First-Order Logic Semantics

Reading: Chapter 8, 9.1-9.2, 9.5, 1-9.5.5 -

FOL Syntax and Semantics read: 8.1-8.2 FOL Knowledge Engineering read: 8.3-8.5 -FOL-Inference read: Chapter 9.1-9.2, 9.5-1-9.5-5 - •

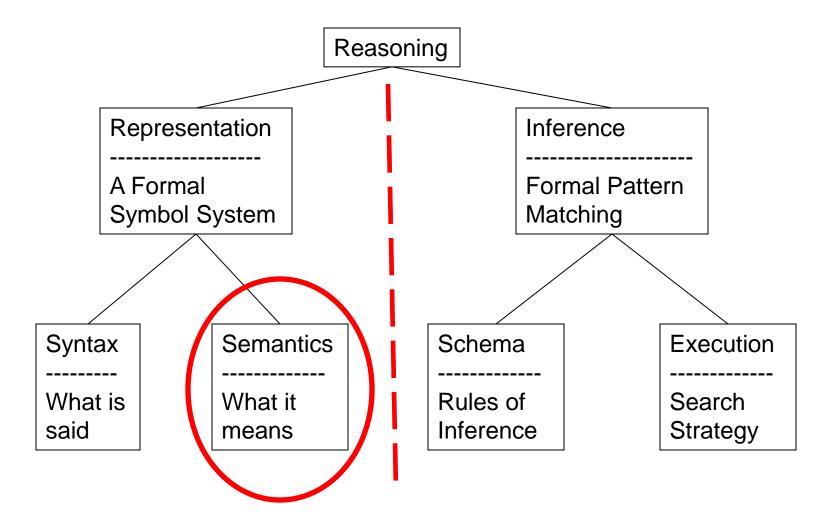
(Please read lecture topic material before and after each lecture on that topic)

- Propositional Logic is Useful --- but has Limited Expressive Power
- First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
 - FOPC has greatly expanded expressive power, though still limited.
- New Ontology
 - The world consists of OBJECTS (for propositional logic, the world was facts).
 - OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS.
- New Syntax
 - Constants, Predicates, Functions, Properties, Quantifiers.
- New Semantics
 - Meaning of new syntax.
- Knowledge engineering in FOL
- -Inference-in-FOL -

You will be expected to know

- FOPC syntax and semantics
 - Syntax: Sentences, predicate symbols, function symbols, constant symbols, variables, quantifiers
 - Semantics: Models, interpretations
- De Morgan's rules for quantifiers
 - connections between \forall and \exists
- Nested quantifiers
 - Difference between " $\forall x \exists y P(x, y)$ " and " $\exists x \forall y P(x, y)$ "
 - $\forall x \exists y \text{ Likes}(x, y)$
 - $\exists x \forall y \text{ Likes}(x, y)$
- Translate simple English sentences to FOPC and back
 - $\forall x \exists y \text{ Likes}(x, y) \Leftrightarrow \text{"Everyone has someone that they like."}$
 - $\exists x \forall y \text{ Likes}(x, y) \Leftrightarrow$ "There is someone who likes every person."

Outline


- Review: $KB \mid = S$ is equivalent to $\mid = (KB \Rightarrow S)$
 - So what does { } |= S mean?
- Review: Follows, Entails, Derives
 - Follows: "Is it the case?"
 - Entails: "Is it true?"
 - Derives: "Is it provable?"
- Semantics of FOL (FOPC)
 - Model, Interpretation

FOL (or FOPC) Ontology:

What kind of things exist in the world?

What do we need to describe and reason about?

Objects --- with their relations, functions, predicates, properties, and general rules.

Review: KB | = S means | = (KB \Rightarrow S)

- KB |= S is read "KB entails S."
 - Means "S is true in every world (model) in which KB is true."
 - Means "In the world, S follows from KB."
- KB |= S is equivalent to |= (KB ⇒ S)
 Means "(KB ⇒ S) is true in every world (i.e., is valid)."
- And so: $\{\} = S \text{ is equivalent to } = (\{\} \Rightarrow S)$
- So what does ({ } \Rightarrow S) mean?
 - Means "True implies S."
 - Means "S is valid."
 - In Horn form, means "S is a fact." p. 256 (3rd ed.; p. 281, 2nd ed.)
- Why does {} mean True here, but False in resolution proofs?

Review: (True \Rightarrow S) means "S is a fact."

- By convention,
 - The null conjunct is "syntactic sugar" for True.
 - The null disjunct is "syntactic sugar" for False.
 - Each is assigned the truth value of its identity element.
 - For conjuncts, True is the identity: $(A \land True) = A$
 - For disjuncts, False is the identity: $(A \lor False) = A$
- A KB is the conjunction of all of its sentences.
 - So in the expression: $\{\} = S$
 - We see that {} is the null conjunct and means True.
 - The expression means "S is true in every world where True is true."
 - I.e., "S is valid."
 - Better way to think of it: {} does not exclude any worlds (models).
- In Conjunctive Normal Form each clause is a disjunct.

- So in, say, $KB = \{ (PQ) (\neg QR) () (XY \neg Z) \}$

• We see that () is the null disjunct and means False.

Side Trip: Functions AND, OR, and null values (Note: These are "syntactic sugar" in logic.)

function AND(arglist) returns a truth-value
return ANDOR(arglist, True)

function OR(arglist) returns a truth-value
return ANDOR(arglist, False)

function ANDOR(arglist, nullvalue) returns a truth-value

/* nullvalue is the identity element for the caller. */

if (*arglist* = { })

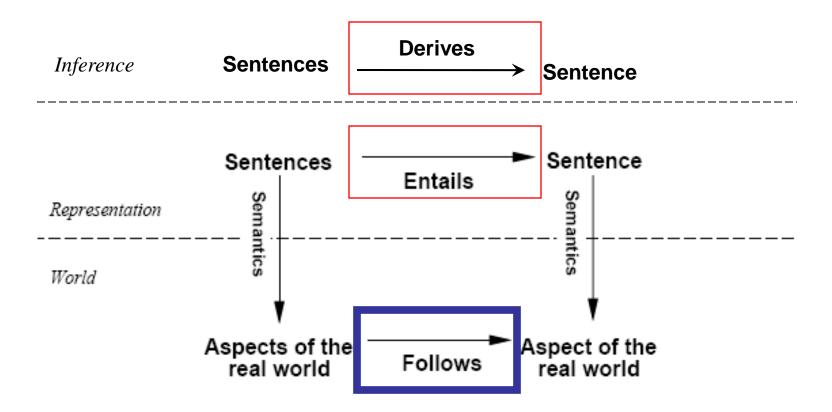
then return *nullvalue*

if (FIRST(*arglist*) = NOT(*nullvalue*))

then return NOT(*nullvalue*)

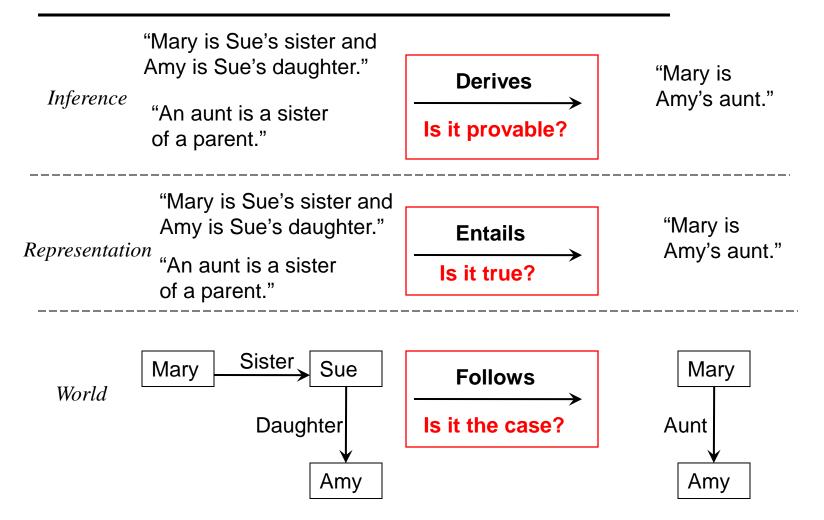
return ANDOR(REST(arglist))

Both NAND and NOR are logically complete.

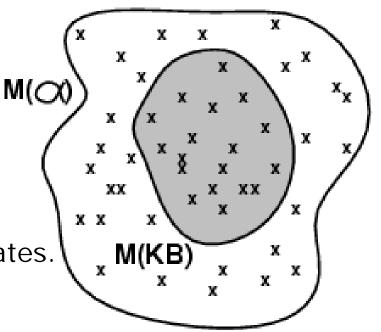

- NAND is also called the "Sheffer stroke"
- NOR is also called "Pierce's arrow"

(NOT A) = (NAND A TRUE) = (NOR A FALSE)

(AND A B) = (NAND TRUE (NAND A B)) = (NOR (NOR A FALSE) (NOR B FALSE))


(OR A B) = (NAND (NAND A TRUE) (NAND B TRUE))= (NOR FALSE (NOR A B))

Review: Schematic for Follows, Entails, and Derives


If KB is true in the real world, then any sentence *α* entailed by KB and any sentence *α* derived from KB by a sound inference procedure is also true in the real world.

Schematic Example: Follows, Entails, and Derives

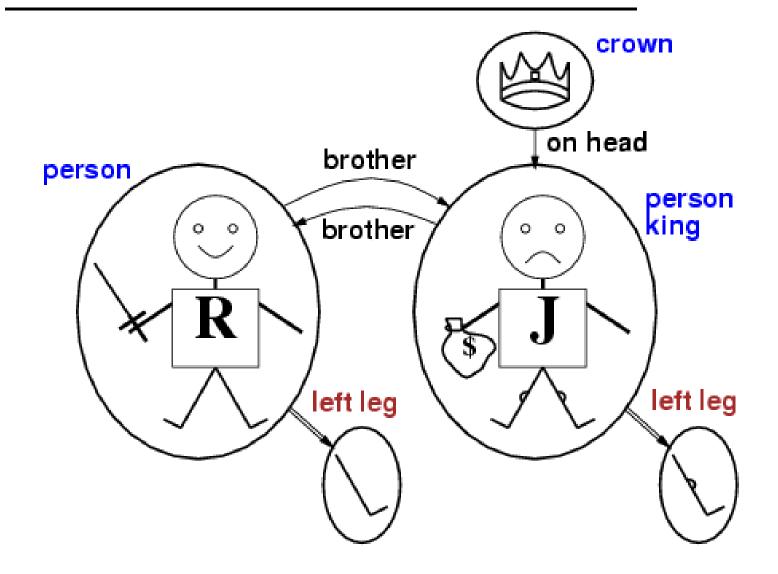
Review: Models (and in FOL, Interpretations)

- Models are formal worlds in which truth can be evaluated
- We say *m* is a model of a sentence a if a is true in *m*
- M(a) is the set of all models of a
- Then KB ⊨ a iff M(KB) ⊆ M(a)
 E.g. KB, = "Mary is Sue's sister and Amy is Sue's daughter."
 - a = "Mary is Amy's aunt."
- Think of KB and a as constraints, and of models m as possible states.
- M(KB) are the solutions to KB and M(a) the solutions to a.
- Then, KB $\models a$, i.e., $\models (KB \Rightarrow a)$, when all solutions to KB are also solutions to a.

- The world consists of objects that have properties.
 - There are relations and functions between these objects
 - Objects in the world, individuals: people, houses, numbers, colors, baseball games, wars, centuries
 - Clock A, John, 7, the-house in the corner, Tel-Aviv, Ball43
 - Functions on individuals:
 - father-of, best friend, third inning of, one more than
 - Relations:
 - brother-of, bigger than, inside, part-of, has color, occurred after
 - Properties (a relation of arity 1):
 - red, round, bogus, prime, multistoried, beautiful

- An interpretation of a sentence (wff) is an assignment that maps
 - Object constant symbols to objects in the world,
 - n-ary function symbols to n-ary functions in the world,
 - n-ary relation symbols to n-ary relations in the world
- Given an interpretation, an atomic sentence has the value "true" if it denotes a relation that holds for those individuals denoted in the terms. Otherwise it has the value "false."
 - Example: Kinship world:
 - Symbols = Ann, Bill, Sue, Married, Parent, Child, Sibling, ...
 - World consists of individuals in relations:
 - Married(Ann,Bill) is false, Parent(Bill,Sue) is true, ...

Truth in first-order logic

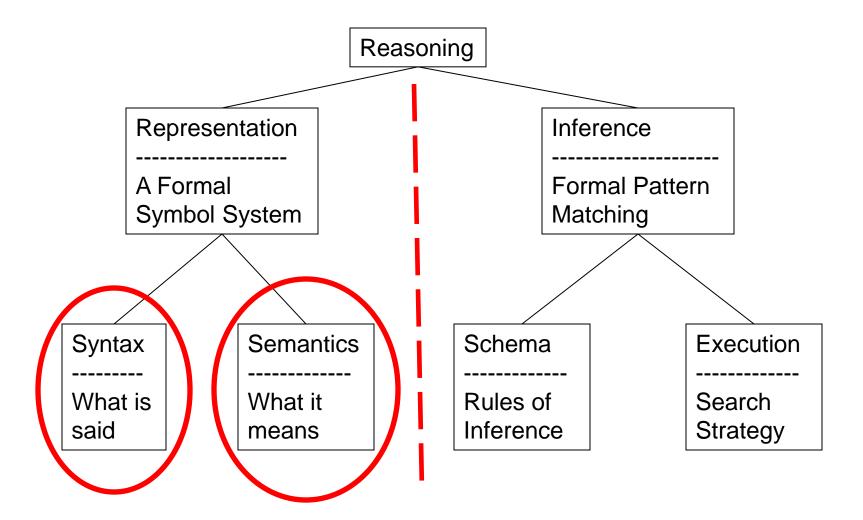

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for

constant symbols	\rightarrow	objects
predicate symbols	\rightarrow	relations
function symbols	\rightarrow	functional relations

An atomic sentence predicate(term₁,...,term_n) is true iff the objects referred to by term₁,...,term_n are in the relation referred to by predicate

- An interpretation satisfies a wff (sentence) if the wff has the value "true" under the interpretation.
- Model: A domain and an interpretation that satisfies a wff is a model of that wff
- Validity: Any wff that has the value "true" under all interpretations is valid
- Any wff that does not have a model is inconsistent or unsatisfiable
- If a wff w has a value true under all the models of a set of sentences KB then KB logically entails w

Models for FOL: Example



FOL (or FOPC) Ontology:

What kind of things exist in the world?

What do we need to describe and reason about?

Objects --- with their relations, functions, predicates, properties, and general rules.

Summary

- First-order logic:
 - Much more expressive than propositional logic
 - Allows objects and relations as semantic primitives
 - Universal and existential quantifiers
- Syntax: constants, functions, predicates, equality, quantifiers
- Nested quantifiers
- Translate simple English sentences to FOPC and back