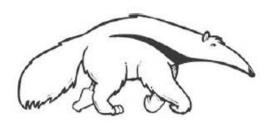
Intro to Artificial Intelligence CS 171

Reasoning Under Uncertainty Chapter 13 and 14.1-14.2

Andrew Gelfand 3/1/2011



Today...

Representing uncertainty is useful in knowledge bases

- Probability provides a coherent framework for uncertainty
- Review basic concepts in probability
 - Emphasis on conditional probability and conditional independence
- Full joint distributions are difficult to work with
 - Conditional independence assumptions allow us to model real-world phenomena with much simpler models
- Bayesian networks are a systematic way to build compact, structured distributions
- Reading: Chapter 13; Chapter 14.1-14.2

History of Probability in Al

- Early AI (1950's and 1960's)
 - Attempts to solve AI problems using probability met with mixed success
- Logical AI (1970's, 80's)
 - Recognized that working with full probability models is intractable
 - Abandoned probabilistic approaches
 - Focused on logic-based representations
- Probabilistic AI (1990's-present)
 - Judea Pearl invents Bayesian networks in 1988
 - Realization that working w/ approximate probability models is tractable and useful
 - Development of machine learning techniques to learn such models from data
 - Probabilistic techniques now widely used in vision, speech recognition, robotics, language modeling, game-playing, etc.

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either

- 1. risks falsehood: " A_{25} will get me there on time", or
- 2. leads to conclusions that are too weak for decision making:
- "A₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440}$ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Handling uncertainty

- Default or nonmonotonic logic:
 - Assume my car does not have a flat tire
 - Assume A_{25} works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
 - $A_{25} / \rightarrow_{0.3}$ get there on time
 - Sprinkler $| \rightarrow _{0.99}$ WetGrass
 - WetGrass $| \rightarrow _{0.7}$ Rain
- Issues: Problems with combination, e.g., *Sprinkler* causes *Rain*??

Probability

- Model agent's degree of belief
- Given the available evidence,
- A_{25} will get me there on time with probability 0.04

Probability

Probabilistic assertions summarize effects of

- o laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

Probabilities relate propositions to agent's own state of knowledge
 e.g., P(A₂₅ | no reported accidents) = 0.06

These are **not** assertions about the world

Probabilities of propositions change with new evidence:

e.g., $P(A_{25} | no reported accidents, 5 a.m.) = 0.15$

Making decisions under uncertainty

Suppose I believe the following:

 $P(A_{25} \text{ gets me there on time } | \dots) = 0.04$

 $P(A_{90} \text{ gets me there on time } | ...) = 0.70$

 $P(A_{120} \text{ gets me there on time } | ...) = 0.95$

 $P(A_{1440} \text{ gets me there on time } | ...) = 0.9999$

Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.

- Utility theory is used to represent and infer preferences
- **Decision theory = probability theory + utility theory**

Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
 - e.g., Cavity (do I have a cavity?)
- Discrete random variables
 - e.g., *Dice* is one of <1,2,3,4,5,6>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable:

e.g., Weather = sunny, Cavity = false (abbreviated as ¬cavity)

Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny \(\nabla Cavity = false\)

Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
 - e.g. Imagine flipping two coins
 - The set of all possible worlds is:
 S={(H,H),(H,T),(T,H),(T,T)}
 - Meaning there are 4 distinct atomic events in this world
- Atomic events are mutually exclusive and exhaustive

Axioms of probability

Given a set of possible worlds *S*

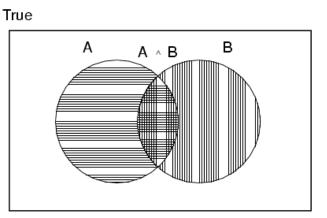
- $P(A) \ge 0$ for all atomic events A
- \circ P(S) = 1
- If A and B are mutually exclusive, then: $P(A \lor B) = P(A) + P(B)$
- Refer to P(A) as probability of event A
 - e.g. if coins are fair $P({H,H}) = \frac{1}{4}$

Probability and Logic

- Probability can be viewed as a generalization of propositional logic
- **D** P(*a*):
 - *a* is any sentence in propositional logic
 - Belief of agent in *a* is no longer restricted to *true, false, unknown*
 - P(a) can range from 0 to 1
 - P(a) = 0, and P(a) = 1 are special cases
 - So logic can be viewed as a special case of probability

Basic Probability Theory

- General case for *A*, *B*:
 - $\mathsf{P}(A \lor B) = \mathsf{P}(A) + \mathsf{P}(B) \mathsf{P}(A \land B)$



e.g., imagine I flip two coins

- Events {(H,H),(H,T),(T,H),(T,T)} are all equally likely
- Consider event E that the 1st coin is heads: E={(H,H),(H,T)}
- And event F that the 2nd coin is heads: F={(H,H),(T,H)}
- $P(E \lor F) = P(E) + P(F) P(E \land F) = \frac{1}{2} + \frac{1}{2} \frac{1}{4} = \frac{3}{4}$

Conditional Probability

- The 2 dice problem
 - Suppose I roll two fair dice and 1st dice is a 4
 - What is probability that sum of the two dice is 6?
 - 6 possible events, given 1st dice is 4
 (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
 - Since all events (originally) had same probability, these 6 events should have equal probability too
 - Probability is thus 1/6

Conditional Probability

- Let A denote event that sum of dice is 6
- Let B denote event that 1st dice is 4
- Conditional Probability denoted as: P(A|B)
 - Probability of event *A* given event *B*
- General formula given by: $P(A|B) = \frac{P(A \land B)}{P(B)}$
 - Probability of $A \wedge B$ relative to probability of B
- What is P(sum of dice = $3 \mid 1^{st}$ dice is 4)?
 - Let C denote event that sum of dice is 3
 - P(B) is same, but $P(C \land B) = 0$

Random Variables

- Often interested in some function of events, rather than the actual event
 - Care that sum of two dice is 4, not that the event was (1,3), (2,2) or (3,1)
- Random Variable is a real-valued function on space of all possible worlds
 - e.g. let Y = Number of heads in 2 coin flips
 - P(Y=0) = P({T,T}) = ¼
 - $P(Y=1) = P({H,T} \vee {T,H}) = \frac{1}{2}$

Prior (Unconditional) Probability

Probability distribution gives values for all possible assignments:

	Sunny	Rainy	Cloudy	Snowy
P(Weather)	0.7	0.1	0.19	0.01

Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables

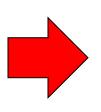
P(Weather,Cavity)	Sunny	Rainy	Cloudy	Snowy
Cavity	0.144	0.02	0.016	0.006
–Cavity	0.556	0.08	0.174	0.004

- $\Box \quad P(A,B) \text{ is shorthand for } P(A \land B)$
- Joint distributions are normalized: $\Sigma_a \Sigma_b P(A=a, B=b) = 1$

UNIVERSITY of CALIFORNIA O IRVINE

Computing Probabilities

Say we are given following joint distribution:



Joint distribution for k binary variables has 2^k probabilities!

	toot	thache	⊐ toothache		
	$catch \neg catch c$		catch	¬ catch	
cavity	.108	.012	.072	.008	
⊐ cavity	.016	.064	.144	.576	

Computing Probabilities

Say we are given following joint distribution: What is P(cavity)?

$$\begin{split} P(cavity) &= P(cavity, catch, toothache) + \\ P(cavity, \neg catch, toothache) + \\ P(cavity, catch, \neg toothache) + \\ P(cavity, \neg catch, \neg toothache) + \\ = .108 + .012 + .072 + .008 = .2 \end{split}$$

	toot	thache	⊐ toothache		
	$catch \neg catch$		catch	¬ catch	
cavity	.108	.012	.072	.008	
⊐ cavity	.016	.064	.144	.576	

Law of Total Probability (aka marginalization)

$$P(a) = \Sigma_b P(a, b)$$
$$= \Sigma_b P(a \mid b) P(b)$$

Computing Probabilities

What is P(cavity|toothache)?

 $P(cavity|toothache) = \frac{P(cavity,toothache)}{P(toothache)}$

$$P(cavity, toothache) = P(cavity, catch, toothache) + P(cavity, \neg catch, toothache) = .108 + .012 = 0.12$$

	toot	thache	⊐ toothache		
	catch	¬ catch	catch	¬ catch	
cavity	.108	.012	.072	.008	
⊐ cavity	.016	.064	.144	.576	

 $P(toothache) = P(cavity, toothache) + P(\neg cavity, toothache)$ = 0.12 + (0.016 + 0.064) = 0.2

$$P(cavity|toothache) = \frac{P(cavity,toothache)}{P(toothache)} = \frac{0.12}{0.2} = 0.6$$

Can get <u>any conditional probability</u> from joint distribution

UNIVERSITY of CALIFORNIA () IRVINE

Computing Probabilities: Normalization

What is P(Cavity|Toothache=toothache)?

This is a distribution over the 2 states: {cavity,¬cavity}

	toot	thache	⊐ toothache		
	$catch \neg catch d$		catch	\neg catch	
cavity	.108	.012	.072	.008	
\neg cavity	.016	.064	.144	.576	

 $P(Cavity|Toothache = toothache) = \alpha P(Cavity, Toothache = toothache)$

Distributions will be denoted w/ capital letters; Probabilities will be denoted w/ lowercase letters.

P(Cavity toothache)	
Cavity = cavity	0.6
Cavity = ¬cavity	0.4

Computing Probabilities: The Chain Rule

U We can always write

P(a, b, c, ... z) = P(a | b, c, z) P(b, c, ... z) (by definition of joint probability)

- Repeatedly applying this idea, we can write
 P(a, b, c, ... z) = P(a | b, c, z) P(b | c,.. z) P(c| .. z)..P(z)
- Semantically different factorizations w/ different orderings
 P(a, b, c, ... z) = P(z | y, x, a) P(y | x,.. a) P(x| .. a)..P(a)

Independence

A and B are independent iff
 P(A | B) = P(A)
 or equivalently, P(B | A) = P(B)
 or equivalently, P(A,B) = P(A) P(B)

"Whether B happens, does not affect how often A happens"

- \square e.g., for *n* independent biased coins, $O(2^n) \rightarrow O(n)$
- Absolute independence is powerful but rare
- e.g., consider field of dentistry. Many variables, none of which are independent. What should we do?

Conditional independence

- **P**(*Toothache, Cavity, Catch*) has $2^3 1 = 7$ independent entries
- If I have a cavity, the probability that the probe catches doesn't depend on whether I have a toothache:
 (1) P(Catch | Toothache, cavity) = P(Catch | cavity)
- The same independence holds if I haven't got a cavity:
 (2) P(Catch | Toothache, ¬cavity) = P(Catch | ¬cavity)
- Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache,Cavity) = P(Catch | Cavity)
- Equivalent statements:
 P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

Conditional independence...

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

- = P(Toothache | Catch, Cavity) P(Catch, Cavity)
- = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
- = **P**(*Toothache* | *Cavity*) **P**(*Catch* | *Cavity*) **P**(Cavity)

P(Toothache Cavity)	toothache	-toothache	P(Catch Cavity)	catch	−catch	P(Cavity)	
Cavity = cavity	0.8	0.2	Cavity = cavity	0.7	0.3	Cavity = cavity	0.55
Cavity = ¬cavity	0.4	0.6	Cavity = ¬cavity	0.5	0.5	Cavity = ¬cavity	0.45

P(toothache,catch,¬cavity) = ??

 $= 0.4 \cdot 0.5 \cdot 0.45 = 0.09$

UNIVERSITY of CALIFORNIA () IRVINE

Conditional independence...

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

- = P(Toothache | Catch, Cavity) P(Catch, Cavity)
- = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
- = **P**(*Toothache* | *Cavity*) **P**(*Catch* | *Cavity*) **P**(Cavity)

P(Toothache Cavity)	toothache	−toothache	P(Catch Cavity)	catch	−catch		P(Cavity)	
Cavity = cavity	0.8	0.2	Cavity = cavity	0.7	0.3		Cavity = cavity	0.55
Cavity = ¬cavity	0.4	0.6	Cavity = ¬cavity	0.5	0.5]	Cavity = ¬cavity	0.45

Requires only 2 + 2 + 1 = 5 parameters!

Use of conditional independence can reduce size of representation of the joint distribution from exponential in *n* to linear in *n*.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Conditional Independence vs Independence

- Conditional independence does not imply independence
- Example:
 - A = height
 - B = reading ability
 - C = age
 - P(reading ability | age, height) = P(reading ability | age)
 - P(height | reading ability, age) = P(height | age)
- Note:
 - Height and reading ability are dependent (not independent) but are conditionally independent given age

Bayes' Rule

🗋 Two jug problem

- Jug 1 contains: 2 white balls & 7 black balls
- Jug 2 contains: 5 white balls & 6 black balls
- Flip a fair coin and draw a ball from Jug 1 if heads; Jug 2 if tails
- What is probability that coin was heads, given a white ball was selected?
 - Want to compute P(H|W)
 - Have $P(H) = P(T) = \frac{1}{2}$, $P(W|H) = \frac{2}{9}$ and $P(W|T) = \frac{5}{11}$

$$P(H|W) = \frac{P(H,W)}{P(W)} = \frac{P(W|H)P(H)}{P(W)} = \frac{P(W|H)P(H)}{P(W,H) + P(W,T)}$$
$$= \frac{P(W|H)P(H)}{P(W|H)P(H) + P(W|T)P(T)} = \frac{\frac{2}{9} \cdot \frac{1}{2}}{\frac{2}{9} \cdot \frac{1}{2} + \frac{5}{11} \cdot \frac{1}{2}} = \frac{22}{67} \approx 0.328$$

Bayes' Rule...

- Derived from product rule: $P(a \land b) = P(a|b) P(b) = P(b|a) P(a)$
 - \Rightarrow P(a | b) = P(b | a) P(a) / P(b)
- or in distribution form $P(Y|X) = P(X|Y) P(Y) / P(X) = \alpha P(X|Y) P(Y) = \alpha P(X,Y)$
- Useful for assessing diagnostic probability from causal probability:
 - $\circ \quad P(Cause | Effect) = \frac{P(Effect | Cause)}{P(Effect)} \frac{P(Cause)}{P(Effect)}$
 - e.g., let *M* be meningitis, *S* be stiff neck:

 $P(m|s) = P(s|m) P(m) / P(s) = 0.8 \times 0.0001 / 0.1 = 0.0008$

• Note: posterior probability of meningitis still very small!

Bayes' Rule...

Both are examples of basic pattern p(x|y) = p(y|x)p(x)/p(y)(it helps to group variables together, e.g., y = (a,b), x = (c, d))

Decision Theory – why probabilities are useful

- Consider 2 possible actions that can be recommended by a medical decision-making system:
 - a = operate
 - o b = don't operate
- 2 possible states of the world
 - \circ c = patient has cancer, \neg c = patient doesn't have cancer
- Agent's degree of belief in c is P(c), so $P(\neg c) = 1 P(c)$
- Utility (to agent) associated with various outcomes:
 - Take action a and patient has cancer: utility = \$30k
 - Take action a and patient has no cancer: utility = -\$50k
 - Take action b and patient has cancer: utility = -\$100k
 - Take action b and patient has no cancer: utility = 0.

Maximizing expected utility

- □ What action should the agent take?
 - Rational agent should maximize expected utility
- Expected cost of actions:

E[utility(a)] = 30 P(c) - 50 [1 - P(c)]

E[utility(b)] = -100 P(c)

Break even point? 30 P(c) - 50 + 50 P(c) = -100 P(c)

100 P(c) + 30 P(c) + 50 P(c) = 50

=> P(c) = 50/180 ~ 0.28

If P(c) > 0.28, the optimal decision is to operate

- Original theory from economics, cognitive science (1950's)
 - But widely used in modern AI, e.g., in robotics, vision, game-playing
 - Can only make optimal decisions if know the probabilities

What does all this have to do with AI?

- Logic-based knowledge representation
 - Set of sentences in KB
 - Agent's belief in any sentence is: true, false, or unknown
- In real-world problems there is uncertainty
 - P(snow in New York on January 1) is not 0 or 1 or unknown
 - P(pit in square 2,2 | evidence so far)
 - Ignoring this uncertainty can lead to brittle systems and inefficient use of information
- Uncertainty is due to:
 - Things we did not measure (which is always the case)
 - E.g., in economic forecasting
 - Imperfect knowledge
 - P(symptom | disease) -> we are not 100% sure
 - Noisy measurements
 - P(speed > 50 | sensor reading > 50) is not 1

Agents, Probabilities & Degrees of Belief

UNIVERSITY of CALIFORNIA

IRVINE

- What we were taught in school ("frequentist" view)
 - P(a) represents frequency that event a will happen in repeated trials
- Degree of belief
 - \circ P(a) represents an agent's degree of belief that event a is true
 - This is a more general view of probability
 - Agent's probability is based on what information they have
 - E.g., based on data or based on a theory
- Examples:
 - a = "life exists on another planet"
 - What is P(a)? We will all assign different probabilities
 - a = "Mitt Romney will be the next US president"
 - What is P(a)?
- Probabilities can vary from agent to agent depending on their models of the world and how much data they have

More on Degrees of Belief

- Our interpretation of P(a | e) is that it is an agent's degree of belief in the proposition a, given evidence e
 - Note that proposition a is true or false in the real-world
 - P(a|e) reflects the agent's uncertainty or ignorance
- The degree of belief interpretation does not mean that we need new or different rules for working with probabilities
 - The same rules (Bayes rule, law of total probability, probabilities sum to 1) still apply – our interpretation is different

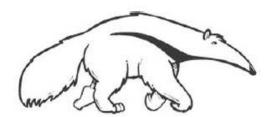
Constructing a Propositional Probabilistic Knowledge Base

- Define all variables of interest: A, B, C, ... Z
- Define a joint probability table for P(A, B, C, ... Z)
 - Given this table, we have seen how to compute the answer to a query, P(query | evidence),

where query and evidence = any propositional sentence

- **2** major problems:
 - Computation time:
 - P(a|b) requires summing out other variables in the model
 - e.g., O(m^{K-1}) with K variables
 - Model specification
 - Joint table has O(m^k) entries where do all the numbers come from?
 - These 2 problems effectively halted the use of probability in AI research from the 1960's up until about 1990

Bayesian Networks



A Whodunit

- You return home from a long day to find that your house guest has been murdered.
 - There are two culprits:
 - 1) The Butler; and 2) The Cook
 - There are three possible weapons:
 1) A knife; 2) A gun; and 3) A candlestick
- Let's use probabilistic reasoning to find out whodunit?

Representing the problem

There are 2 uncertain quantities

- O Culprit = {Butler, Cook}
- Weapon = {Knife, Pistol, Candlestick}

What distributions should we use?

- Butler is an upstanding guy
- Cook has a checkered past
- Butler keeps a pistol from his army days
- Cook has access to many kitchen knives
- The Butler is much older than the cook

UNIVERSITY of CALIFORNIA O IRVINE

Representing the problem...

What distributions should we use?

- Butler is an upstanding guy
- Cook has a checkered past

	Butler	Cook
P(Culprit)	0.3	0.7

- Butler keeps a pistol from his army days
- Cook has access to many kitchen knives
- The Butler is much older than the cook

	Pistol	Knife	Candlestick
P(weapon Culprit=Butler)	0.7	0.15	0.15
	Pistol	Knife	Candlestick

Solving the Crime

If we observe that the murder weapon was a pistol, who is the most likely culprit?

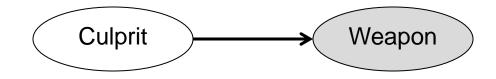
 $P(culprit = Butler | weapon = Pistol) = \frac{P(culprit = Butler, weapon = Pistol)}{P(weapon = Pistol)}$

 $P(Butler, Pistol) = P(Pistol|Butler) \cdot P(Butler) = 0.7 \cdot 0.3$

$$\begin{split} P(Pistol) &= P(Pistol|Butler) \cdot P(Butler) + P(Pistol|Cook) \cdot P(Cook) \\ P(Pistol) &= 0.7 \cdot 0.3 + 0.2 \cdot 0.7 \end{split}$$

$$P(culprit = Butler | weapon = Pistol) = \frac{0.21}{0.21+0.14} = 0.6$$
 The Butler!

Your 1st Bayesian Network



- Each node represents a random variable
- Arrows indicate cause-effect relationship
- Shaded nodes represent observed variables
- U Whodunit model in "words":
 - Culprit chooses a weapon;
 - You observe the weapon and infer the culprit

Bayesian Networks

- Represent dependence/independence via a directed graph
 - Nodes = random variables
 - Edges = direct dependence
- Structure of the graph <> Conditional independence relations
- Recall the chain rule of repeated conditioning:

 $P(X_1, X_2, X_3, ..., X_N) = P(X_1 | X_2, X_3, ..., X_N) P(X_2 | X_3, ..., X_N) \cdots P(X_N)$

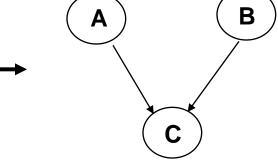
$$P(X_1, X_2, X_3, \dots, X_N) = \prod_{i=1}^n P(X_i | parents(X_i))$$

The full joint distribution The graph-structured approximation

- Requires that graph is acyclic (no directed cycles)
- 2 components to a Bayesian network
 - The graph structure (conditional independence assumptions)
 - The numerical probabilities (for each variable given its parents)

Example of a simple Bayesian network

p(A,B,C) = p(C|A,B)p(A|B)p(B)= p(C|A,B)p(A)p(B)



UNIVERSITY of CALIFORNIA () IRVINE

Probability model has simple factored form

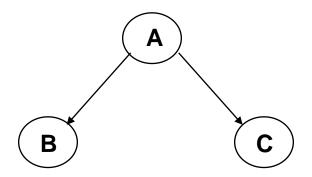
Directed edges => direct dependence

Absence of an edge => conditional independence

Also known as belief networks, graphical models, causal networks

Other formulations, e.g., undirected graphical models

Marginal Independence: p(A,B,C) = p(A) p(B) p(C)

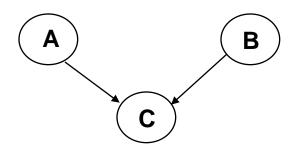


Conditionally independent effects: p(A,B,C) = p(B|A)p(C|A)p(A)

B and C are conditionally independent Given A

e.g., A is a disease, and we model B and C as conditionally independent symptoms given A

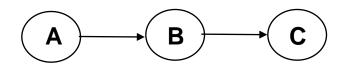
e.g. A is culprit, B is murder weapon and C is fingerprints on door to the guest's room



Independent Causes: p(A,B,C) = p(C|A,B)p(A)p(B)

"Explaining away" effect: Given C, observing A makes B less likely e.g., earthquake/burglary/alarm example

A and B are (marginally) independent but become dependent once C is known



Markov chain dependence: p(A,B,C) = p(C|B) p(B|A)p(A)

e.g. If Prof. Lathrop goes to party, then I might go to party. If I go to party, then my wife might go to party.

Bigger Example

Consider the following 5 binary variables:

- B = a burglary occurs at your house
- E = an earthquake occurs at your house
- A = the alarm goes off
- J = John calls to report the alarm
- M = Mary calls to report the alarm
- □ Sample Query: What is P(B|M, J)?
- Using full joint distribution to answer this question requires
 - \circ 2⁵ 1= 31 parameters

Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

Constructing a Bayesian Network (1)

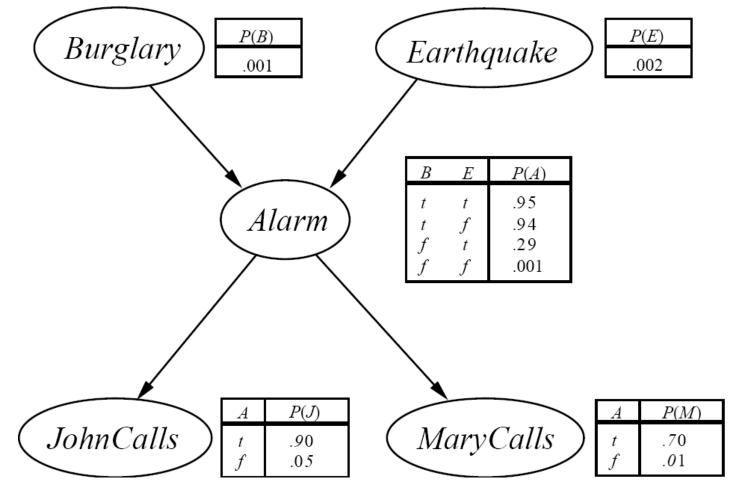
Order variables in terms of causality (may be a partial order) e.g., {E, B} -> {A} -> {J, M}

□ P(J, M, A, E, B) = P(J, M | A, E, B) P(A | E, B) P(E, B) \approx P(J, M | A) P(A | E, B) P(E) P(B) \approx P(J | A) P(M | A) P(A | E, B) P(E) P(B)

These conditional independence assumptions are reflected in the graph structure of the Bayesian network

UNIVERSITY of CALIFORNIA O IRVINE

The Resulting Bayesian Network



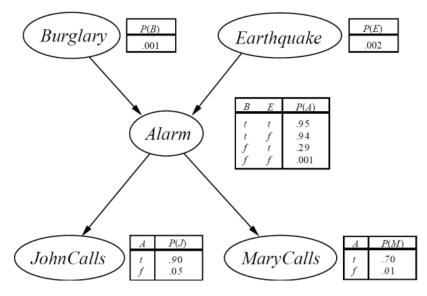
and the second

Constructing this Bayesian Network (2)

- $\square P(J,M,A,E,B) = P(J|A) P(M|A) P(A|E,B) P(E) P(B)$
- There are 3 conditional probability tables to be determined:
 - \circ P(J|A), P(M|A), P(A|E,B)
 - Requires 2 + 2 + 4 = 8 probabilities
 - And 2 marginal probabilities P(E),P(B)

10 parameters in Bayesian Network; 31 parameters in joint distribution

- Where do these probabilities come from?
 - Expert knowledge
 - From data (relative frequency estimates) see Sections 20.1 & 20.2 (optional)



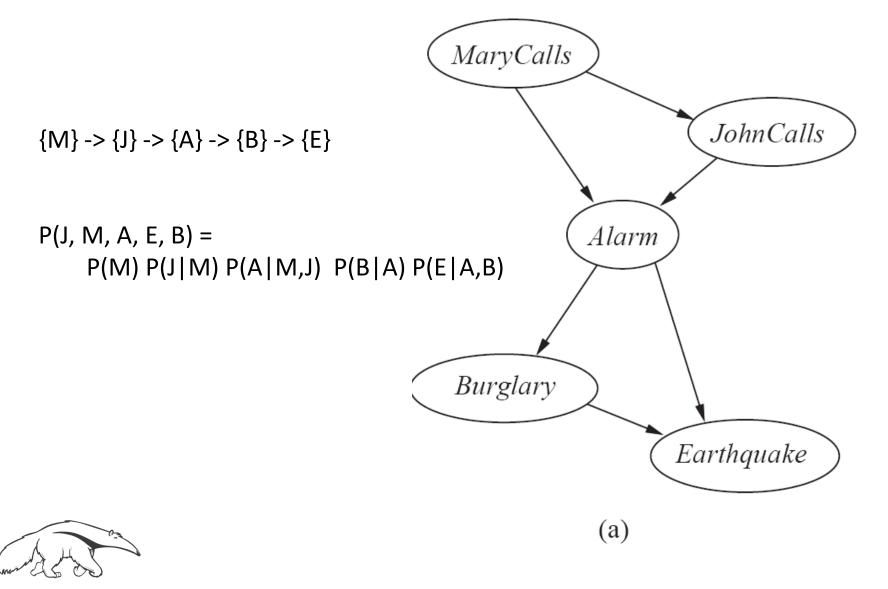
Number of Probabilities in Bayes Nets

- Consider *n* binary variables
- Unconstrained joint distribution requires O(2ⁿ) probabilities
- If we have a Bayesian network, with a maximum of k parents for any node, then we need O(n 2^k) probabilities

Example

- Full unconstrained joint distribution
 - n = 30: need 10⁹ probabilities for full joint distribution
- Bayesian network
 - n = 30, k = 4: need 480 probabilities

The Bayesian Network from a different Variable Ordering



UNIVERSITY of CALIFORNIA () IRVINE

Inference (Reasoning) in Bayes Nets

Consider answering a query in a Bayesian Network

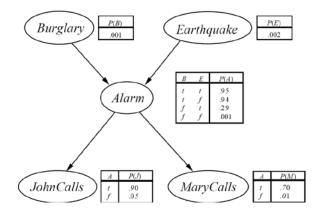
Q = set of query variables

e = evidence (set of instantiated variable-value pairs)

Inference = computation of conditional distribution P(Q | e)

Examples

P(burglary | alarm) P(earthquake | JohnCalls, MaryCalls)



Can we use structure of the Bayesian Network to answer queries efficiently? Answer = yes

Generally speaking, complexity is inversely proportional to sparsity of graph

Inference by Variable Elimination

Say that query is P(B|j,m)

 $\circ P(B|j,m) = P(B,j,m) / P(j,m) = \alpha P(B,j,m)$

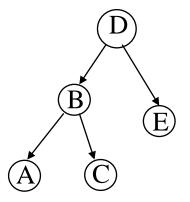
Apply evidence to expression for joint distribution
 P(j,m,A,E,B) = P(j|A)P(m|A)P(A|E,B)P(E)P(B)

Marginalize out A and E

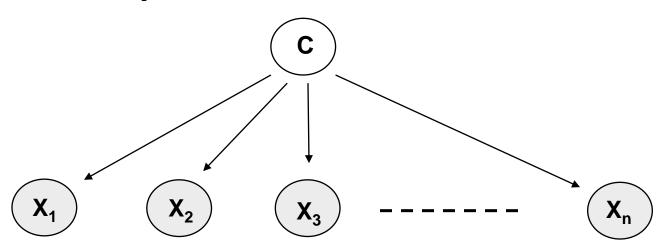
 $\begin{array}{c} P(B|j,m) = \alpha \sum_{a} \sum_{e} p(j|a)p(m|a)p(a|e,B)P(e)P(B) \\ = \alpha P(B) \sum_{e} P(e) \sum_{a} p(j|a)p(m|a)p(a|e,B) \\ \hline \\ \text{Distribution over} \\ \text{variable B - i.e.} \\ \text{over states } \{b,\neg b\} \\ \end{array}$

Complexity of Bayes Net Inference

- Assume the network is a polytree
 - Only a single directed path between any 2 nodes
- \Box Complexity scales as O(n m^{K+1})
 - n = number of variables
 - m = arity of variables
 - K = maximum number of parents for any node
 - Compare to O(mⁿ⁻¹) for brute-force method
- If network is not a polytree?
 - $\,\circ\,$ Can cluster variables to render 'new' graph that is a tree
 - \circ Complexity is then O(n m^{W+1}), where W = # variables in largest cluster



Naïve Bayes Model



 $\mathsf{P}(\mathsf{C} \mid \mathsf{X}_1, \dots, \mathsf{X}_n) = \alpha \Pi \mathsf{P}(\mathsf{X}_i \mid \mathsf{C}) \mathsf{P}(\mathsf{C})$

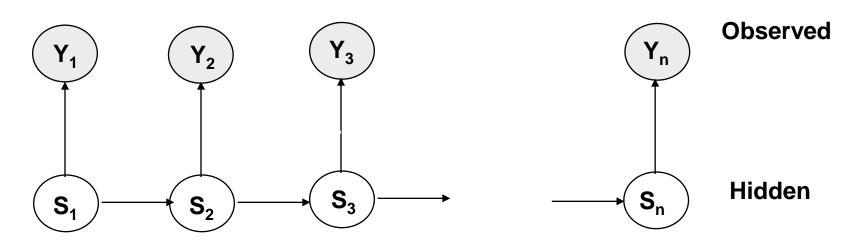
Features X are conditionally independent given the class variable C

Widely used in machine learning e.g., spam email classification: X's = counts of words in emails

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

UNIVERSITY of CALIFORNIA () IRVINE

Hidden Markov Model (HMM)



Two key assumptions:

- 1. hidden state sequence is Markov
- 2. observation \mathbf{Y}_t is Conditionally Independent of all other variables given \mathbf{S}_t

Widely used in speech recognition, protein sequence models Since this is a Bayesian network polytree, inference is linear in n

Summary

- Bayesian networks represent joint distributions using a graph
- The graph encodes a set of conditional independence assumptions
- Answering queries (i.e. inference) in a Bayesian network amounts to efficient computation of appropriate conditional probabilities
- Probabilistic inference is intractable in the general case
 - Can be done in linear time for certain classes of Bayesian networks

