Intro to Artificial Intelligence CS 171

Reasoning Under Uncertainty
Chapter 13 and 14.1-14.2

Andrew Gelfand

$$
3 / 1 / 2011
$$

Today...

\square Representing uncertainty is useful in knowledge bases
o Probability provides a coherent framework for uncertainty
\square Review basic concepts in probability
o Emphasis on conditional probability and conditional independence
\square Full joint distributions are difficult to work with
o Conditional independence assumptions allow us to model real-world phenomena with much simpler models
\square Bayesian networks are a systematic way to build compact, structured distributions
\square Reading: Chapter 13; Chapter 14.1-14.2

History of Probability in AI

\square Early AI (1950's and 1960's)

- Attempts to solve AI problems using probability met with mixed success
\square Logical AI (1970's, 80's)
o Recognized that working with full probability models is intractable
- Abandoned probabilistic approaches
o Focused on logic-based representations
\square Probabilistic AI (1990's-present)
o Judea Pearl invents Bayesian networks in 1988
o Realization that working w/ approximate probability models is tractable and useful
o Development of machine learning techniques to learn such models from data
o Probabilistic techniques now widely used in vision, speech recognition, robotics, language modeling, game-playing, etc.

Uncertainty

Let action $A_{t}=$ leave for airport t minutes before flight
Will A_{t} get me there on time?
Problems:

1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports)
3. uncertainty in action outcomes (flat tire, etc.)
4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either

1. risks falsehood: " A_{25} will get me there on time", or
2. leads to conclusions that are too weak for decision making:
" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."
(A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Handling uncertainty

\square Default or nonmonotonic logic:
o Assume my car does not have a flat tire
o Assume A_{25} works unless contradicted by evidence
\square Issues: What assumptions are reasonable? How to handle contradiction?
\square Rules with fudge factors:

- $\quad A_{25} / \rightarrow_{0.3}$ get there on time

O Sprinkler $\mid \rightarrow_{0.99}$ WetGrass
0 WetGrass $/ \rightarrow_{0.7}$ Rain
\square Issues: Problems with combination, e.g., Sprinkler causes Rain??
\square Probability
o Model agent's degree of belief
o Given the available evidence,
0 $\quad A_{25}$ will get me there on time with probability 0.04

Probability

Probabilistic assertions summarize effects of
o laziness: failure to enumerate exceptions, qualifications, etc.
o ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:
\square Probabilities relate propositions to agent's own state of knowledge e.g., $\mathrm{P}\left(\mathrm{A}_{25} \mid\right.$ no reported accidents $)=0.06$

These are not assertions about the world

Probabilities of propositions change with new evidence: e.g., $\mathrm{P}\left(\mathrm{A}_{25} \mid\right.$ no reported accidents, 5 a.m. $)=0.15$

Making decisions under uncertainty

Suppose I believe the following:
$P\left(A_{25}\right.$ gets me there on time $\left.\mid \ldots\right)=0.04$
$P\left(A_{90}\right.$ gets me there on time $\left.\mid \ldots\right)=0.70$
$\mathrm{P}\left(\mathrm{A}_{120}\right.$ gets me there on time $\left.\mid \ldots\right)=0.95$
$\mathrm{P}\left(\mathrm{A}_{1440}\right.$ gets me there on time $\left.\mid \ldots\right)=0.9999$

- Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.
o Utility theory is used to represent and infer preferences
o Decision theory = probability theory + utility theory

Syntax

\square Basic element: random variable
\square Similar to propositional logic: possible worlds defined by assignment of values to random variables.
\square Boolean random variables e.g., Cavity (do I have a cavity?)
\square Discrete random variables e.g., Dice is one of $\langle 1,2,3,4,5,6>$
\square Domain values must be exhaustive and mutually exclusive
\square Elementary proposition constructed by assignment of a value to a random variable:
e.g., Weather = sunny, Cavity = false (abbreviated as \neg Cavity)
\square Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny \vee Cavity = false

Syntax

\square Atomic event: A complete specification of the state of the world about which the agent is uncertain
\square e.g. Imagine flipping two coins
o The set of all possible worlds is:

$$
S=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T})\}
$$

Meaning there are 4 distinct atomic events in this world
\square Atomic events are mutually exclusive and exhaustive

Axioms of probability

\square Given a set of possible worlds S
o $P(A) \geq 0$ for all atomic events A

- $P(S)=1$
o If A and B are mutually exclusive, then:

$$
\mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)
$$

\square Refer to $\mathrm{P}(A)$ as probability of event A
0 e.g. if coins are fair $P(\{H, H\})=1 / 4$

Probability and Logic

\square Probability can be viewed as a generalization of propositional logic
$\square \mathrm{P}(a)$:
0 a is any sentence in propositional logic
o Belief of agent in a is no longer restricted to true, false, unknown

- $\mathrm{P}(a)$ can range from 0 to 1
- $\mathrm{P}(a)=0$, and $\mathrm{P}(a)=1$ are special cases
- So logic can be viewed as a special case of probability

Basic Probability Theory

\square General case for A, B :

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

True

\square e.g., imagine I flip two coins
0 Events $\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$ are all equally likely
o Consider event E that the $1^{\text {st }}$ coin is heads: $E=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T})\}$
0 And event F that the $2^{\text {nd }}$ coin is heads: $F=\{(\mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H})\}$
0 $\mathrm{P}(E \vee F)=\mathrm{P}(E)+\mathrm{P}(F)-\mathrm{P}(E \wedge F)=1 / 2+1 / 2-1 / 4=3 / 4$

Conditional Probability

\square The 2 dice problem

0 Suppose I roll two fair dice and $1^{\text {st }}$ dice is a 4
0 What is probability that sum of the two dice is 6 ?

06 possible events, given $1^{\text {st }}$ dice is 4 - $(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$

0 Since all events (originally) had same probability, these 6 events should have equal probability too
o Probability is thus $1 / 6$

Conditional Probability

\square Let A denote event that sum of dice is 6

\square Let B denote event that $1^{\text {st }}$ dice is 4
\square Conditional Probability denoted as: $\mathrm{P}(A \mid B)$

- Probability of event A given event B
\square General formula given by: $P(A \mid B)=\frac{P(A \wedge B)}{P(B)}$ - Probability of $A \wedge B$ relative to probability of B
\square What is $P\left(\right.$ sum of dice $=3 \mid 1^{\text {st }}$ dice is 4$)$?
0 Let C denote event that sum of dice is 3
o $P(B)$ is same, but $P(C \wedge B)=0$

Random Variables

\square Often interested in some function of events, rather than the actual event
o Care that sum of two dice is 4 , not that the event was $(1,3),(2,2)$ or $(3,1)$
\square Random Variable is a real-valued function on space of all possible worlds
0 e.g. let $Y=$ Number of heads in 2 coin flips

- $P(Y=0)=P(\{T, T\})=1 / 4$
- $P(Y=1)=P(\{H, T\} \vee\{T, H\})=1 / 2$

Prior (Unconditional) Probability

\square Probability distribution gives values for all possible assignments:

	Sunny	Rainy	Cloudy	Snowy
$P($ Weather $)$	0.7	0.1	0.19	0.01

\square Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables

P(Weather,Cavity)	Sunny	Rainy	Cloudy	Snowy
Cavity	0.144	0.02	0.016	0.006
-Cavity	0.556	0.08	0.174	0.004

$\square \mathrm{P}(A, B)$ is shorthand for $\mathrm{P}(A \wedge B)$
\square Joint distributions are normalized: $\Sigma_{\mathrm{a}} \Sigma_{\mathrm{b}} \mathrm{P}(A=\mathrm{a}, B=\mathrm{b})=1$

Computing Probabilities

Say we are given following joint distribution:

Joint distribution for k binary variables has 2^{k} probabilities!

	toothache		ᄀ toothache	
	catch	ᄀ catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

Computing Probabilities

\square Say we are given following joint distribution:
\square What is P(cavity)?
$P($ cavity $)=P($ cavity, catch, toothache $)+$ $P($ cavity,\neg catch, toothache $)+$ $P($ cavity, catch, \neg toothache $)+$ $P($ cavity,\neg catch,\neg toothache) $=.108+.012+.072+.008=.2$

	toothache		\neg toothache	
	catch	\neg catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

\square Law of Total Probability (aka marginalization)

$$
\begin{aligned}
\mathrm{P}(\mathrm{a}) & =\sum_{\mathrm{b}} \mathrm{P}(\mathrm{a}, \mathrm{~b}) \\
& =\Sigma_{\mathrm{b}} \mathrm{P}(\mathrm{a} \mid \mathrm{b}) \mathrm{P}(\mathrm{~b})
\end{aligned}
$$

Computing Probabilities

\square What is P (cavity|toothache)?

$$
P(\text { cavity } \mid \text { toothache })=\frac{P(\text { cavity }, \text { toothache })}{\sqrt[P(\text { toothache })]{ }}
$$

$$
\begin{aligned}
P(\text { cavity }, \text { toothache })= & P(\text { cavity }, \text { catch }, \text { toothache })+ \\
& P(\text { cavity }, \neg \text { catch }, \text { toothache }) \\
= & .108+.012=0.12
\end{aligned}
$$

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

$$
\begin{aligned}
P(\text { toothache }) & =P(\text { cavity }, \text { toothache })+P(\neg \text { cavity }, \text { toothache }) \\
& =0.12+(0.016+0.064)=0.2
\end{aligned}
$$

$$
P(\text { cavity } \mid \text { toothache })=\frac{P(\text { cavity }, \text { toothache })}{P(\text { toothache })}=\frac{0.12}{0.2}=0.6
$$

\square Can get any conditional probability from joint distribution

Computing Probabilities: Normalization

What is P(Cavity|Toothache=toothache)?

This is a distribution over the 2 states: \{cavity, - cavity $\}$

	toothache		ᄀ toothache	
	catch	ᄀ catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

$P($ Cavity \mid Toothache $=$ toothache $)=\alpha P($ Cavity, Toothache $=$ toothache $)$

Distributions will be denoted w/ capital letters;
Probabilities will be denoted w/ lowercase letters.

P(Cavity \|toothache)	
Cavity = cavity	0.6
Cavity $=-$ cavity	0.4

Computing Probabilities: The Chain Rule

\square We can always write

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots . z) P(b, c, \ldots z)
$$

(by definition of joint probability)
\square Repeatedly applying this idea, we can write

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots . z) P(b \mid c, . . z) P(c \mid \ldots z) . . P(z)
$$

\square Semantically different factorizations w/ different orderings $P(a, b, c, \ldots z)=P(z \mid y, x, \ldots . a) P(y \mid x, . . a) P(x \mid . . a) . . P(a)$

Independence

- A and B are independent iff
$\mathbf{P}(A \mid B)=\mathbf{P}(A)$
or equivalently, $\mathbf{P}(B \mid A)=\mathbf{P}(B)$
"Whether B happens, does not affect how often A happens" or equivalently, $\mathbf{P}(A, B)=\mathbf{P}(A) \mathbf{P}(B)$
\square e.g., for n independent biased coins, $O\left(2^{n}\right) \rightarrow O(n)$
\square Absolute independence is powerful but rare
\square e.g., consider field of dentistry. Many variables, none of which are independent. What should we do?

Conditional independence

- \mathbf{P} (Toothache, Cavity, Catch) has $2^{3}-1=7$ independent entries
- If I have a cavity, the probability that the probe catches doesn't depend on whether I have a toothache:
(1) $\mathbf{P}($ Catch | Toothache, cavity $)=\mathbf{P}($ Catch \mid cavity $)$
- The same independence holds if I haven't got a cavity:
(2) $\mathbf{P}($ Catch \mid Toothache,\neg cavity $)=\mathbf{P}($ Catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}($ Catch \mid Toothache,Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$

- Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch | Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch | Cavity $)$

Conditional independence...

\square Write out full joint distribution using chain rule:
\mathbf{P} (Toothache, Catch, Cavity)
$=\mathbf{P}($ Toothache \mid Catch, Cavity) $\mathbf{P}($ Catch, Cavity)
$=\mathbf{P}($ Toothache \mid Catch, Cavity) P(Catch | Cavity) P(Cavity)
$=\mathbf{P}$ (Toothache | Cavity) \mathbf{P} (Catch | Cavity) P(Cavity)

\mathbf{P} (Toothache \|Cavity)	toothache	-toothache
Cavity = cavity	0.8	0.2
Cavity = _cavity	0.4	0.6

P(Catch\|Cavity)	catch	-catch
Cavity = cavity	0.7	0.3
Cavity = cavity	0.5	0.5

P(Cavity)	
Cavity = cavity	0.55
Cavity = _cavity	0.45

P (toothache, catch, \neg cavity $)=$? ?

$$
=0.4 \cdot 0.5 \cdot 0.45=0.09
$$

Conditional independence...

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
$=\mathbf{P}($ Toothache \mid Catch, Cavity) $\mathbf{P}($ Catch, Cavity)
$=\mathbf{P}($ Toothache \mid Catch, Cavity) $\mathbf{P}($ Catch | Cavity) P(Cavity)
$=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P (C a t c h | C a v i t y) ~ P (C a v i t y) ~}$

\mathbf{P} (Toothache \|Cavity)	toothache	-toothache
Cavity = cavity	0.8	0.2
Cavity = _cavity	0.4	0.6

P(Catch\|Cavity)	catch	-catch
Cavity = cavity	0.7	0.3
Cavity = cavity	0.5	0.5

\mathbf{P} (Cavity)	
Cavity = cavity	0.55
Cavity = _cavity	0.45

Requires only $2+2+1=5$ parameters!

Use of conditional independence can reduce size of representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Conditional Independence vs Independence

\square Conditional independence does not imply independence
\square Example:
O $A=$ height
O $B=$ reading ability
O C = age

O $\quad \mathrm{P}$ (reading ability \| age, height) $=\mathrm{P}$ (reading ability \| age)
$0 \quad P($ height \mid reading ability, age $)=P($ height \mid age $)$
\square Note:
o Height and reading ability are dependent (not independent) but are conditionally independent given age

Bayes' Rule

\square Two jug problem
o Jug 1 contains: 2 white balls \& 7 black balls
o Jug 2 contains: 5 white balls \& 6 black balls
o Flip a fair coin and draw a ball from Jug 1 if heads; Jug 2 if tails
\square What is probability that coin was heads, given a white ball was selected?
o Want to compute $\mathrm{P}(\mathrm{H} \mid \mathrm{W})$
0 Have $\mathrm{P}(\mathrm{H})=\mathrm{P}(\mathrm{T})=1 / 2, \mathrm{P}(\mathrm{W} \mid \mathrm{H})=2 / 9$ and $\mathrm{P}(\mathrm{W} \mid \mathrm{T})=5 / 11$

$$
\begin{aligned}
P(H \mid W) & =\frac{P(H, W)}{P(W)}=\frac{P(W \mid H) P(H)}{P(W)}=\frac{P(W \mid H) P(H)}{P(W, H)+P(W, T)} \\
& =\frac{P(W \mid H) P(H)}{P(W \mid H) P(H)+P(W \mid T) P(T)}=\frac{\frac{2}{9} \cdot \frac{1}{2}}{\frac{2}{9} \cdot \frac{1}{2}+\frac{5}{11} \cdot \frac{1}{2}}=\frac{22}{67} \approx 0.328
\end{aligned}
$$

Bayes' Rule...

\square Derived from product rule: $\mathrm{P}(\mathrm{a} \wedge \mathrm{b})=\mathrm{P}(\mathrm{a} \mid \mathrm{b}) \mathrm{P}(\mathrm{b})=\mathrm{P}(\mathrm{b} \mid \mathrm{a}) \mathrm{P}(\mathrm{a})$
$\Rightarrow P(a \mid b)=P(b \mid a) P(a) / P(b)$
\square or in distribution form

$$
\mathbf{P}(Y \mid X)=\mathbf{P}(X \mid Y) \mathbf{P}(Y) / \mathbf{P}(X)=\alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)=\alpha \mathbf{P}(X, Y)
$$

\square Useful for assessing diagnostic probability from causal probability:
0

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(\text { Effect } \mid \text { Cause }) \mid P(\text { Cause })}{P(\text { Effect })}
$$

o e.g., let M be meningitis, S be stiff neck:

$$
P(\mathrm{~m} \mid \mathrm{s})=P(\mathrm{~s} \mid \mathrm{m}) P(\mathrm{~m}) / P(\mathrm{~s})=0.8 \times 0.0001 / 0.1=0.0008
$$

o Note: posterior probability of meningitis still very small!

Bayes' Rule...

$\square P(a \mid b, c)=? ?$

$$
=P(b, c \mid a) P(a) / P(b, c)
$$

$\square P(a, b \mid c, d)=? ?$

$$
=P(c, d \mid a, b) P(a, b) / P(c, d)
$$

Both are examples of basic pattern $p(x \mid y)=p(y \mid x) p(x) / p(y)$ (it helps to group variables together, e.g., $y=(a, b), x=(c, d)$)

Decision Theory - why probabilities are useful

\square Consider 2 possible actions that can be recommended by a medical decision-making system:

0 a = operate
o b = don't operate
$\square 2$ possible states of the world
O $\mathrm{c}=$ patient has cancer, $\neg \mathrm{C}=$ patient doesn't have cancer
\square Agent's degree of belief in c is $P(c)$, so $P(\neg c)=1-P(c)$
\square Utility (to agent) associated with various outcomes:
o Take action a and patient has cancer: utility = \$30k
o Take action a and patient has no cancer: utility $=-\$ 50 k$
o Take action b and patient has cancer: utility $=-\$ 100 \mathrm{k}$
o Take action b and patient has no cancer: utility $=0$.

Maximizing expected utility

$\square \quad$ What action should the agent take?
o Rational agent should maximize expected utility
\square Expected cost of actions:

$$
\begin{aligned}
& \mathrm{E}[\text { utility }(\mathrm{a})]=30 \mathrm{P}(\mathrm{c})-50[1-\mathrm{P}(\mathrm{c})] \\
& \mathrm{E}[\text { utility }(\mathrm{b})]=-100 \mathrm{P}(\mathrm{c})
\end{aligned}
$$

Break even point? $30 P(c)-50+50 P(c)=-100 P(c)$

$$
\begin{aligned}
& 100 P(c)+30 P(c)+50 P(c)=50 \\
& \Rightarrow P(c)=50 / 180^{\sim} 0.28
\end{aligned}
$$

If $\mathrm{P}(\mathrm{c})>0.28$, the optimal decision is to operate
\square Original theory from economics, cognitive science (1950's)

- But widely used in modern AI, e.g., in robotics, vision, game-playing
\square Can only make optimal decisions if know the probabilities

What does all this have to do with AI?

\square Logic-based knowledge representation
0 Set of sentences in KB
0 Agent's belief in any sentence is: true, false, or unknown
\square In real-world problems there is uncertainty
o $\quad \mathrm{P}($ snow in New York on January 1) is not 0 or 1 or unknown
$0 \quad P$ (pit in square $2,2 \mid$ evidence so far)
0 Ignoring this uncertainty can lead to brittle systems and inefficient use of information
\square Uncertainty is due to:
$0 \quad$ Things we did not measure (which is always the case)

- E.g., in economic forecasting
o Imperfect knowledge
- P(symptom | disease) -> we are not 100% sure
o Noisy measurements
- $\quad P($ speed $>50 \mid$ sensor reading $>50)$ is not 1

Agents, Probabilities \& Degrees of Belief

\square What we were taught in school ("frequentist" view)
o $\mathrm{P}(a)$ represents frequency that event a will happen in repeated trials
\square Degree of belief
o $\mathrm{P}(a)$ represents an agent's degree of belief that event a is true
o This is a more general view of probability

- Agent's probability is based on what information they have
- E.g., based on data or based on a theory
\square Examples:
o a = "life exists on another planet"
- What is $\mathrm{P}(\mathrm{a})$? We will all assign different probabilities
o a = "Mitt Romney will be the next US president"
- What is $\mathrm{P}(\mathrm{a})$?
\square Probabilities can vary from agent to agent depending on their models of the world and how much data they have

More on Degrees of Belief

\square Our interpretation of $\mathrm{P}(\mathrm{a} \mid \mathrm{e})$ is that it is an agent's degree of belief in the proposition a, given evidence e

0 Note that proposition a is true or false in the real-world
$0 \quad P(a \mid e)$ reflects the agent's uncertainty or ignorance
\square The degree of belief interpretation does not mean that we need new or different rules for working with probabilities
o The same rules (Bayes rule, law of total probability, probabilities sum to 1) still apply - our interpretation is different

Constructing a Propositional Probabilistic Knowledge Base

\square Define all variables of interest: A, B, C, ... Z
\square Define a joint probability table for $\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots \mathrm{Z})$

- Given this table, we have seen how to compute the answer to a query, P(query | evidence),
where query and evidence = any propositional sentence
$\square 2$ major problems:
o Computation time:
- $P(a \mid b)$ requires summing out other variables in the model
- e.g., O(m $\mathrm{m}^{\mathrm{k}-1}$) with K variables
o Model specification
- Joint table has $\mathrm{O}\left(\mathrm{m}^{\mathrm{k}}\right)$ entries - where do all the numbers come from?
o These 2 problems effectively halted the use of probability in AI research from the 1960's up until about 1990

Bayesian Networks

A Whodunit

\square You return home from a long day to find that your house guest has been murdered.
o There are two culprits:

1) The Butler; and 2) The Cook
o There are three possible weapons:
2) A knife; 2) A gun; and 3) A candlestick
\square Let's use probabilistic reasoning to find out whodunit?

Representing the problem

\square There are 2 uncertain quantities
o Culprit $=\{$ Butler, Cook $\}$
O Weapon $=\{$ Knife, Pistol, Candlestick $\}$
\square What distributions should we use?
o Butler is an upstanding guy
o Cook has a checkered past
o Butler keeps a pistol from his army days
o Cook has access to many kitchen knives
o The Butler is much older than the cook

Representing the problem...

\square What distributions should we use?

o Butler is an upstanding guy
o Cook has a checkered past

	Butler	Cook
P (Culprit)	0.3	0.7

o Butler keeps a pistol from his army days
o Cook has access to many kitchen knives
o The Butler is much older than the cook

	Pistol	Knife	Candlestick
P (weapon\|Culprit=Butler)	0.7	0.15	0.15

	Pistol	Knife	Candlestick
P(weapon \|Culprit=Cook)	0.1	0.6	0.3

Solving the Crime

\square If we observe that the murder weapon was a pistol, who is the most likely culprit?

$$
\begin{aligned}
& P(\text { culprit }=\text { Butler } \mid \text { weapon }=\text { Pistol })=\frac{P(\text { culprit }=\text { Butler }, \text { weapon }=\text { Pistol })}{P(\text { weapon }) \text { Pistol })} \\
& P(\text { Butler }, \text { Pistol })=P(\text { Pistol } \mid \text { Butler }) \cdot P(\text { Butler })=0.7 \cdot 0.3 \\
& P(\text { Pistol })=P(\text { Pistol } \mid \text { Butler }) \cdot P(\text { Butler })+P(\text { Pistol } \mid \text { Cook }) \cdot P(\text { Cook }) \\
& P(\text { Pistol })=0.7 \cdot 0.3+0.2 \cdot 0.7
\end{aligned}
$$

$$
P(\text { culprit }=\text { Butler } \mid \text { weapon }=\text { Pistol })=\frac{0.21}{0.21+0.14}=0.6
$$

Your 1 ${ }^{\text {st }}$ Bayesian Network

\square Each node represents a random variable
\square Arrows indicate cause-effect relationship
\square Shaded nodes represent observed variables
Whodunit model in "words":
o Culprit chooses a weapon;
o You observe the weapon and infer the culprit

Bayesian Networks

\square Represent dependence/independence via a directed graph
o Nodes = random variables
o Edges = direct dependence
\square Structure of the graph \Leftrightarrow Conditional independence relations
\square Recall the chain rule of repeated conditioning:
$P\left(X_{1}, X_{2}, X_{3} \ldots, X_{N}\right)=P\left(X_{1} \mid X_{2}, X_{3} \ldots, X_{N}\right) P\left(X_{2} \mid X_{3}, \ldots, X_{N}\right) \cdots P\left(X_{N}\right)$
$P\left(X_{1}, X_{2}, X_{3} \ldots, X_{N}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
The full joint distribution
The graph-structured approximation
\square Requires that graph is acyclic (no directed cycles)

- 2 components to a Bayesian network
o The graph structure (conditional independence assumptions)
o The numerical probabilities (for each variable given its parents)

Example of a simple Bayesian network

$$
\begin{aligned}
p(A, B, C) & =p(C \mid A, B) p(A \mid B) p(B) \\
& =p(C \mid A, B) p(A) p(B)
\end{aligned}
$$

Probability model has simple factored form
Directed edges $=>$ direct dependence
Absence of an edge => conditional independence
Also known as belief networks, graphical models, causal networks
Other formulations, e.g., undirected graphical models

Examples of 3-way Bayesian Networks

Marginal Independence:
$p(A, B, C)=p(A) p(B) p(C)$

Examples of 3-way Bayesian Networks

Conditionally independent effects: $p(A, B, C)=p(B \mid A) p(C \mid A) p(A)$
B and C are conditionally independent Given A
e.g., A is a disease, and we model B and C as conditionally independent symptoms given A
e.g. A is culprit, B is murder weapon and C is fingerprints on door to the guest's room

Examples of 3-way Bayesian Networks

Independent Causes:
$p(A, B, C)=p(C \mid A, B) p(A) p(B)$
"Explaining away" effect:
Given C, observing A makes B less likely e.g., earthquake/burglarylalarm example
A and B are (marginally) independent but become dependent once C is known

Examples of 3-way Bayesian Networks

Markov chain dependence:
$p(A, B, C)=p(C \mid B) p(B \mid A) p(A)$
e.g. If Prof. Lathrop goes to party, then I might go to party. If I go to party, then my wife might go to party.

Bigger Example

\square Consider the following 5 binary variables:
O $B=a$ burglary occurs at your house
o $E=$ an earthquake occurs at your house
O A = the alarm goes off
o J = John calls to report the alarm
o $M=$ Mary calls to report the alarm
\square Sample Query: What is $\mathrm{P}(\mathrm{B} \mid \mathrm{M}, \mathrm{J})$?
\square Using full joint distribution to answer this question requires
o $2^{5}-1=31$ parameters
\square Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

Constructing a Bayesian Network (1)

- Order variables in terms of causality (may be a partial order)

$$
\text { e.g., }\{E, B\}->\{A\}->\{J, M\}
$$

- $P(J, M, A, E, B)=P(J, M \mid A, E, B) P(A \mid E, B) P(E, B)$

$$
\begin{array}{lr}
\approx P(J, M \mid A) & P(A \mid E, B) P(E) P(B) \\
\approx P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)
\end{array}
$$

\square These conditional independence assumptions are reflected in the graph structure of the Bayesian network

The Resulting Bayesian Network

Constructing this Bayesian Network (2)

$\square \quad \mathrm{P}(\mathrm{J}, \mathrm{M}, \mathrm{A}, \mathrm{E}, \mathrm{B})=$

$$
P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)
$$

$\square \quad$ There are 3 conditional probability tables to be determined:

- $P(J \mid A), P(M \mid A), P(A \mid E, B)$
- Requires $2+2+4=8$ probabilities

\square And 2 marginal probabilities $\mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{B})$
10 parameters in Bayesian Network; 31 parameters in joint distribution
$\square \quad$ Where do these probabilities come from?
o Expert knowledge
o From data (relative frequency estimates) see Sections 20.1 \& 20.2 (optional)

Number of Probabilities in Bayes Nets

\square Consider n binary variables
\square Unconstrained joint distribution requires $\mathrm{O}\left(2^{n}\right)$ probabilities
\square If we have a Bayesian network, with a maximum of k parents for any node, then we need $O\left(n 2^{k}\right)$ probabilities
\square Example

- Full unconstrained joint distribution
- $n=30$: need 10^{9} probabilities for full joint distribution
o Bayesian network
- $n=30, k=4$: need 480 probabilities

The Bayesian Network from a different Variable Ordering
$\{M\}->\{J\}->\{A\}->\{B\}->\{E\}$
$P(J, M, A, E, B)=$ $P(M) P(J \mid M) P(A \mid M, J) P(B \mid A) P(E \mid A, B)$

(a)

INFORMATION AND COMPUTER SCIENGES

Inference (Reasoning) in Bayes Nets

Consider answering a query in a Bayesian Network
$\mathrm{Q}=$ set of query variables
$e=$ evidence (set of instantiated variable-value pairs)
Inference = computation of conditional distribution $P(Q \mid e)$

Examples

P(burglary | alarm)
P(earthquake \|JohnCalls, MaryCalls)

Can we use structure of the Bayesian Network to answer queries efficiently?
Answer = yes
Generally speaking, complexity is inversely proportional to sparsity of graph

Inference by Variable Elimination

\square Say that query is $\mathrm{P}(B \mid j, m)$
o $\quad \mathrm{P}(B \mid j, m)=P(B, j, m) / P(j, m)=\alpha P(B, j, m)$
\square Apply evidence to expression for joint distribution $0 \quad P(j, m, A, E, B)=P(j \mid A) P(m \mid A) P(A \mid E, B) P(E) P(B)$
\square Marginalize out A and E

Distribution over variable B - i.e.
over states $\{b,-b\}$

$$
=\alpha P(B) \sum_{e} P(e) \sum_{a} p(j \mid a) p(m \mid a) p(a \mid e, B)
$$

Sum is over states of variable A - i.e. $\{a,-a\}$

Complexity of Bayes Net Inference

\square Assume the network is a polytree
o Only a single directed path between any 2 nodes
\square Complexity scales as $\mathrm{O}\left(\mathrm{n} \mathrm{m}^{\mathrm{K}+1}\right)$

- $\mathrm{n}=$ number of variables

- $m=$ arity of variables
- K = maximum number of parents for any node
o Compare to O($\mathrm{m}^{\mathrm{n}-1}$) for brute-force method
\square If network is not a polytree?
o Can cluster variables to render 'new' graph that is a tree
o Complexity is then $\mathrm{O}\left(\mathrm{n} \mathrm{m}^{\mathrm{W}+1}\right)$, where $\mathrm{W}=\#$ variables in largest cluster

Naïve Bayes Model

Features X are conditionally independent given the class variable C
Widely used in machine learning
e.g., spam email classification: X's = counts of words in emails

Probabilities $\mathrm{P}(\mathrm{C})$ and $\mathrm{P}(\mathrm{Xi} \mid \mathrm{C})$ can easily be estimated from labeled data

Hidaen Markovinaci (HMN

Two key assumptions:

1. hidden state sequence is Markov
2. observation Y_{t} is Conditionally Independent of all other variables given S_{t}

Widely used in speech recognition, protein sequence models Since this is a Bayesian network polytree, inference is linear in n

Summary

\square Bayesian networks represent joint distributions using a graph
\square The graph encodes a set of conditional independence assumptions
\square Answering queries (i.e. inference) in a Bayesian network amounts to efficient computation of appropriate conditional probabilities
\square Probabilistic inference is intractable in the general case
o Can be done in linear time for certain classes of Bayesian networks

