
Knowledge Representation using First-Order Logic
(Part III)

This lecture: R&N Chapters 8, 9

Next lecture: Chapter 13; Chapter 14.1-14.2

(Please read lecture topic material before and after
each lecture on that topic)

Outline

• Review: KB |= S is equivalent to |= (KB ⇒ S)
– So what does {} |= S mean?

• Review: Follows, Entails, Derives
– Follows: “Is it the case?”
– Entails: “Is it true?”
– Derives: “Is it provable?”

• Review: FOL syntax

• Finish FOL Semantics, FOL examples

• Inference in FOL

Using FOL

• We want to TELL things to the KB, e.g.
 TELL(KB,)
 TELL(KB, King(John))

 These sentences are assertions

• We also want to ASK things to the KB,
 ASK(KB,)

 these are queries or goals

 The KB should return the list of x’s for which Person(x) is true:

{x/John,x/Richard,...}

, () ()x King x Person x∀ ⇒

, ()x Person x∃

FOL Version of Wumpus World

• Typical percept sentence:
Percept([Stench,Breeze,Glitter,None,None],5)

• Actions:
Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb

• To determine best action, construct query:
 ∀ a BestAction(a,5)

• ASK solves this and returns {a/Grab}
– And TELL about the action.

Knowledge Base for Wumpus World

• Perception
– ∀s,b,g,x,y,t Percept([s,Breeze,g,x,y],t) ⇒ Breeze(t)
– ∀s,b,x,y,t Percept([s,b,Glitter,x,y],t) ⇒ Glitter(t)

• Reflex action

– ∀t Glitter(t) ⇒ BestAction(Grab,t)

• Reflex action with internal state
– ∀t Glitter(t) ∧¬Holding(Gold,t) ⇒ BestAction(Grab,t)

Holding(Gold,t) can not be observed: keep track of change.

Deducing hidden properties

Environment definition:
∀x,y,a,b Adjacent([x,y],[a,b]) ⇔
 [a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}

Properties of locations:
 ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s)

Squares are breezy near a pit:
– Diagnostic rule---infer cause from effect

∀s Breezy(s) ⇔ ∃ r Adjacent(r,s) ∧ Pit(r)

– Causal rule---infer effect from cause (model based reasoning)
∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)]

Set Theory in First-Order Logic

Can we define set theory using FOL?
 - individual sets, union, intersection, etc

Answer is yes.

Basics:
 - empty set = constant = { }

 - unary predicate Set(), true for sets

 - binary predicates:
 x ∈ s (true if x is a member of the set s)
 s1 ⊆ s2 (true if s1 is a subset of s2)

 - binary functions:
 intersection s1 ∩ s2, union s1 ∪ s2 , adjoining {x|s}

A Possible Set of FOL Axioms for Set Theory

The only sets are the empty set and sets made by adjoining an
element to a set

 ∀s Set(s) ⇔ (s = {}) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2})

The empty set has no elements adjoined to it
 ¬∃x,s {x|s} = {}

Adjoining an element already in the set has no effect
 ∀x,s x ∈ s ⇔ s = {x|s}

 The only elements of a set are those that were adjoined into it.

Expressed recursively:
 ∀x,s x ∈ s ⇔ [∃y,s2 (s = {y|s2} ∧ (x = y ∨ x ∈ s2))]

A Possible Set of FOL Axioms for Set Theory

A set is a subset of another set iff all the first set’s members are
members of the 2nd set

 ∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2)

Two sets are equal iff each is a subset of the other
 ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1)

An object is in the intersection of 2 sets only if a member of both
 ∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2)

An object is in the union of 2 sets only if a member of either
 ∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2)

Knowledge engineering in FOL

1. Identify the task

2. Assemble the relevant knowledge

3. Decide on a vocabulary of predicates, functions, and constants

4. Encode general knowledge about the domain

5. Encode a description of the specific problem instance

6. Pose queries to the inference procedure and get answers

7. Debug the knowledge base

The electronic circuits domain

One-bit full adder

Possible queries:
 - does the circuit function properly?
 - what gates are connected to the first input terminal?
 - what would happen if one of the gates is broken?
 and so on

The electronic circuits domain

1. Identify the task
– Does the circuit actually add properly?

2. Assemble the relevant knowledge

– Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
–
– Irrelevant: size, shape, color, cost of gates
–

3. Decide on a vocabulary

– Alternatives:
–

Type(X1) = XOR (function)
Type(X1, XOR) (binary predicate)
XOR(X1)
 (unary predicate)

The electronic circuits domain

4. Encode general knowledge of the domain
– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)

– ∀t Signal(t) = 1 ∨ Signal(t) = 0

– 1 ≠ 0

– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)

– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1

– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0

– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠

Signal(In(2,g))

– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))

The electronic circuits domain

5. Encode the specific problem instance
Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

The electronic circuits domain

6. Pose queries to the inference procedure
What are the possible sets of values of all the terminals for the adder

circuit?

 ∃i1,i2,i3,o1,o2 Signal(In(1,C_1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1))
= i3 ∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2

7. Debug the knowledge base
May have omitted assertions like 1 ≠ 0

Syntactic Ambiguity

• FOPC provides many ways to represent the same thing.
• E.g., “Ball-5 is red.”

– HasColor(Ball-5, Red)
• Ball-5 and Red are objects related by HasColor.

– Red(Ball-5)
• Red is a unary predicate applied to the Ball-5 object.

– HasProperty(Ball-5, Color, Red)
• Ball-5, Color, and Red are objects related by HasProperty.

– ColorOf(Ball-5) = Red
• Ball-5 and Red are objects, and ColorOf() is a function.

– HasColor(Ball-5(), Red())
• Ball-5() and Red() are functions of zero arguments that both

return an object, which objects are related by HasColor.
– …

• This can GREATLY confuse a pattern-matching reasoner.
– Especially if multiple people collaborate to build the KB, and they

all have different representational conventions.

Summary

• First-order logic:
– Much more expressive than propositional logic
– Allows objects and relations as semantic primitives
– Universal and existential quantifiers
– syntax: constants, functions, predicates, equality, quantifiers
–

• Knowledge engineering using FOL
– Capturing domain knowledge in logical form

• Inference and reasoning in FOL
– Next lecture

• Required Reading:
– All of Chapter 8
– Next lecture: Chapter 9

	Knowledge Representation using First-Order Logic�(Part III)
	Outline
	Using FOL
	FOL Version of Wumpus World
	Knowledge Base for Wumpus World
	Deducing hidden properties
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Set Theory in First-Order Logic
	A Possible Set of FOL Axioms for Set Theory
	A Possible Set of FOL Axioms for Set Theory
	Knowledge engineering in FOL
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	Syntactic Ambiguity
	Summary

