greatly expanded expressive power, though still limited.
- New Ontology
 - The world consists of OBJECTS (for propositional logic, the world was facts).
 - OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS.
- New Syntax
 - Constants, Predicates, Functions, Properties, Quantifiers.
- New Semantics
 - Meaning of new syntax.
- Knowledge engineering in FOL
- Required Reading:
 - For today, all of Chapter 8; for next lecture, all of Chapter 9.

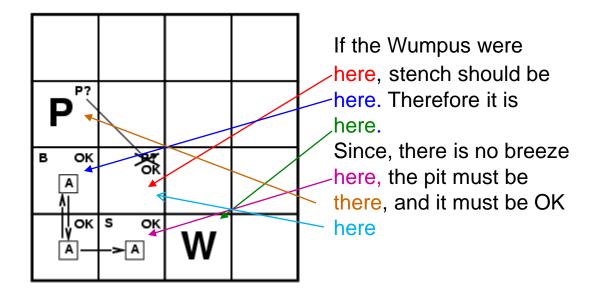
You will be expected to know

- FOPC syntax and semantics
 - Syntax: Sentences, predicate symbols, function symbols, constant symbols, variables, quantifiers
 - Semantics: Models, interpretations
- De Morgan's rules for quantifiers
 - connections between \forall and \exists
- Nested quantifiers
 - Difference between " $\forall x \exists y P(x, y)$ " and " $\exists x \forall y P(x, y)$ "
 - $\forall x \exists y \text{ Likes}(x, y)$
 - $\exists x \forall y \text{ Likes}(x, y)$
- Translate simple English sentences to FOPC and back
 - $\forall x \exists y \text{ Likes}(x, y) \Leftrightarrow \text{"Everyone has someone that they like."}$
 - $\exists x \forall y \text{ Likes}(x, y) \Leftrightarrow$ "There is someone who likes every person."

Common Sense Reasoning

Example, adapted from Lenat

- You are told: John drove to the grocery store and bought a pound of noodles, a pound of ground beef, and two pounds of tomatoes.
- Is John 3 years old?
- Is John a child?
- What will John do with the purchases?
- Did John have any money?
- Does John have less money after going to the store?
- Did John buy at least two tomatoes?
- Were the tomatoes made in the supermarket?
- Did John buy any meat?
- Is John a vegetarian?
- Will the tomatoes fit in John's car?
- Can Propositional Logic support these inferences?

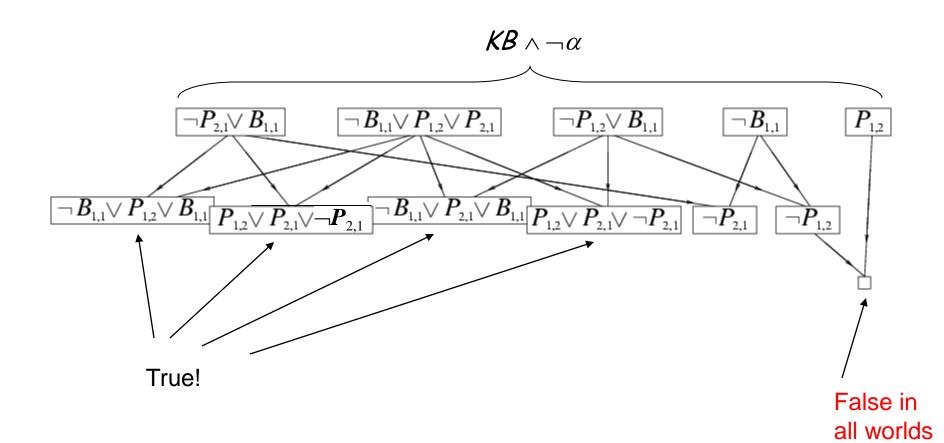


We need rather sophisticated reasoning here!

Resolution example

•
$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,2}$$

• $a = \neg P_{1,2}$



Pros and cons of propositional logic

- © Propositional logic is declarative
 - Knowledge and inference are separate
- © Propositional logic allows partial/disjunctive/negated information
 - unlike most programming languages and databases
- © Propositional logic is compositional:
 - meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- © Meaning in propositional logic is context-independent
 - unlike natural language, where meaning depends on context
- Propositional logic has limited expressive power
 - E.g., cannot say "Pits cause breezes in adjacent squares."
 - except by writing one sentence for each square
 - Needs to refer to objects in the world,
 - Needs to express general rules

First-Order Logic (FOL), also called First-Order Predicate Calculus (FOPC)

- Propositional logic assumes the world contains facts.
- First-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Functions: father of, best friend, one more than, plus, ...
 - Function arguments are objects; function returns an object
 - Objects generally correspond to English NOUNS
 - Predicates/Relations/Properties: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Predicate arguments are objects; predicate returns a truth value
 - Predicates generally correspond to English VERBS
 - First argument is generally the subject, the second the object

Aside: First-Order Logic (FOL) vs. Second-Order Logic

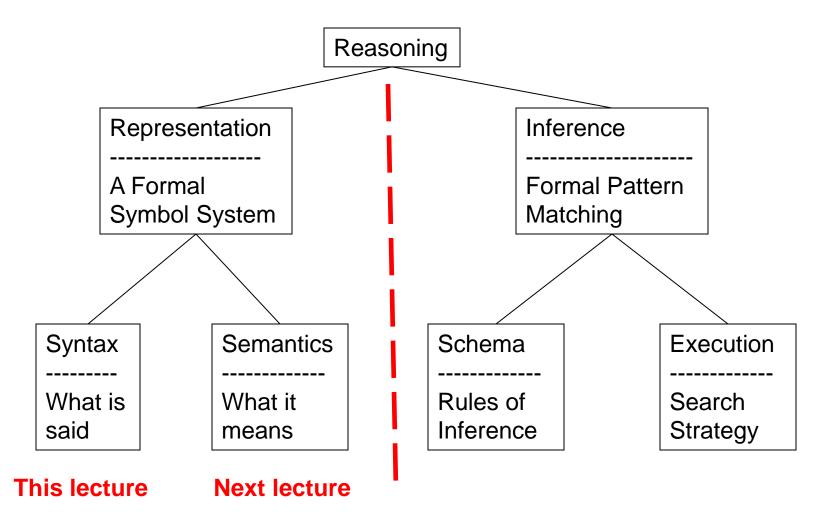
- First Order Logic (FOL) allows variables and general rules
 - "First order" because quantified variables represent objects.
 - "Predicate Calculus" because it quantifies over predicates on objects.
 - E.g., "Integral Calculus" quantifies over functions on numbers.
- Aside: Second Order logic
 - "Second order" because quantified variables can also represent predicates and functions.
 - E.g., can define "Transitive Relation," which is beyond FOPC.
- Aside: In FOL we can state that a relationship is transitive
 - E.g., BrotherOf is a transitive relationship
 - $\forall x, y, z BrotherOf(x,y) \land BrotherOf(y,z) => BrotherOf(x,z)$
- Aside: In Second Order logic we can define "Transitive"
 - \forall P, x, y, z Transitive(P) \Leftrightarrow (P(x,y) \land P(y,z) => P(x,z))
 - Then we can state directly, Transitive(BrotherOf)

FOL (or FOPC) Ontology:

What kind of things exist in the world?

What do we need to describe and reason about?

Objects --- with their relations, functions, predicates, properties, and general rules.



Syntax of FOL: Basic elements

- Constants KingJohn, 2, UCI,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Connectives $\neg, \Rightarrow, \land, \lor, \Leftrightarrow$
- Equality =
- Quantifiers ∀, ∃

Syntax of FOL: Basic syntax elements are symbols

- **Constant** Symbols (correspond to English nouns)
 - Stand for objects in the world.
 - E.g., KingJohn, 2, UCI, ...
- **Predicate** Symbols (correspond to English verbs)
 - Stand for relations (maps a tuple of objects to a truth-value)
 - E.g., Brother(Richard, John), greater_than(3,2), ...
 - P(x, y) is usually read as "x is P of y."
 - E.g., Mother(Ann, Sue) is usually "Ann is Mother of Sue."
- Function Symbols (correspond to English nouns)
 - Stand for functions (maps a tuple of objects to an object)
 - E.g., Sqrt(3), LeftLegOf(John), ...
- **Model** (world) = set of domain objects, relations, functions
- Interpretation maps symbols onto the model (world)
 - Very many interpretations are possible for each KB and world!
 - Job of the KB is to rule out models inconsistent with our knowledge.

Syntax : Relations, Predicates, Properties, Functions

- Mathematically, all the Relations, Predicates, Properties, and Functions CAN BE represented simply as sets of *m*-tuples of objects:
- Let *W* be the set of objects in the world.
- Let $W^m = W \times W \times \dots$ (*m times*) ... $\times W$
 - The set of all possible *m*-tuples of objects from the world
- An *m*-ary Relation is a subset of *W*^m.
 - Example: Let $W = \{John, Sue, Bill\}$
 - Then *W*² = { <*John*, *John*>, <*John*, *Sue*>, ..., <*Sue*, *Sue*> }
 - E.g., MarriedTo = { <John, Sue>, <Sue, John> }
 - E.g., FatherOf = { < John, Bill> }
- Analogous to a constraint in CSPs
 - The constraint lists the *m*-tuples that satisfy it.
 - The relation lists the *m*-tuples that participate in it.

Syntax : Relations, Predicates, Properties, Functions

- A **Predicate** is a list of *m*-tuples making the predicate true.
 - E.g., PrimeFactorOf = $\{ <2,4>, <2,6>, <3,6>, <2,8>, <3,9>, ... \}$
 - This is the same as an *m*-ary Relation.
 - Predicates (and properties) generally correspond to English verbs.
- A **Property** lists the m-tuples that have the property.
 - Formally, it is a predicate that is true of tuples having that property.
 - E.g., IsRed = { <Ball-5>, <Toy-7>, <Car-11>, ...}
 - This is the same as an *m*-ary Relation.
- A **Function** CAN BE represented as an *m*-ary relation
 - the first (m-1) objects are the arguments and the m^{th} is the value.
 - E.g., Square = $\{ <1, 1>, <2, 4>, <3, 9>, <4, 16>, ... \}$
- An **Object** CAN BE represented as a function of zero arguments that returns the object.
 - This is just a 1-ary relationship.

- **Term** = logical expression that **refers to an object**
- There are two kinds of terms:
 - Constant Symbols stand for (or name) objects:
 - E.g., KingJohn, 2, UCI, Wumpus, ...
 - Function Symbols map tuples of objects to an object:
 - E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
 - This is nothing but a complicated kind of name
 - No "subroutine" call, no "return value"

Syntax of FOL: Atomic Sentences

- Atomic Sentences state facts (logical truth values).
 - An atomic sentence is a Predicate symbol, optionally followed by a parenthesized list of any argument terms
 - E.g., Married(Father(Richard), Mother(John))
 - An atomic sentence asserts that some relationship (some predicate) holds among the objects that are its arguments.
- An **Atomic Sentence is true** in a given model if the relation referred to by the predicate symbol holds among the objects (terms) referred to by the arguments.

Syntax of FOL: Atomic Sentences

- Atomic sentences in logic state facts that are true or false.
- Properties and *m*-ary relations do just that:

LargerThan(2, 3) is false.

BrotherOf(Mary, Pete) is false.

Married(Father(Richard), Mother(John)) could be true or false.

Properties and *m*-ary relations are Predicates that are true or false.

- Note: Functions refer to objects, do not state facts, and form no sentence:
 - Brother(Pete) refers to John (his brother) and is neither true nor false.
 - Plus(2, 3) refers to the number 5 and is neither true nor false.
- BrotherOf(Pete, Brother(Pete)) is True.

Binary relation is a truth value. Function refers to John, an object in the world, i.e., John is Pete's brother. (Works well iff John is Pete's only brother.)

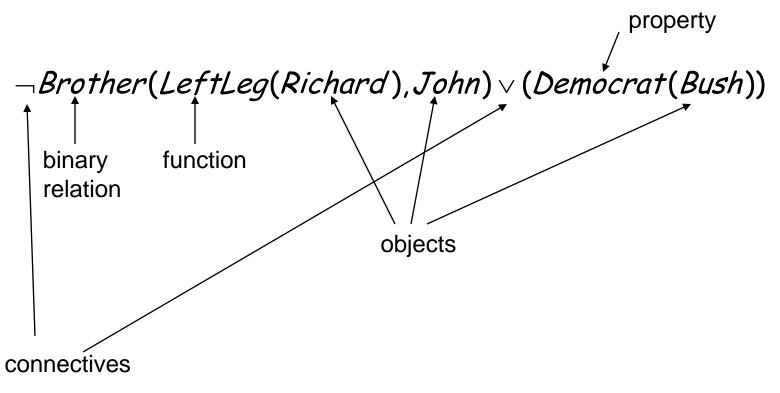
Syntax of FOL: Connectives & Complex Sentences

 Complex Sentences are formed in the same way, and are formed using the same logical connectives, as we already know from propositional logic

• The Logical Connectives:

- ⇔ biconditional
- \Rightarrow implication
- − ∧ and
- − ∨ or
- \neg negation
- Semantics for these logical connectives are the same as we already know from propositional logic.

• We make complex sentences with connectives (just like in propositional logic).



Examples

- Brother(Richard, John) ^ Brother(John, Richard)
- King(Richard) v King(John)
- King(John) $= > \neg$ King(Richard)
- LessThan(Plus(1,2),4) ∧ GreaterThan(1,2)

(Semantics are the same as in propositional logic)

- Variables range over objects in the world.
- A variable is like a term because it represents an object.
- A variable may be used wherever a term may be used.
 Variables may be arguments to functions and predicates.
- (A term with NO variables is called a ground term.)
- (A variable not bound by a quantifier is called free.)

Syntax of FOL: Logical Quantifiers

- There are two Logical Quantifiers:
 - Universal: $\forall x P(x)$ means "For all x, P(x)."
 - The "upside-down A" reminds you of "ALL."
 - **Existential:** $\exists x P(x)$ means "There exists x such that, P(x)."
 - The "upside-down E" reminds you of "EXISTS."
- Syntactic "sugar" --- we really only need one quantifier.
 - $\forall x P(x) \equiv \neg \exists x \neg P(x)$
 - $\exists x P(x) \equiv \neg \forall x \neg P(x)$
 - You can ALWAYS convert one quantifier to the other.
- **RULES:** $\forall \equiv \neg \exists \neg$ and $\exists \equiv \neg \forall \neg$
- **RULE:** To move negation "in" across a quantifier, change the quantifier to "the other quantifier" and negate the predicate on "the other side."
 - $\neg \forall x P(x) \equiv \exists x \neg P(x)$
 - $\neg \exists x P(x) \equiv \forall x \neg P(x)$

Universal Quantification ∀

- ∀ means "for all"
- Allows us to make statements about all objects that have certain properties
- Can now state general rules:

 $\forall x \text{ King}(x) = \operatorname{Person}(x)$ "All kings are persons."

 $\forall x \text{ Person}(x) = > \text{HasHead}(x)$ "Every person has a head."

 \forall i Integer(i) => Integer(plus(i,1)) "If i is an integer then i+1 is an integer."

Note that $\forall x \text{ King}(x) \land \text{Person}(x)$ is not correct! This would imply that all objects x are Kings and are People

 \forall x King(x) => Person(x) is the correct way to say this

Note that => is the natural connective to use with \forall .

- Universal quantification is equivalent to:
 - Conjunction of all sentences obtained by substitution of an object for the quantified variable.
- All Cats are Mammals.

. . .

- $\forall x \text{ Cat}(x) \Rightarrow \text{Mammal}(x)$
- Conjunction of all sentences obtained by substitution of an object for the quantified variable: Cat(Spot) ⇒ Mammal(Spot) ∧ Cat(Rick) ⇒ Mammal(Rick) ∧ Cat(LAX) ⇒ Mammal(LAX) ∧ Cat(Shayama) ⇒ Mammal(Shayama) ∧ Cat(France) ⇒ Mammal(France) ∧ Cat(Felix) ⇒ Mammal(Felix) ∧

Existential Quantification 3

- $\exists x \text{ means "there exists an x such that...."}$ (at least one object x)
- Allows us to make statements about some object without naming it
- Examples:
 - $\exists x \text{ King}(x)$ "Some object is a king."
 - $\exists x \text{ Lives_in(John, Castle(x))}$ "John lives in somebody's castle."
 - \exists i Integer(i) \land GreaterThan(i,0) "Some integer is greater than zero."

Note that \land is the natural connective to use with \exists

(And note that => is the natural connective to use with \forall)

- Existential quantification is equivalent to:
 - Disjunction of all sentences obtained by substitution of an object for the quantified variable.
- Spot has a sister who is a cat.
 - $\exists x \text{ Sister}(x, \text{ Spot}) \land \text{Cat}(x)$

. . .

 Disjunction of all sentences obtained by substitution of an object for the quantified variable: Sister(Spot, Spot) ^ Cat(Spot) v Sister(Rick, Spot) ^ Cat(Rick) v Sister(LAX, Spot) ^ Cat(LAX) v Sister(Shayama, Spot) ^ Cat(Shayama) v Sister(France, Spot) ^ Cat(France) v Sister(Felix, Spot) ^ Cat(Felix) v The order of "unlike" quantifiers is important.

- $\forall x \exists y Loves(x,y)$
 - For everyone ("all x") there is someone ("exists y") whom they love
- $\exists y \forall x Loves(x,y)$
 - there is someone ("exists y") whom everyone loves ("all x")

Clearer with parentheses: $\exists y (\forall x Loves(x,y))$

The order of "like" quantifiers does not matter.

$$\forall x \ \forall y \ \mathsf{P}(x, y) \equiv \forall y \ \forall x \ \mathsf{P}(x, y) \\ \exists x \ \exists y \ \mathsf{P}(x, y) \equiv \exists y \ \exists x \ \mathsf{P}(x, y)$$

Connections between Quantifiers

 Asserting that all x have property P is the same as asserting that does not exist any x that does not have the property P

 $\forall x \text{ Likes}(x, \text{CS-171 class}) \Leftrightarrow \neg \exists x \neg \text{Likes}(x, \text{CS-171 class})$

 Asserting that there exists an x with property P is the same as asserting that not all x do not have the property P

 $\exists x \text{ Likes}(x, \text{ IceCream}) \Leftrightarrow \neg \forall x \neg \text{Likes}(x, \text{ IceCream})$

In effect:

- \forall is a conjunction over the universe of objects
- ∃ is a disjunction over the universe of objects Thus, DeMorgan's rules can be applied

De Morgan's RuleGeneralized De Morgan's Rule
$$P \land Q \equiv \neg(\neg P \lor \neg Q)$$
 $\forall x P \equiv \neg \exists x (\neg P)$ $P \lor Q \equiv \neg(\neg P \land \neg Q)$ $\exists x P \equiv \neg \forall x (\neg P)$ $\neg(P \land Q) \equiv \neg P \lor \neg Q$ $\neg \forall x P \equiv \exists x (\neg P)$ $\neg(P \lor Q) \equiv \neg P \land \neg Q$ $\neg \exists x P \equiv \forall x (\neg P)$

Rule is simple: if you bring a negation inside a disjunction or a conjunction, always switch between them (or \rightarrow and, and \rightarrow or).

Equality

- term₁ = term₂ is true under a given interpretation if and only if term₁ and term₂ refer to the same object
- E.g., definition of *Sibling* in terms of *Parent*:

$$\forall x, y \ Sibling(x, y) \Leftrightarrow \\ [\neg(x = y) \land \\ \exists m, f \neg (m = f) \land Parent(m, x) \land Parent(f, x) \\ \land Parent(m, y) \land Parent(f, y)]$$

Equality can make reasoning much more difficult!

(See R&N, section 9.5.5, page 353)

You may not know when two objects are equal.

E.g., Ancients did not know (MorningStar = EveningStar = Venus) You may have to prove x = y before proceeding

E.g., a resolution prover may not know 2+1 is the same as 1+2

FOL (or FOPC) Ontology:

What kind of things exist in the world?

What do we need to describe and reason about?

Objects --- with their relations, functions, predicates, properties, and general rules.

