Constraint Satisfaction Problems (CSPs)

This lecture topic (two lectures)
Chapter 6.1-6.4, except 6.3.3
Next lecture topic (two lectures) Chapter 7.1-7.5
(Please read lecture topic material before and after each lecture on that topic)

Outline

- What is a CSP
- Backtracking for CSP
- Local search for CSPs
- (Removed) Problem structure and decomposition

You Will Be Expected to Know

- Basic definitions (section 6.1)
- Node consistency, arc consistency, path consistency (6.2)
- Backtracking search (6.3)
- Variable and value ordering: minimum-remaining values, degree heuristic, least-constraining-value (6.3.1)
- Forward checking (6.3.2)
- Local search for CSPs: min-conflict heuristic (6.4)

Constraint Satisfaction Problems

- What is a CSP?
- Finite set of variables $X_{1}, X_{2}, \ldots, X_{n}$
- Nonempty domain of possible values for each variable
$D_{1}, D_{2}, \ldots, D_{n}$
- Finite set of constraints $C_{1}, C_{2}, \ldots, C_{m}$
- Each constraint C_{i} limits the values that variables can take,
- e.g., $X_{1} \neq X_{2}$
- Each constraint C_{i} is a pair <scope, relation>
- Scope $=$ Tuple of variables that participate in the constraint.
- Relation = List of allowed combinations of variable values.

May be an explicit list of allowed combinations.
May be an abstract relation allowing membership testing and listing.

- CSP benefits
- Standard representation pattern
- Generic goal and successor functions
- Generic heuristics (no domain specific expertise).

Sudoku as a Constraint Satisfaction Problem (CSP)

- Variables: 81 variables
- A1, A2, A3, ..., I7, I8, I9
- Letters index rows, top to bottom
- Digits index columns, left to right

	1234566789								
A		6		1	4		5	5	
B			8	3	5	6			
C	2								1
D	8			4	7				6
E			6			3			
F	7			9	1				4
G	5								2
H			7	2	6	9			
1		4		5	8		7	7	

- Domains: The nine positive digits
- A1 $\in\{1,2,3,4,5,6,7,8,9\}$
- Etc.
- Constraints: 27 Alldiff constraints
- Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9)
- Etc.

CSPs --- what is a solution?

- A state is an assignment of values to some or all variables.
- An assignment is complete when every variable has a value.
- An assignment is partial when some variables have no values.
- Consistent assignment
- assignment does not violate the constraints
- A solution to a CSP is a complete and consistent assignment.
- Some CSPs require a solution that maximizes an objective function.
- Examples of Applications:
- Scheduling the time of observations on the Hubble Space Telescope
- Airline schedules
- Cryptography
- Computer vision -> image interpretation
- Scheduling your MS or PhD thesis exam ©

CSP example: map coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $\mathrm{D}_{\mathrm{i}}=\{$ red, green, blue\}
- Constraints: adjacent regions must have different colors.
- E.g. WA \neq NT

CSP example: map coloring

- Solutions are assignments satisfying all constraints, e.g. \{WA=red, NT=green, $\mathrm{Q}=$ red, NSW $=$ green, $\mathrm{V}=$ red, $\mathrm{SA}=$ blue, $\mathrm{T}=$ green $\}$

Graph coloring

- More general problem than map coloring
- Planar graph $=$ graph in the $2 d$-plane with no edge crossings
- Guthrie's conjecture (1852)

Every planar graph can be colored with 4 colors or less

- Proved (using a computer) in 1977 (Appel and Haken)

Constraint graphs

- Constraint graph:
- nodes are variables
- arcs are binary constraints

- Graph can be used to simplify search
e.g. Tasmania is an independent subproblem
(will return to graph structure later)

Varieties of CSPs

- Discrete variables
- Finite domains; size $d \Rightarrow O\left(d^{n}\right)$ complete assignments.
- E.g. Boolean CSPs: Boolean satisfiability (NP-complete).
- Infinite domains (integers, strings, etc.)
- E.g. job scheduling, variables are start/end days for each job
- Need a constraint language e.g StartJ ob $1+5 \leq$ StartJob $_{3}$.
- Infinitely many solutions
- Linear constraints: solvable
- Nonlinear: no general algorithm
- Continuous variables
- e.g. building an airline schedule or class schedule.
- Linear constraints solvable in polynomial time by LP methods.

Varieties of constraints

- Unary constraints involve a single variable.
- e.g. $S A \neq$ green
- Binary constraints involve pairs of variables.
- e.g. $S A \neq W A$
- Higher-order constraints involve 3 or more variables.
- Professors A, B, and C cannot be on a committee together
- Can always be represented by multiple binary constraints
- Preference (soft constraints)
- e.g. red is better than green often can be represented by a cost for each variable assignment
- combination of optimization with CSPs

CSPs Only Need Binary Constraints!!

- Unary constraints: Just delete values from variable's domain.
- Higher order (3 variables or more): reduce to binary constraints.
- Simple example:
- Three example variables, X, Y, Z.
- Domains $D x=\{1,2,3\}, D y=\{1,2,3\}, D z=\{1,2,3\}$.
- Constraint $C[X, Y, Z]=\{\mathbf{X} \mathbf{Y}=\mathbf{Z}\}=\{(1,1,2),(1,2,3),(2,1,3)\}$.
- Plus many other variables and constraints elsewhere in the CSP.
- Create a new variable, W, taking values as triples (3-tuples).
- Domain of W is Dw $=\{(1,1,2),(1,2,3),(2,1,3)\}$.
- Dw is exactly the tuples that satisfy the higher order constraint.
- Create three new constraints:
- $C[X, W]=\{[1,(1,1,2)],[1,(1,2,3)],[2,(2,1,3)]\}$.
- $C[Y, W]=\{[1,(1,1,2)],[2,(1,2,3)],[1,(2,1,3)]\}$.
- $C[Z, W]=\{[2,(1,1,2)],[3,(1,2,3)],[3,(2,1,3)]\}$.
- Other constraints elsewhere involving X, Y, or Z are unaffected.

CSP Example: Cryptharithmetic puzzle

$$
\begin{array}{r}
T W O \\
+\quad T W O \\
\hline F O U R
\end{array}
$$

Variables: $F T U W R O X_{1} X_{2} X_{3}$
Domains: $\{0,1,2,3,4,5,6,7,8,9\}$
Constraints

$$
\begin{aligned}
& \text { alldiff }(F, T, U, W, R, O) \\
& O+O=R+10 \cdot X_{1}, \text { etc. }
\end{aligned}
$$

CSP Example: Cryptharithmetic puzzle

$$
\begin{array}{r}
T W O \\
+\quad T W O \\
\hline F O U R
\end{array}
$$

Variables: $F T U W R O X_{1} X_{2} X_{3}$
Domains: $\{0,1,2,3,4,5,6,7,8,9\}$
Constraints
alldiff($F, T, U, W, R, O)$
$O+O=R+10 \cdot X_{1}$, etc.

CSP as a standard search problem

- A CSP can easily be expressed as a standard search problem.
- Incremental formulation
- Initial State: the empty assignment \{\}
- Actions (3rd ed.), Successor function (2 $2^{\text {nd }}$ ed.): Assign a value to an unassigned variable provided that it does not violate a constraint
- Goal test: the current assignment is complete (by construction it is consistent)
- Path cost: constant cost for every step (not really relevant)
- Can also use complete-state formulation
- Local search techniques (Chapter 4) tend to work well

CSP as a standard search problem

- Solution is found at depth n (if there are n variables).
- Consider using BFS
- Branching factor b at the top level is nd
- At next level is (n-1)d
-
- end up with $n!d^{n}$ leaves even though there are only d^{n} complete assignments!

Commutativity

- CSPs are commutative.
- The order of any given set of actions has no effect on the outcome.
- Example: choose colors for Australian territories one at a time
- [WA=red then NT=green] same as [NT=green then WA=red]
- All CSP search algorithms can generate successors by considering assignments for only a single variable at each node in the search tree
\Rightarrow there are d^{n} leaves
(will need to figure out later which variable to assign a value to at each node)

Backtracking search

- Similar to Depth-first search, generating children one at a time.
- Chooses values for one variable at a time and backtracks when a variable has no legal values left to assign.
- Uninformed algorithm
- No good general performance

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure return RECURSIVE-BACKTRACKING(\{ \} , csp)
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure if assignment is complete then return assignment var \leftarrow SELECT-UNASSI GNED-VARI ABLE(VARIABLES[csp], assignment, csp) for each value in ORDER-DOMAI N-VALUES(var, assignment, csp) do
if value is consistent with assignment according to CONSTRAI NTS[csp]
then
add $\{v a r=$ value $\}$ to assignment
result \leftarrow RECURSIVE-BACTRACKING(assignment, csp)
if result \neq failure then return result
remove $\{$ var=value $\}$ from assignment
return failure

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search

- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
- For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes

Backtracking search (Figure 6.5)

function BACKTRACKING-SEARCH(csp) return a solution or failure return RECURSIVE-BACKTRACKING(\{\}, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure if assignment is complete then return assignment var \leftarrow SELECT-UNASSI GNED-VARI ABLE(VARI ABLES[csp], assignment,csp) for each value in ORDER-DOMAI N-VALUES(var, assignment, csp) do
if value is consistent with assignment according to CONSTRAI NTS[csp]
then
add \{var=value\} to assignment
result \leftarrow RECURSIVE-BACTRACKING(assignment, csp)
if result \neq failure then return result
remove $\{v a r=v a l u e\}$ from assignment
return failure

Comparison of CSP algorithms on different problems

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA	$(>1,000 \mathrm{~K})$	$(>1,000 \mathrm{~K})$	2 K	60	64
n-Queens	$(>40,000 \mathrm{~K})$	$13,500 \mathrm{~K}$	$(>40,000 \mathrm{~K})$	817 K	4 K
Zebra	$3,859 \mathrm{~K}$	1 K	35 K	0.5 K	2 K
Random 1	415 K	3 K	26 K	2 K	
Random 2	942 K	27 K	77 K	15 K	

Median number of consistency checks over 5 runs to solve problem
Parentheses -> no solution found
USA: 4 coloring
n-queens: $\mathrm{n}=2$ to 50
Zebra: see exercise 6.7 ($3^{\text {rd }}$ ed.); exercise 5.13 ($2^{\text {nd }}$ ed.)

Random Binary CSP
 (adapted from http:/ / www.unitime.org/ csp.php)

- A random binary CSP is defined by a four-tuple ($\mathrm{n}, \mathrm{d}, \mathrm{p} 1, \mathrm{p} 2$)
- $\mathrm{n}=$ the number of variables.
- $d=$ the domain size of each variable.
- p1 = probability a constraint exists between two variables.
- p2 = probability a pair of values in the domains of two variables connected by a constraint is incompatible.
- Note that R\&N lists compatible pairs of values instead.
- Equivalent formulations; just take the set complement.
- ($\mathrm{n}, \mathrm{d}, \mathrm{p} 1, \mathrm{p} 2$) are used to generate randomly the binary constraints among the variables.
- The so called model B of Random CSP ($n, d, n 1, n 2$)
- $\mathrm{n} 1=\mathrm{pln}(\mathrm{n}-1) / 2$ pairs of variables are randomly and uniformly selected and binary constraints are posted between them.
- For each constraint, n2 $=\mathrm{p} 2 \mathrm{~d}^{\wedge} 2$ randomly and uniformly selected pairs of values are picked as incompatible.
- The random CSP as an optimization problem (minCSP).
- Goal is to minimize the total sum of values for all variables.

I mproving CSP efficiency

- Previous improvements on uninformed search
\rightarrow introduce heuristics
- For CSPS, general-purpose methods can give large gains in speed, e.g.,
- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?
- Can we take advantage of problem structure?

Note: CSPs are somewhat generic in their formulation, and so the
heuristics are more general compared to methods in Chapter 4

Minimum remaining values (MRV)

var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

- A.k.a. most constrained variable heuristic
- Heuristic Rule: choose variable with the fewest legal moves
- e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial variable

- Heuristic Rule: select variable that is involved in the largest number of constraints on other unassigned variables.
- Degree heuristic can be useful as a tie breaker.
- In what order should a variable's values be tried?

Least constraining value for value-ordering

- Least constraining value heuristic
- Heuristic Rule: given a variable choose the least constraining value
- leaves the maximum flexibility for subsequent variable assignments

Forward checking

- Can we detect inevitable failure early?
- And avoid it later?
- Forward checking idea: keep track of remaining legal values for unassigned variables.
- Terminate search when any variable has no legal values.

Forward checking

- Assign $\{W A=r e d\}$
- Effects on other variables connected by constraints to WA
- NT can no longer be red
- SA can no longer be red

Forward checking

- Assign $\{\mathrm{Q}=$ green $\}$
- Effects on other variables connected by constraints with WA
- NT can no longer be green
- NSW can no longer be green
- SA can no longer be green
- MRV heuristic would automatically select NT or SA next

Forward checking

- If V is assigned blue
- Effects on other variables connected by constraints with WA
- NSW can no longer be blue
- SA is empty
- FC has detected that partial assignment is inconsistent with the constraints and backtracking can occur.

Example: 4-Queens Problem

Example: 4-Queens Problem

Red $=$ value is assigned to variable

Example: 4-Queens Problem

Red $=$ value is assigned to variable

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- (Please note: As always in computer science, there are many different ways to implement anything. The book-keeping method shown here was chosen because it is easy to present and understand visually. It is not necessarily the most efficient way to implement the book-keeping in a computer. Your job as an algorithm designer is to think long and hard about your problem, then devise an efficient implementation.)
- One more efficient equivalent possible alternative (of many):
- Deleted:
- $\{(X 2: 1,2)(X 3: 1,3)(X 4: 1,4)\}$

Example: 4-Queens Problem

Red $=$ value is assigned to variable

Example: 4-Queens Problem

Red $=$ value is assigned to variable

Example: 4-Queens Problem

Red $=$ value is assigned to variable

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- \{ (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) \}
- X2 Level:
- Deleted:
- $\{(X 3,2)(X 3,4)(X 4,3)\}$
- (Please note: Of course, we could have failed as soon as we deleted $\{(X 3,2)(X 3,4)\}$. There was no need to continue to delete ($\mathrm{X} 4,3$), because we already had established that the domain of X3 was null, and so we already knew that this branch was futile and we were going to fail anyway. The book-keeping method shown here was chosen because it is easy to present and understand visually. It is not necessarily the most efficient way to implement the book-keeping in a computer. Your job as an algorithm designer is to think long and hard about your problem, then devise an efficient implementation.)

Example: 4-Queens Problem

Red $=$ value is assigned to variable

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- X2 Level:
- FAIL at X2=3.
- Restore:
- \{ (X3,2) (X3,4) (X4,3) \}

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- X2 Level:
- Deleted:
- $\{(X 3,4)(X 4,2)\}$

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- X2 Level:
- Deleted:
- $\{(X 3,4)(X 4,2)\}$
- X3 Level:
- Deleted:
- $\{(X 4,3)\}$

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- X2 Level:
- Deleted:
- $\{(X 3,4)(X 4,2)\}$
- X3 Level:
- Fail at X3=2.
- Restore:
- $\{(X 4,3)\}$

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- X2 Level:
- Fail at X2=4.
- Restore:
- \{ (X3,4) (X4,2) \}

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

- X1 Level:
- Fail at X1=1.
- Restore:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(\mathrm{X} 2,1)(\mathrm{X} 2,2)(\mathrm{X} 2,3)(\mathrm{X} 3,2)(\mathrm{X} 3,4)(\mathrm{X} 4,2)\}$

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 2,3)(X 3,2)(X 3,4)(X 4,2)\}$
- X2 Level:
- Deleted:
- $\{(X 3,3)(X 4,4)\}$

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 2,3)(X 3,2)(X 3,4)(X 4,2)\}$
- X2 Level:
- Deleted:
- $\{(X 3,3)(X 4,4)\}$
- X3 Level:
- Deleted:
- \{ (X4,1) \}

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Example: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Comparison of CSP algorithms on different problems

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA	$(>1,000 \mathrm{~K})$	$(>1,000 \mathrm{~K})$	2 K	60	64
n-Queens	$(>40,000 \mathrm{~K})$	$13,500 \mathrm{~K}$	$(>40,000 \mathrm{~K})$	817 K	4 K
Zebra	$3,859 \mathrm{~K}$	1 K	35 K	0.5 K	2 K
Random 1	415 K	3 K	26 K	2 K	
Random 2	942 K	27 K	77 K	15 K	

Median number of consistency checks over 5 runs to solve problem
Parentheses -> no solution found
USA: 4 coloring
n-queens: $\mathrm{n}=2$ to 50
Zebra: see exercise 5.13

Constraint propagation

- Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone
- FC checking does not detect all failures.
- E.g., NT and SA cannot be blue

Constraint propagation

- Techniques like CP and FC are in effect eliminating parts of the search space
- Somewhat complementary to search
- Constraint propagation goes further than FC by repeatedly enforcing constraints locally
- Needs to be faster than actually searching to be effective
- Arc-consistency (AC) is a systematic procedure for constraint propagation

Arc consistency

- An Arc $X \rightarrow Y$ is consistent if for every value x of X there is some value y consistent with x (note that this is a directed property)
- Consider state of search after WA and Q are assigned:

SA \rightarrow NSW is consistent if SA=blue and NSW=red

Arc consistency

- $X \rightarrow Y$ is consistent if
for every value x of X there is some value y consistent with x
- NSW \rightarrow SA is consistent if

NSW=red and SA=blue
NSW=blue and SA=???

Arc consistency

- Can enforce arc-consistency:

Arc can be made consistent by removing blue from NSW

- Continue to propagate constraints....
- Check V \rightarrow NSW
- Not consistent for $V=$ red
- Remove red from V

Arc consistency

- Continue to propagate constraints....
- SA \rightarrow NT is not consistent
- and cannot be made consistent
- Arc consistency detects failure earlier than FC

Arc consistency checking

- Can be run as a preprocessor or after each assignment
- Or as preprocessing before search starts
- AC must be run repeatedly until no inconsistency remains
- Trade-off
- Requires some overhead to do, but generally more effective than direct search
- In effect it can eliminate large (inconsistent) parts of the state space more effectively than search can
- Need a systematic method for arc-checking
- If X loses a value, neighbors of X need to be rechecked:
i.e. incoming arcs can become inconsistent again (outgoing arcs will stay consistent).

Arc consistency algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, else true, may reduce csp domains inputs: csp, a binary CSP with variables $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
local variables: queue, a queue of arcs, initially all the arcs in csp
/* initial queue must contain both ($\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}$) and ($\mathrm{X}_{\mathrm{j}}, \mathrm{X}_{\mathrm{i}}$) */
while queue is not empty do
$\left(X_{i}, X_{j}\right) \leftarrow$ REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES $\left(X_{i}, X_{j}\right)$ then
if size of $D_{i}=0$ then return false
for each X_{k} in NEIGHBORS[$\left.X_{i}\right]-\left\{X_{j}\right\}$ do add $\left(X_{k}, X_{i}\right)$ to queue if not already there
return true
function REMOVE-INCONSISTENT-VALUES $\left(X_{i}, X_{j}\right)$ returns true iff we delete a value from the domain of X_{i}
removed \leftarrow false
for each x in DOMAIN[X_{i}] do
if no value y in DOMAIN[X_{j}] allows (x, y) to satisfy the constraints between X_{i} and X_{j}
then delete x from DOMAIN[$\left.X_{i}\right]$; removed \leftarrow true return removed
(from Mackworth, 1977)

Complexity of AC-3

- A binary CSP has at most n^{2} arcs
- Each arc can be inserted in the queue d times (worst case)
- (X, Y): only d values of X to delete
- Consistency of an arc can be checked in $O\left(d^{2}\right)$ time
- Complexity is $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{3}\right)$
- Although substantially more expensive than Forward Checking, Arc Consistency is usually worthwhile.

K-consistency

- Arc consistency does not detect all inconsistencies:
- Partial assignment \{WA=red, NSW=red\} is inconsistent.
- Stronger forms of propagation can be defined using the notion of k consistency.
- A CSP is k -consistent if for any set of $\mathrm{k}-1$ variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
- E.g. 1-consistency = node-consistency
- E.g. 2-consistency = arc-consistency
- E.g. 3-consistency = path-consistency
- Strongly k -consistent:
- k-consistent for all values $\{k, k-1, . .2,1\}$

Trade-offs

- Running stronger consistency checks...
- Takes more time
- But will reduce branching factor and detect more inconsistent partial assignments
- No "free lunch"
- In worst case n-consistency takes exponential time
- Generally helpful to enforce 2-Consistency (Arc Consistency)
- Sometimes helpful to enforce 3-Consistency
- Higher levels may take more time to enforce than they save.

Further improvements

- Checking special constraints
- Checking Alldif(...) constraint
- E.g. $\{W A=r e d, ~ N S W=r e d\}$
- Checking Atmost(...) constraint
- Bounds propagation for larger value domains
- Intelligent backtracking
- Standard form is chronological backtracking i.e. try different value for preceding variable.
- More intelligent, backtrack to conflict set.
- Set of variables that caused the failure or set of previously assigned variables that are connected to X by constraints.
- Backjumping moves back to most recent element of the conflict set.
- Forward checking can be used to determine conflict set.

Local search for CSPs

- Use complete-state representation
- Initial state $=$ all variables assigned values
- Successor states = change 1 (or more) values
- For CSPs
- allow states with unsatisfied constraints (unlike backtracking)
- operators reassign variable values
- hill-climbing with n-queens is an example
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic
- Select new value that results in a minimum number of conflicts with the other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure inputs: csp, a constraint satisfaction problem max_steps, the number of steps allowed before giving up
current \leftarrow an initial complete assignment for csp
for $\mathrm{i}=1$ to max_steps do
if current is a solution for csp then return current
var \leftarrow a randomly chosen, conflicted variable from VARIABLES[csp]
value \leftarrow the value v for var that minimize CONFLICTS(var,v,current, csp)
set var = value in current
return failure

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

Min-conflicts example 2

- A two-step solution for an 8-queens problem using min-conflicts heuristic
- At each stage a queen is chosen for reassignment in its column
- The algorithm moves the queen to the min-conflict square breaking ties randomly.

Comparison of CSP algorithms on different problems

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA	$(>1,000 \mathrm{~K})$	$(>1,000 \mathrm{~K})$	2 K	60	64
n-Queens	$(>40,000 \mathrm{~K})$	$13,500 \mathrm{~K}$	$(>40,000 \mathrm{~K})$	817 K	4 K
Zebra	$3,859 \mathrm{~K}$	1 K	35 K	0.5 K	2 K
Random 1	415 K	3 K	26 K	2 K	
Random 2	942 K	27 K	77 K	15 K	

Median number of consistency checks over 5 runs to solve problem
Parentheses -> no solution found
USA: 4 coloring
n-queens: $\mathrm{n}=2$ to 50
Zebra: see exercise 6.7 ($3^{\text {rd }}$ ed.); exercise 5.13 ($2^{\text {nd }}$ ed.)

Advantages of local search

- Local search can be particularly useful in an online setting
- Airline schedule example
- E.g., mechanical problems require than 1 plane is taken out of service
- Can locally search for another "close" solution in state-space
- Much better (and faster) in practice than finding an entirely new schedule
- The runtime of min-conflicts is roughly independent of problem size.
- Can solve the millions-queen problem in roughly 50 steps.
- Why?
- n -queens is easy for local search because of the relatively high density of solutions in state-space

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n=10,000,000$)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Hard satisfiability problems

Hard satisfiability problems

- Median runtime for 100 satisfiable random 3 -CNF sentences, $\mathrm{n}=50$

Graph structure and problem complexity

- Solving disconnected subproblems
- Suppose each subproblem has c variables out of a total of n.
- Worst case solution cost is $O\left(n / c d^{c}\right)$, i.e. linear in n
- Instead of $O\left(d^{n}\right)$, exponential in n
- E.g. $\mathrm{n}=80, \mathrm{c}=20, \mathrm{~d}=2$
- $2^{80}=4$ billion years at 1 million nodes $/ \mathrm{sec}$.
- $\quad 4 * 2^{20}=.4$ second at 1 million nodes $/ \mathrm{sec}$

Tree-structured CSPs

- Theorem:
- if a constraint graph has no loops then the CSP can be solved in $\mathrm{O}\left(\mathrm{nd}{ }^{2}\right)$ time
- linear in the number of variables!
- Compare difference with general CSP, where worst case is $\mathrm{O}\left(\mathrm{d}^{\mathrm{n}}\right)$

Summary

- CSPs
- special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking=depth-first search with one variable assigned per node
- Heuristics
- Variable ordering and value selection heuristics help significantly
- Constraint propagation does additional work to constrain values and detect inconsistencies
- Works effectively when combined with heuristics
- Iterative min-conflicts is often effective in practice.
- Graph structure of CSPs determines problem complexity
- e.g., tree structured CSPs can be solved in linear time.

