
First-Order Logic 
Inference 

Reading: Chapter 8, 9.1-9.2, 9.5.1-9.5.5 
 

FOL Syntax and Semantics read: 8.1-8.2 
FOL Knowledge Engineering read: 8.3-8.5 

FOL Inference read: Chapter 9.1-9.2, 9.5.1-9.5.5 
 

(Please read lecture topic material before and after 
each lecture on that topic) 
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Outline 

• Reducing first-order inference to propositional inference 
• Unification 
• Generalized Modus Ponens 
• Forward chaining 
• Backward chaining 
• Resolution 
• Other types of reasoning 

– Induction, abduction, analogy 
– Modal logics 



3 

You will be expected to know 

• Concepts and vocabulary of unification, CNF, and resolution. 
 

• Given two FOL terms containing variables 
– Find the most general unifier if one exists. 
– Else, explain why no unification is possible. 
– See figure 9.1 and surrounding text in your textbook. 

 
• Convert a FOL sentence into Conjunctive Normal Form (CNF). 

 
• Resolve two FOL clauses in CNF to produce their resolvent, 

including unifying the variables as necessary. 
 

• Produce a short resolution proof from FOL clauses in CNF. 
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Universal instantiation (UI) 

• Notation:  Subst({v/g}, α) means the result of substituting ground 
term g for variable v in sentence α 
 

• Every instantiation of a universally quantified sentence is entailed by 
it: 

 
∀v α 

Subst({v/g}, α) 
 

 for any variable v and ground term g 
 
 
• E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields: 
 
   King(John) ∧ Greedy(John) ⇒  Evil(John),     {x/John} 

 
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard),     {x/Richard} 
 
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John)),  
                                                                                          {x/Father(John)} 
 
. 
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Existential instantiation (EI) 

• For any sentence α, variable v, and constant symbol k (that 
does not appear elsewhere in the knowledge base): 

 
∃v α 

Subst({v/k}, α) 
 

 
 

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields: 
 
Crown(C1) ∧ OnHead(C1,John) 

 
 where C1 is a new constant symbol, called a Skolem constant 
 
 
• Existential and universal instantiation allows to 

“propositionalize” any FOL sentence or KB  
– EI produces one instantiation per EQ sentence 
– UI produces a whole set of instantiated sentences per UQ sentence  
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Reduction to propositional form 

 
Suppose the KB contains the following: 
 

∀x King(x) ∧ Greedy(x) ⇒ Evil(x) 
King(John) 
Greedy(John) 
Brother(Richard,John) 
 

 
 

• Instantiating the universal sentence in all possible ways, we have: 
     (there are only two ground terms: John and Richard) 
 

King(John) ∧ Greedy(John) ⇒ Evil(John) 
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) 
King(John) 
Greedy(John) 
Brother(Richard,John) 
 
 
 

• The new KB is propositionalized with “propositions”: 
 

 King(John), Greedy(John), Evil(John), King(Richard), etc. 
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Reduction continued 

• Every FOL KB can be propositionalized so as to preserve 
entailment 
– A ground sentence is entailed by new KB iff entailed by original KB 
–  

 
• Idea for doing inference in FOL: 

– propositionalize KB and query 
– apply resolution-based inference 
–  return result 
–  

 
• Problem: with function symbols, there are infinitely many 

ground terms, 
– e.g., Father(Father(Father(John))), etc 
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Reduction continued 

Theorem: Herbrand (1930). If a sentence α is entailed by a FOL 
KB, it is entailed by a finite subset of the propositionalized KB 

 
 
 

Idea: For n = 0 to ∞ do 
    create a propositional KB by instantiating with depth n terms 
    see if α is entailed by this KB 
 

 
 
Problem: works if α is entailed, loops if α is not entailed. 
               The problem of semi-decidable: algorithms exist 
                  to prove entailment, but no algorithm 
                  exists to to prove non-entailment for every 
                   non-entailed sentence. 
 
 
 
  



9 

Other Problems with Propositionalization 

• Propositionalization generates lots of irrelevant sentences  
– So inference may be very inefficient 

 
• e.g., from: 
 

∀x King(x) ∧ Greedy(x) ⇒ Evil(x) 
King(John) 
∀y Greedy(y) 
Brother(Richard, John) 
 

 
• it seems obvious that Evil(John) is entailed, but 

propositionalization produces lots of facts such as 
Greedy(Richard) that are irrelevant 
 

• With p k-ary predicates and n constants, there are p·nk 
instantiations 
 

• Lets see if we can do inference directly with FOL sentences 
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Unification 

• Recall: Subst(θ, p) = result of substituting θ into sentence p 
 
 

• Unify algorithm: takes 2 sentences p and q and returns a 
unifier if one exists 
 

         Unify(p,q) = θ   where Subst(θ, p) = Subst(θ, q) 
 
 
 
• Example: 
       p = Knows(John,x) 
       q = Knows(John, Jane) 
 

           Unify(p,q) = {x/Jane} 
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Unification examples 

•  simple example: query = Knows(John,x), i.e., who does John know? 
   
 
p    q    θ   
Knows(John,x)  Knows(John,Jane)   {x/Jane} 
Knows(John,x) Knows(y,OJ)    {x/OJ,y/John} 
Knows(John,x)  Knows(y,Mother(y))  {y/John,x/Mother(John)} 
Knows(John,x) Knows(x,OJ)    {fail} 
 
 
 

 
• Last unification fails: only because x can’t take values John and OJ at 

the same time 
– But we know that if John knows x, and everyone (x) knows OJ, we should be 

able to infer that John knows OJ 
 

• Problem is due to use of same variable x in both sentences 
 

• Simple solution: Standardizing apart eliminates overlap of variables, 
e.g., Knows(z,OJ) 
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Unification 

• To unify Knows(John,x) and Knows(y,z), 
 
 θ = {y/John, x/z } or θ = {y/John, x/John, z/John} 
 

 
• The first unifier is more general than the second. 
 

 
• There is a single most general unifier (MGU) that is unique up 

to renaming of variables. 
 

MGU = { y/John, x/z } 
 
 

• General algorithm in Figure 9.1 in the text 
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Hard matching example 

• To unify the grounded propositions with premises of the implication 
you need to solve a CSP! 

• Colorable() is inferred iff the CSP has a solution 
• CSPs include 3SAT as a special case, hence matching is NP-hard 

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧ 
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧ 
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒ 
Colorable() 
 
Diff(Red,Blue)    Diff (Red,Green) 
Diff(Green,Red)  Diff(Green,Blue) 
Diff(Blue,Red)    Diff(Blue,Green) 
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Recall our example… 

 
 
 

∀x King(x) ∧ Greedy(x) ⇒ Evil(x) 
King(John) 
∀y Greedy(y) 
Brother(Richard,John) 
 
 
And we would like to infer Evil(John) without propositionalization 
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Generalized Modus Ponens (GMP) 

  p1', p2', … , pn', ( p1 ∧ p2 ∧ … ∧ pn ⇒q) 
                          
                     Subst(θ,q) 
 
 
Example: 
p1' is King(John)   p1 is King(x)  
p2' is Greedy(y)   p2 is Greedy(x)  
θ is {x/John,y/John}  q is Evil(x)  
Subst(θ,q) is Evil(John) 
 
 

 
• Implicit assumption that all variables universally quantified 

 

where  we can unify pi‘ and pi  for all i 
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Completeness and Soundness of GMP 

• GMP is sound 
– Only derives sentences that are logically entailed 
– See proof in text on p. 326 (3rd ed.; p. 276, 2nd ed.) 

 
 

• GMP is complete for a KB consisting of definite clauses 
– Complete: derives all sentences that are entailed 
– OR…answers every query whose answers are entailed by such a KB  
 
– Definite clause: disjunction of literals of which exactly 1 is positive, 
             e.g., King(x) AND Greedy(x) -> Evil(x) 
           NOT(King(x)) OR NOT(Greedy(x)) OR Evil(x) 
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Inference appoaches in FOL 

• Forward-chaining 
– Uses GMP to add new atomic sentences   
– Useful for systems that make inferences as information streams in 
– Requires KB to be in form of first-order definite clauses 

 
• Backward-chaining 

– Works backwards from a query to try to construct a proof 
– Can suffer from repeated states and incompleteness 
– Useful for query-driven inference 

 
• Resolution-based inference (FOL) 

– Refutation-complete for general KB 
• Can be used to confirm or refute a sentence p (but not to 

generate all entailed sentences) 
– Requires FOL KB to be reduced to CNF 
– Uses generalized version of propositional inference rule 

 
 

• Note that all of these methods are generalizations of their 
propositional equivalents 
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Knowledge Base in FOL 

• The law says that it is a crime for an American to sell weapons to 
hostile nations.  The country Nono, an enemy of America, has some 
missiles, and all of its missiles were sold to it by Colonel West, who is 
American. 

•  
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Knowledge Base in FOL 

• The law says that it is a crime for an American to sell weapons to 
hostile nations.  The country Nono, an enemy of America, has some 
missiles, and all of its missiles were sold to it by Colonel West, who is 
American. 

•  
... it is a crime for an American to sell weapons to hostile nations: 

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x) 
 

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x): 
Owns(Nono,M1) and Missile(M1) 
 

… all of its missiles were sold to it by Colonel West 
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono) 
 

Missiles are weapons: 
Missile(x) ⇒ Weapon(x) 
 

An enemy of America counts as "hostile“: 
Enemy(x,America) ⇒ Hostile(x) 
 

West, who is American … 
American(West) 
 

The country Nono, an enemy of America … 
Enemy(Nono,America) 
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Forward chaining proof 
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Forward chaining proof 
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Forward chaining proof 
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Properties of forward chaining 

• Sound and complete for first-order definite clauses 
 

• Datalog = first-order definite clauses + no functions 
 
 

• FC terminates for Datalog in finite number of iterations 
 

• May not terminate in general if α is not entailed 
 
 

• Incremental forward chaining: no need to match a rule on iteration k if 
a premise wasn't added on iteration k-1 
⇒ match each rule whose premise contains a newly added positive literal 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 



30 

Backward chaining example 
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Properties of backward chaining 

• Depth-first recursive proof search: 
– Space is linear in size of proof. 

 
• Incomplete due to infinite loops 

– ⇒ fix by checking current goal against every goal on stack 
 

• Inefficient due to repeated subgoals (both success and failure) 
– ⇒ fix using caching of previous results (memoization) 
 

• Widely used for logic programming 
 

• PROLOG: 
 backward chaining with Horn clauses + bells & whistles. 
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Resolution in FOL 

• Full first-order version: 
l1 ∨ ··· ∨ lk,          m1 ∨ ··· ∨ mn 

 
 

Subst(θ , l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn) 
  
  where Unify(li, ¬mj) = θ. 
 

 
• The two clauses are assumed to be standardized apart so that they 

share no variables. 
 

• For example, 
 

¬Rich(x) ∨ Unhappy(x),    Rich(Ken) 
Unhappy(Ken) 

 
 with θ = {x/Ken} 
 
• Apply resolution steps to CNF(KB ∧ ¬α); complete for FOL 
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Converting FOL sentences to CNF 

Original sentence: 
    Everyone who loves all animals is loved by someone: 

∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)] 
 
 

 
1. Eliminate biconditionals and implications 
 

∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)] 
 
 

 
2. Move ¬ inwards:  
      Recall: ¬∀x p ≡ ∃x ¬p,  ¬ ∃x p ≡ ∀x ¬p 
 
 

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]  
 
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
 
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
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Conversion to CNF contd. 

3. Standardize variables: 
 each quantifier should use a different one 
 

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)] 
 

  
 

4.     Skolemize: a more general form of existential instantiation. 
       Each existential variable is replaced by a Skolem function of the 

enclosing universally quantified variables: 
 
 
 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x) 
 
 
(reason: animal y could be a different animal for each x.) 
 
 
 
   



35 

Conversion to CNF contd. 

 
5. Drop universal quantifiers: 
 
  [Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x) 

 
 (all remaining variables assumed to be universally quantified) 
 

 
6.   Distribute ∨ over ∧ : 
 

 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)] 
 
 
Original sentence is now in CNF form – can apply same ideas to all 

sentences in KB to convert into CNF 
 
Also need to include negated query  
 
Then use resolution to attempt to derive the empty clause 
 which show that the query is entailed by the KB 
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Recall: Example Knowledge Base in FOL 

 
... it is a crime for an American to sell weapons to hostile nations: 

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x) 
 

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x): 
Owns(Nono,M1) and Missile(M1) 
 

… all of its missiles were sold to it by Colonel West 
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono) 

 
Missiles are weapons: 

Missile(x) ⇒ Weapon(x) 
 

An enemy of America counts as "hostile“: 
Enemy(x,America) ⇒ Hostile(x) 

 
West, who is American … 

American(West) 
 

The country Nono, an enemy of America … 
Enemy(Nono,America) 
 

Convert to CNF 
 
Q: Criminal(West)? 
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Resolution proof 

¬ 
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Second Example 

KB: 
Everyone who loves all animals is loved by someone 
Anyone who kills animals is loved by no-one 
Jack loves all animals 
Either Curiosity or Jack killed the cat, who is named Tuna 
 
Query: Did Curiousity kill the cat? 
 
Inference Procedure: 
Express sentences in FOL 
Convert to CNF form and negated query 
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Resolution-based Inference 

Confusing because the sentences 
Have not been standardized apart… 



40 

Other Types of Reasoning (all unsound, often useful) 

• Inductive Reasoning (Induction) 
– Reason from a set of examples to the general principle. 
– Fact:  You`ve liked all movies starring Meryl Streep. 
 Inference:  You'll like her next movie. 
– Basis for most learning and scientific reasoning. 

 
• Abductive Reasoning (Abduction) 

– Reason from facts to the conclusion that best explains them. 
– Fact:   A large amount of black smoke is coming from a home. 
 Abduction1:  The house is on fire. 
 Abduction2:  Bad cook. 
– Basis for most debugging and medical diagnosis. 

 
• Analogical Reasoning (Analogy) 

– Reason from known (source) to unknown (target). 
– Fact:  Water flow in a hose; pressure, constrictions. 
 Inference:  Electricity flow in a circuit; voltage, resistance. 
– Basis for much teaching. 
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Modal Logic Examples 

•      represents Necessary 
– Analogous to “For All” 

•      represents Possible 
– Analogous to “There Exists” 

 
•         ¬    ¬ 
•         ¬    ¬ 
• “It is possible that it will rain today.”                        RainToday 
 “It is not necessary that it will not rain today.” ¬    ¬ RainToday 

 
• Modal Logic of Knowledge and Belief. 

–       represents “x knows that …” 
–       represents “for all x knows, it may be true that …” 

• Equivalently, “x does not know that it is not true that …” 
– For reasoning about what other agents know and believe. 

• Temporal Modal Logic 
– Modal operators [F] and [P] represent "henceforth" and "hitherto". 
– For reasoning about what will be and what has been. 

(Analogous to DeMorgan’s Law for Quantifiers) 
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Summary 

• Inference in FOL 
– Simple approach: reduce all sentences to PL and apply 

propositional inference techniques 
– Generally inefficient 

 
• FOL inference techniques 

– Unification 
– Generalized Modus Ponens 

• Forward-chaining  
• Backward-chaining 

– Resolution-based inference 
• Refutation-complete 
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