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Today… 
 Representing uncertainty is useful in knowledge bases 

o Probability provides a coherent framework for uncertainty 
 

 Review basic concepts in probability 
o Emphasis on conditional probability and conditional independence 

 

 Full joint distributions are difficult to work with 
o Conditional independence assumptions allow us to model real-world 

phenomena with much simpler models 
 

 Bayesian networks are a systematic way to build compact, structured 
distributions 
 

 Reading:  Chapter 13; Chapter 14.1-14.2 

 



History of Probability in AI 
 Early AI (1950’s and 1960’s) 

o Attempts to solve AI problems using probability met with mixed success 
 

 Logical AI (1970’s, 80’s) 
o Recognized that working with full probability models is intractable 

o Abandoned probabilistic approaches 

o Focused on logic-based representations 
 

 Probabilistic AI (1990’s-present) 
o Judea Pearl invents Bayesian networks in 1988 

o Realization that working w/ approximate probability models is tractable and useful 

o Development of machine learning techniques to learn such models from data 

o Probabilistic techniques now widely used in vision, speech recognition, robotics, 
language modeling, game-playing, etc. 

 



Uncertainty 
Let action At = leave for airport t minutes before flight 
Will At get me there on time? 

 

Problems: 
1. partial observability (road state, other drivers' plans, etc.) 
2. noisy sensors (traffic reports) 
3. uncertainty in action outcomes (flat tire, etc.) 
4. immense complexity of modeling and predicting traffic 

 

Hence a purely logical approach either 
1. risks falsehood: “A25 will get me there on time”, or 
2. leads to conclusions that are too weak for decision making: 

 

“A25 will get me there on time if there's no accident on the bridge and it doesn't rain 
and my tires remain intact etc etc.” 

 

(A1440 might reasonably be said to get me there on time but I'd have to stay overnight 
in the airport …) 

 



 Default or nonmonotonic logic: 
o Assume my car does not have a flat tire 
o Assume A25 works unless contradicted by evidence 

 Issues: What assumptions are reasonable? How to handle contradiction? 
 

 Rules with fudge factors: 
o A25 |→0.3 get there on time 
o Sprinkler |→ 0.99 WetGrass 
o WetGrass |→ 0.7 Rain 

 Issues: Problems with combination, e.g., Sprinkler causes Rain?? 
 

 Probability 
o Model agent's degree of belief 
o Given the available evidence, 
o A25 will get me there on time with probability 0.04 

Handling uncertainty 



Probability 
Probabilistic assertions summarize effects of 

o laziness: failure to enumerate exceptions, qualifications, etc. 
o ignorance: lack of relevant facts, initial conditions, etc. 

 
Subjective probability: 
 Probabilities relate propositions to agent's own state of knowledge 
  e.g., P(A25 | no reported accidents) = 0.06 

 
These are not assertions about the world 

 
Probabilities of propositions change with new evidence: 
  e.g., P(A25 | no reported accidents, 5 a.m.) = 0.15 



Making decisions under uncertainty 
Suppose I believe the following: 

P(A25 gets me there on time | …) = 0.04  
P(A90 gets me there on time | …) = 0.70  
P(A120 gets me there on time | …) = 0.95  
P(A1440 gets me there on time | …) = 0.9999  

 
 Which action to choose? 
 Depends on my preferences for missing flight vs. time spent waiting, etc. 

o Utility theory is used to represent and infer preferences 
o Decision theory = probability theory + utility theory 



Syntax 
 Basic element: random variable 
 Similar to propositional logic: possible worlds defined by assignment of 

values to random variables. 
 Boolean random variables 

e.g., Cavity (do I have a cavity?) 
 Discrete random variables 

e.g., Dice is one of <1,2,3,4,5,6> 
 

 Domain values must be exhaustive and mutually exclusive 
 

 Elementary proposition constructed by assignment of a value to a 
random variable:  

 e.g., Weather = sunny, Cavity = false (abbreviated as ¬cavity) 
 

 Complex propositions formed from elementary propositions and 
standard logical connectives e.g., Weather = sunny ∨ Cavity = false 



Syntax 
 Atomic event: A complete specification of the state of the 

world about which the agent is uncertain 
  
 e.g. Imagine flipping two coins  

o The set of all possible worlds is: 
   S={(H,H),(H,T),(T,H),(T,T)} 
 

 Meaning there are 4 distinct atomic events in this world 
 

 Atomic events are mutually exclusive and exhaustive 



Axioms of probability 
 Given a set of possible worlds S  

o P(A) ≥ 0  for all atomic events A  
o P(S) = 1 
o If A and B are mutually exclusive, then: 

 P(A ∨ B) = P(A) + P(B) 
 

 Refer to P(A) as probability of event A 
o e.g. if coins are fair P({H,H}) = ¼  



Probability and Logic 
 Probability can be viewed as a generalization of 

propositional logic 
 

 P(a): 
o a is any sentence in propositional logic  
o Belief of agent in a is no longer restricted to true, false, 

unknown 
o P(a) can range from 0 to 1 

 P(a) = 0, and P(a) = 1 are special cases 
 So logic can be viewed as a special case of probability 



Basic Probability Theory 
 General case for A, B: 

  P(A ∨ B) = P(A) + P(B) – P(A ∧ B)  
 

 

 

 e.g., imagine I flip two coins 
o Events {(H,H),(H,T),(T,H),(T,T)} are all equally likely 
o Consider event E that the 1st coin is heads:  E={(H,H),(H,T)} 
o And event F that the 2nd coin is heads:  F={(H,H),(T,H)} 
o P(E ∨ F) = P(E) + P(F) – P(E ∧ F) = ½ + ½ - ¼ = ¾    

 
 



Conditional Probability 
 The 2 dice problem 

o Suppose I roll two fair dice and 1st dice is a 4 
o What is probability that sum of the two dice is 6? 

 
o 6 possible events, given 1st dice is 4 
 (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) 

o Since all events (originally) had same probability, 
these 6 events should have equal probability too 

o Probability is thus 1/6  



Conditional Probability 
 Let A denote event that sum of dice is 6 
 Let B denote event that 1st dice is 4 
 Conditional Probability denoted as:  P(A|B) 

o Probability of event A given event B 
 

 General formula given by:  
o Probability of A ∧ B relative to probability of B 

 
What is P(sum of dice = 3 | 1st dice is 4)? 

o Let C denote event that sum of dice is 3 
o P(B) is same, but P(C ∧ B) = 0 
 



Random Variables 
 Often interested in some function of events, 

rather than the actual event 
o Care that sum of two dice is 4, not that the event 

was (1,3), (2,2) or (3,1) 

 Random Variable is a real-valued function on 
space of all possible worlds 
o e.g. let Y = Number of heads in 2 coin flips 
 P(Y=0) = P({T,T}) = ¼  
 P(Y=1) = P({H,T} ∨ {T,H}) = ½   



Prior (Unconditional) Probability 
 Probability distribution gives values for all possible assignments: 

 
 
 

 

 

 Joint probability distribution for a set of random variables gives 
the probability of every atomic event on those random variables 
 

 
 
 

 

 P(A,B) is shorthand for P(A ∧ B) 
 

 Joint distributions are normalized:  Σa Σb P(A=a, B=b) = 1 

Sunny Rainy Cloudy Snowy 

P(Weather) 0.7 0.1 0.19 0.01 

P(Weather,Cavity) Sunny Rainy Cloudy Snowy 

Cavity 0.144 0.02 0.016 0.006 

⌐Cavity 0.556 0.08 0.174 0.004 



Computing Probabilities 
 Say we are given following joint distribution: 

 Joint distribution for k 
binary variables has 2k 
probabilities! 



Computing Probabilities 
 Say we are given following joint distribution: 
What is P(cavity)? 

 
 

 
 Law of Total Probability (aka marginalization) 
             P(a) = Σb  P(a, b)  
                  = Σb P(a | b) P(b) 



Computing Probabilities 
What is P(cavity|toothache)? 

 
 
 
 
 

 
 

 Can get any conditional probability from joint distribution 



Computing Probabilities: Normalization 

What is P(Cavity|Toothache=toothache)? 
 
 
 
 

This is a distribution 
over  the 2 states: 
{cavity,¬cavity} 

 

Distributions will be denoted 
w/ capital letters; 
Probabilities will be denoted 
w/ lowercase letters. 

αP(Cavity,toothache) 

Cavity = cavity 0.108 + 0.012 = 0.12 

Cavity = ¬cavity 0.016 + 0.064 = 0.08 

P(Cavity|toothache) 

Cavity = cavity 0.6 

Cavity = ¬cavity 0.4 



Computing Probabilities: The Chain Rule  

 We can always write 
      P(a, b, c, … z) = P(a | b, c, …. z) P(b, c, … z) 
                                       (by definition of joint probability) 
 
 Repeatedly applying this idea, we can write 
       P(a, b, c, … z) = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z) 
 
 Semantically different factorizations w/ different orderings 
 P(a, b, c, … z) = P(z | y, x, …. a) P(y | x,.. a) P(x| .. a)..P(a) 
 



Independence 
 A and B are independent iff 
 P(A|B) = P(A) 
 or equivalently, P(B|A) = P(B) 
 or equivalently, P(A,B) = P(A) P(B) 
 
 e.g., for n independent biased coins, O(2n) →O(n) 

 

 Absolute independence is powerful but rare 
 

 e.g., consider field of dentistry. Many variables, none of 
which are independent. What should we do? 

“Whether B happens, 
does not affect how 
often A happens” 



Conditional independence 
 P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries 

 

 If I have a cavity, the probability that the probe catches doesn't depend 
on whether I have a toothache: 
(1) P(Catch | Toothache, cavity) = P(Catch | cavity) 

 

 The same independence holds if I haven't got a cavity: 
(2) P(Catch | Toothache,¬cavity) = P(Catch | ¬cavity) 

 

 Catch is conditionally independent of Toothache given Cavity: 
P(Catch | Toothache,Cavity) = P(Catch | Cavity) 

 

 Equivalent statements: 
P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 
 



Conditional independence... 
 Write out full joint distribution using chain rule: 
 P(Toothache, Catch, Cavity) 

 = P(Toothache | Catch, Cavity) P(Catch, Cavity) 
 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 
 = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity) 
 

  
P(Toothache|Cavity) toothache ¬toothache 

Cavity = cavity 0.8 0.2 

Cavity = ¬cavity 0.4 0.6 

P(Catch|Cavity) catch ¬catch 

Cavity = cavity 0.7 0.3 

Cavity = ¬cavity 0.5 0.5 

P(Cavity) 

Cavity = cavity 0.55 

Cavity = ¬cavity 0.45 

P(toothache,catch,¬cavity) = ?? 
                                                 = 0.4 ∙ 0.5 ∙ 0.45 = 0.09  



Conditional independence... 
 Write out full joint distribution using chain rule: 
 P(Toothache, Catch, Cavity) 

 = P(Toothache | Catch, Cavity) P(Catch, Cavity) 
 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 
 = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity) 
 

  
P(Toothache|Cavity) toothache ¬toothache 

Cavity = cavity 0.8 0.2 

Cavity = ¬cavity 0.4 0.6 

P(Catch|Cavity) catch ¬catch 

Cavity = cavity 0.7 0.3 

Cavity = ¬cavity 0.5 0.5 

P(Cavity) 

Cavity = cavity 0.55 

Cavity = ¬cavity 0.45 

Requires only 2 + 2 + 1 = 5 parameters! 
 

Use of conditional independence can reduce size of representation of the joint 
distribution from exponential in n to linear in n. 
 

Conditional independence is our most basic and robust form of knowledge 
about uncertain environments. 



Conditional Independence vs Independence 
 Conditional independence does not imply independence 
 Example: 

o A = height 
o B = reading ability 
o C = age 

 

o P(reading ability | age, height) = P(reading ability | age) 
o P(height | reading ability, age) = P(height | age) 

 Note: 
o Height and reading ability are dependent (not independent) 

but are conditionally independent given age 
 
 
 
 



Bayes’ Rule 
 Two jug problem 

o Jug 1 contains: 2 white balls & 7 black balls 
o Jug 2 contains: 5 white balls & 6 black balls 
o Flip a fair coin and draw a ball from Jug 1 if heads; Jug 2 if tails 

 What is probability that coin was heads, given a white ball 
was selected? 
o Want to compute P(H|W) 
o Have P(H) = P(T) = ½ , P(W|H) = 2/9  and  P(W|T) = 5/11 

 



Bayes' Rule… 
 Derived from product rule:  P(a ∧ b) = P(a|b) P(b) = P(b|a) P(a) 

 

 ⇒  P(a | b) = P(b | a) P(a) / P(b) 
 

 or in distribution form  
  P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y) = αP(X,Y) 

 

 

 Useful for assessing diagnostic probability from causal probability: 
 

o   
 

o e.g., let M be meningitis, S be stiff neck: 
 

P(m|s) = P(s|m) P(m) / P(s) = 0.8 × 0.0001 / 0.1 = 0.0008 
 

o Note: posterior probability of meningitis still very small! 



Bayes' Rule… 
 

 P(a | b, c) = ??  
                    = P(b, c | a) P(a)  / P(b,c) 
 
 P(a, b | c, d)  = ?? 
                    = P(c, d | a, b) P(a, b)  / P(c, d) 

 
Both are examples of basic pattern p(x|y) = p(y|x)p(x)/p(y) 
(it helps to group variables together, e.g., y = (a,b), x = (c, d)) 



Decision Theory – why probabilities are useful 
 Consider 2 possible actions that can be recommended by a medical 

decision-making system: 
o a =  operate 

o b = don’t operate 

 2 possible states of the world 
o c = patient has cancer, ¬c = patient doesn’t have cancer  

 Agent’s degree of belief in c is P(c), so P(¬c) = 1 - P(c) 

 Utility (to agent) associated with various outcomes: 
o Take action a and patient has cancer:  utility =  $30k 

o Take action a and patient has no cancer: utility = -$50k 

o Take action b and patient has cancer:  utility = -$100k 

o Take action b and patient has no cancer:  utility = 0. 

 

 

 
 

 



Maximizing expected utility 
 What action should the agent take? 

o Rational agent should maximize expected utility 
 Expected cost of actions: 
                E[ utility(a) ] =  30 P(c) – 50 [1 - P(c) ] 
                E[ utility(b) ] =  -100 P(c)   
      Break even point?   30 P(c) – 50 + 50 P(c) = -100 P(c) 
                         100 P(c) + 30 P(c) + 50 P(c) = 50 
                       => P(c) = 50/180 ~ 0.28 
 

          If P(c) > 0.28, the optimal decision is to operate 
 Original theory from economics, cognitive science (1950’s) 
         - But widely used in modern AI, e.g., in robotics, vision, game-playing 
 Can only make optimal decisions if know the probabilities 



What does all this have to do with AI? 
 Logic-based knowledge representation 

o Set of sentences in KB  

o Agent’s belief in any sentence is: true, false, or unknown 

 In real-world problems there is uncertainty 
o P(snow in New York on January 1) is not 0 or 1 or unknown 

o P(pit in square 2,2 | evidence so far) 

o Ignoring this uncertainty can lead to brittle systems and inefficient use of information 

 Uncertainty is due to: 
o Things we did not measure (which is always the case) 

 E.g., in economic forecasting 

o Imperfect knowledge 
 P(symptom | disease) -> we are not 100% sure  

o Noisy measurements 
 P(speed > 50 | sensor reading > 50)  is not 1 

 



Agents, Probabilities & Degrees of Belief 
 What we were taught in school  (“frequentist” view) 

o P(a) represents frequency that event a will happen in repeated trials 
 

 Degree of belief 
o P(a) represents an agent’s degree of belief that event a is true 
o This is a more general view of probability 
 Agent’s probability is based on what information they have 
 E.g., based on data or based on a theory 

 Examples: 
o a = “life exists on another planet” 
 What is P(a)?  We will all assign different probabilities 

o a = “Mitt Romney will be the next US president” 
 What is P(a)? 

 

 Probabilities can vary from agent to agent depending on their models of 
the world and how much data they have 



More on Degrees of Belief 
 Our interpretation of P(a | e) is that it is an agent’s degree of 

belief in the proposition a, given evidence e 
o Note that proposition a is true or false in the real-world 
o P(a|e) reflects the agent’s uncertainty or ignorance 
 

 

 The degree of belief interpretation does not mean that we 
need new or different rules for working with probabilities 
o The same rules (Bayes rule, law of total probability, probabilities 

sum to 1) still apply – our interpretation is different 



Constructing a Propositional Probabilistic Knowledge Base 

 Define all variables of interest: A, B, C, … Z 
 Define a joint probability table for P(A, B, C, … Z) 

o Given this table, we have seen how to compute the answer to a 
query, P(query | evidence),  
 where query and evidence = any propositional sentence 

 2 major problems: 
o Computation time: 

 P(a|b) requires summing out other variables in the model 
 e.g., O(mK-1) with K variables 

o Model specification 
 Joint table has O(mK) entries – where do all the numbers come from? 

o These 2 problems effectively halted the use of probability in AI 
research from the 1960’s up until about 1990 



Bayesian Networks 



A Whodunit 
 You return home from a long day to find that 

your house guest has been murdered. 
o There are two culprits: 

1) The Butler; and 2) The Cook 

o There are three possible weapons: 
1) A knife; 2) A gun; and 3) A candlestick 
 

 Let’s use probabilistic reasoning to find out 
whodunit? 



Representing the problem 
 There are 2 uncertain quantities 

o Culprit = {Butler, Cook} 
o Weapon = {Knife, Pistol, Candlestick} 

What distributions should we use? 
o Butler is an upstanding guy 
o Cook has a checkered past 
o Butler keeps a pistol from his army days 
o Cook has access to many kitchen knives 
o The Butler is much older than the cook 



Representing the problem… 
What distributions should we use? 

o Butler is an upstanding guy 
o Cook has a checkered past 

 

o Butler keeps a pistol from his army days 
o Cook has access to many kitchen knives 
o The Butler is much older than the cook 

Butler Cook 

P(Culprit) 0.3 0.7 

Pistol Knife Candlestick 

P(weapon|Culprit=Butler) 0.7 0.15 0.15 

Pistol Knife Candlestick 

P(weapon|Culprit=Cook) 0.1 0.6 0.3 



Solving the Crime 
 If we observe that the murder weapon was a 

pistol, who is the most likely culprit? 
 

The Butler! 



Your 1st Bayesian Network 
 
 

 Each node represents a random variable 
 Arrows indicate cause-effect relationship 
 Shaded nodes represent observed variables 

 

Whodunit model in “words”: 
o Culprit chooses a weapon; 
o You observe the weapon and infer the culprit 

Culprit Weapon 



Bayesian Networks 
 Represent dependence/independence via a directed graph   

o Nodes = random variables 
o Edges = direct dependence 

 Structure of the graph  Conditional independence relations 
 Recall the chain rule of repeated conditioning: 

 
 

 
 

 Requires that graph is acyclic (no directed cycles) 
 2 components to a Bayesian network 

o The graph structure (conditional independence assumptions) 
o The numerical probabilities (for each variable given its parents) 

 

The full joint distribution The graph-structured approximation 



Example of a simple Bayesian network 
A B 

C 

  

Probability model has simple factored form 

Directed edges =>  direct dependence  

Absence of an edge  => conditional independence 

Also known as belief networks, graphical models, causal networks 

Other formulations, e.g., undirected graphical models 

p(A,B,C) = p(C|A,B)p(A|B)p(B) 
             = p(C|A,B)p(A)p(B) 



Examples of 3-way Bayesian Networks 

A C B Marginal Independence: 
p(A,B,C) = p(A) p(B) p(C) 



Examples of 3-way Bayesian Networks 

A 

C B 

Conditionally independent effects: 
p(A,B,C) = p(B|A)p(C|A)p(A) 
 
B and C are conditionally independent 
Given A 
 
e.g., A is a disease, and we model  
B and C as conditionally independent 
symptoms given A 
 
e.g. A is culprit, B is murder weapon 
and C is fingerprints on door to the  
guest’s room 



Examples of 3-way Bayesian Networks 

A B 

C 

Independent Causes: 
p(A,B,C) = p(C|A,B)p(A)p(B) 
 
 
“Explaining away” effect: 
Given C, observing A makes B less likely 
e.g., earthquake/burglary/alarm example 
 
A and B are (marginally) independent  
but become dependent once C is known 
  



Examples of 3-way Bayesian Networks 

A C B Markov chain dependence: 
p(A,B,C) = p(C|B) p(B|A)p(A) 
 
e.g. If Prof. Lathrop goes to 
party, then I might go to party. 
If I go to party, then my wife  
might go to party. 



Bigger Example 
 Consider the following 5 binary variables: 

o B = a burglary occurs at your house 
o E = an earthquake occurs at your house 
o A = the alarm goes off 
o J  = John calls to report the alarm 
o M = Mary calls to report the alarm 

 

 Sample Query: What is P(B|M, J) ? 
 Using full joint distribution to answer this question requires  

o 25 - 1= 31 parameters 

 Can we use prior domain knowledge to come up with a 
Bayesian network that requires fewer probabilities? 



Constructing a Bayesian Network (1) 
 Order variables in terms of causality (may be a partial order) 
            e.g., {E, B} -> {A} -> {J, M} 

 
 P(J, M, A, E, B) =  P(J, M | A, E, B)   P(A| E, B) P(E, B) 
                                  ≈  P(J, M | A)            P(A| E, B) P(E) P(B) 
                 ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) 

 
 These conditional independence assumptions are reflected in 

the graph structure of the Bayesian network 



The Resulting Bayesian Network 



Constructing this Bayesian Network (2) 
 
 P(J,M,A,E,B) =  
     P(J|A) P(M|A) P(A|E,B) P(E) P(B) 
 
 There are 3 conditional probability  
  tables to be determined: 

o P(J|A),  P(M|A),  P(A|E,B)  
o Requires 2 + 2 + 4 = 8 probabilities 

 And 2 marginal probabilities P(E),P(B)  
 

 10 parameters in Bayesian Network; 31 parameters in joint distribution 
 

 Where do  these probabilities come from? 
o Expert knowledge 
o From data (relative frequency estimates) see Sections 20.1 & 20.2 (optional) 

 



Number of Probabilities in Bayes Nets 
 Consider n binary variables 

 

 Unconstrained joint distribution requires O(2n) probabilities 
 

 If we have a Bayesian network, with a maximum of k parents 
for any node, then we need O(n 2k) probabilities 
 

 Example 
o Full unconstrained joint distribution 

 n = 30:  need 109 probabilities for full joint distribution 

o Bayesian network 
 n = 30, k = 4:  need 480 probabilities 

 



The Bayesian Network from a different Variable Ordering 

{M} -> {J} -> {A} -> {B} -> {E} 

P(J, M, A, E, B) =  
 P(M) P(J|M) P(A|M,J)  P(B|A) P(E|A,B) 



Inference (Reasoning) in Bayes Nets 
Consider answering a query in a Bayesian Network 

Q = set of query variables 

e = evidence (set of instantiated variable-value pairs) 

Inference = computation of conditional distribution P(Q | e) 

 

Examples 
P(burglary | alarm) 

P(earthquake | JohnCalls, MaryCalls) 

 

 

Can we use structure of the Bayesian Network to answer queries efficiently?  
Answer = yes 

Generally speaking, complexity is inversely proportional to sparsity of graph 



Inference by Variable Elimination 
 Say that query is P(B|j,m) 

o P(B|j,m) = P(B,j,m) / P(j,m) = α P(B,j,m) 
 

 Apply evidence to expression for joint distribution 
o P(j,m,A,E,B) = P(j|A)P(m|A)P(A|E,B)P(E)P(B) 

 

 Marginalize out A and E 
 
 

Sum is over states of 
variable A – i.e. {a,¬a} 

Distribution over 
variable B – i.e. 
over states {b,¬b} 



Complexity of Bayes Net Inference 
 Assume the network is a polytree 

o Only a single directed path between any 2 nodes 
 

 Complexity scales as O(n mK+1) 
 n = number of variables 
 m = arity of variables 
 K = maximum number of parents for any node 

 

o Compare to O(mn-1) for brute-force method 

 If network is not a polytree?  
o Can cluster variables to render ‘new’ graph that is a tree 
o Complexity is then O(n mW+1), where W = # variables in largest cluster 

 

D 

B 

C 

E 

A 



Naïve Bayes Model 

X1 X2 X3 

C 

Xn 

                 P(C | X1,…Xn)  =  α  Π  P(Xi | C)  P (C) 
 
Features X are conditionally independent given the class variable C 
 
Widely used in machine learning 
 e.g., spam email classification: X’s = counts of words in emails 
 
Probabilities P(C) and  P(Xi | C) can easily be estimated from labeled data 



Hidden Markov Model (HMM) 
Y1 

S1 

Y2 

S2 

Y3 

S3 

Yn 

Sn 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

Observed 

Hidden 

Two key assumptions: 
 

 1. hidden state sequence is Markov 
 2. observation Yt is Conditionally Independent of all other   
     variables given St 
 
Widely used in speech recognition, protein sequence models 
 

Since this is a Bayesian network polytree, inference is linear in n 



Summary 
 Bayesian networks represent joint distributions using a graph 

 

 The graph encodes a set of conditional independence 
assumptions 
 

 Answering queries (i.e. inference) in a Bayesian network 
amounts to efficient computation of appropriate conditional 
probabilities 
 

 Probabilistic inference is intractable in the general case 
o Can be done in linear time for certain classes of Bayesian networks 
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