
Knowledge Representation using First-Order Logic 
(Part III) 

This lecture: R&N Chapters 8, 9 
 

Next lecture: Chapter 13; Chapter 14.1-14.2 
 

(Please read lecture topic material before and after 
each lecture on that topic) 

 



Outline 

• Review:  KB |= S  is equivalent to  |= (KB ⇒ S) 
– So what does {} |= S  mean? 

• Review:  Follows, Entails, Derives 
– Follows:  “Is it the case?” 
– Entails: “Is it true?” 
– Derives: “Is it provable?” 

• Review:  FOL syntax 
 

• Finish FOL Semantics, FOL examples 
 

• Inference in FOL 
 



Using FOL 

• We want to TELL things to the KB, e.g. 
    TELL(KB,                                         ) 
    TELL(KB, King(John) ) 
 
    These sentences are assertions 

 
 

• We also want to ASK things to the KB, 
   ASK(KB,                   )  
 
     these are queries or goals 
 
 The KB should return the list of x’s for which Person(x) is true: 

{x/John,x/Richard,...} 

 

, ( ) ( )x King x Person x∀ ⇒

, ( )x Person x∃



FOL Version of Wumpus World 

• Typical percept sentence: 
Percept([Stench,Breeze,Glitter,None,None],5) 
 

• Actions: 
Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb 
 

• To determine best action, construct query: 
 ∀ a BestAction(a,5) 
 

• ASK solves this and returns {a/Grab} 
– And TELL about the action. 

 



Knowledge Base for Wumpus World 

• Perception 
– ∀s,b,g,x,y,t Percept([s,Breeze,g,x,y],t) ⇒ Breeze(t)  
– ∀s,b,x,y,t Percept([s,b,Glitter,x,y],t) ⇒ Glitter(t) 

 
• Reflex action 

– ∀t Glitter(t) ⇒ BestAction(Grab,t) 
 

• Reflex action with internal state 
– ∀t Glitter(t) ∧¬Holding(Gold,t) ⇒ BestAction(Grab,t) 
 
Holding(Gold,t) can not be observed: keep track of change. 



Deducing hidden properties 

Environment definition: 
∀x,y,a,b Adjacent([x,y],[a,b]) ⇔  
 [a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}  
 
Properties of locations: 
 ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s) 
 
 

Squares are breezy near a pit: 
– Diagnostic rule---infer cause from effect 

∀s Breezy(s) ⇔ ∃ r Adjacent(r,s) ∧ Pit(r) 
 

– Causal rule---infer effect from cause (model based reasoning) 
∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)] 

 









Set Theory in First-Order Logic 

Can we define set theory using FOL? 
      - individual sets, union, intersection, etc 
 
 
Answer is yes. 
 
Basics: 
  - empty set = constant = { } 
 
  - unary predicate Set( ), true for sets 
 
  - binary predicates: 
        x ∈  s    (true if x is a member of the set s) 
     s1 ⊆ s2    (true if s1 is a subset of s2) 
 
 - binary functions: 
       intersection s1 ∩ s2, union s1 ∪ s2 ,  adjoining {x|s} 
 



A Possible Set of FOL Axioms for Set Theory   

The only sets are the empty set and sets made by adjoining an 
element to a set 

   ∀s Set(s) ⇔ (s = {} ) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2}) 
 
The empty set has no elements adjoined to it 
      ¬∃x,s {x|s} = {} 
 
Adjoining an element already in the set has no effect 
          ∀x,s x ∈ s ⇔ s = {x|s} 
 
 The only elements of a set are those that were adjoined into it. 

Expressed recursively: 
   ∀x,s    x ∈ s ⇔ [ ∃y,s2  (s = {y|s2} ∧ (x = y ∨ x ∈ s2))] 
 



A Possible Set of FOL Axioms for Set Theory   

A set is a subset of another set iff all the first set’s members are 
members of the 2nd set 

     ∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2) 
 
Two sets are equal iff each is a subset of the other 
 ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1) 
 
An object is in the intersection of 2 sets only if a member of both 
 ∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2) 
 
An object is in the union of 2 sets only if a member of either 
 ∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2) 



Knowledge engineering in FOL 

1. Identify the task 
 

2. Assemble the relevant knowledge 
 

3. Decide on a vocabulary of predicates, functions, and constants 
 

4. Encode general knowledge about the domain 
 

5. Encode a description of the specific problem instance 
 

6. Pose queries to the inference procedure and get answers 
 

7. Debug the knowledge base 



The electronic circuits domain 

One-bit full adder 
 
 
 
 
 
 
 
 
Possible queries: 
 - does the circuit function properly? 
    - what gates are connected to the first input terminal? 
    - what would happen if one of the gates is broken? 
    and so on 
 

 



The electronic circuits domain 

1. Identify the task 
– Does the circuit actually add properly?   

 
2. Assemble the relevant knowledge 

– Composed of wires and gates; Types of gates (AND, OR, XOR, NOT) 
–  
– Irrelevant: size, shape, color, cost of gates 
–  

 
3. Decide on a vocabulary 

– Alternatives: 
–  

Type(X1) = XOR  (function) 
Type(X1, XOR)   (binary predicate) 
XOR(X1) 
      (unary predicate) 



The electronic circuits domain 

4. Encode general knowledge of the domain 
– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2) 

 
– ∀t Signal(t) = 1 ∨ Signal(t) = 0 
 
– 1 ≠ 0 

 
– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1) 

 
– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1 

 
– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0 
 
 
– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠ 

Signal(In(2,g)) 
 

– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g)) 



The electronic circuits domain 

5. Encode the specific problem instance 
Type(X1) = XOR   Type(X2) = XOR 
Type(A1) = AND   Type(A2) = AND 
Type(O1) = OR 
 
Connected(Out(1,X1),In(1,X2))  Connected(In(1,C1),In(1,X1)) 
Connected(Out(1,X1),In(2,A2))  Connected(In(1,C1),In(1,A1)) 
Connected(Out(1,A2),In(1,O1))  Connected(In(2,C1),In(2,X1)) 
Connected(Out(1,A1),In(2,O1))  Connected(In(2,C1),In(2,A1)) 
Connected(Out(1,X2),Out(1,C1))  Connected(In(3,C1),In(2,X2)) 
Connected(Out(1,O1),Out(2,C1))  Connected(In(3,C1),In(1,A2)) 
 
 



The electronic circuits domain 

6. Pose queries to the inference procedure 
What are the possible sets of values of all the terminals for the adder 

circuit?  
 

 ∃i1,i2,i3,o1,o2 Signal(In(1,C_1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) 
= i3 ∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2 

 

 

 
 
 
 

7. Debug the knowledge base 
May have omitted assertions like 1 ≠ 0 
 



Syntactic Ambiguity 

• FOPC provides many ways to represent the same thing. 
• E.g., “Ball-5 is red.” 

– HasColor(Ball-5, Red) 
• Ball-5 and Red are objects related by HasColor. 

– Red(Ball-5) 
• Red is a unary predicate applied to the Ball-5 object. 

– HasProperty(Ball-5, Color, Red) 
• Ball-5, Color, and Red are objects related by HasProperty. 

– ColorOf(Ball-5) = Red 
• Ball-5 and Red are objects, and ColorOf() is a function. 

– HasColor(Ball-5(), Red()) 
• Ball-5() and Red() are functions of zero arguments that both 

return an object, which objects are related by HasColor. 
– … 

 

• This can GREATLY confuse a pattern-matching reasoner. 
– Especially if multiple people collaborate to build the KB, and they 

all have different representational conventions. 

 
 



Summary 

• First-order logic: 
– Much more expressive than propositional logic 
– Allows objects and relations as semantic primitives 
– Universal and existential quantifiers 
– syntax: constants, functions, predicates, equality, quantifiers 
–  

 

• Knowledge engineering using FOL 
– Capturing domain knowledge in logical form 

 

• Inference and reasoning in FOL 
– Next lecture 

 

• Required Reading: 
– All of Chapter 8 
– Next lecture: Chapter 9 
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