Propositional Logic: Logical Agents (Part I)

This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (this lecture, Part I) Chapter 7.5 (next lecture, Part II) (optional: 7.6-7.8)

Next lecture topic: First-order logic (two lectures) Chapter 8

Outline

- Basic Definitions:
 - Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology)
- Syntactic Transformations:

 $- \text{ E.g., } (A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$

• Semantic Transformations:

- E.g., (KB $\mid = \alpha$) = ($\mid = (KB \Rightarrow \alpha)$

- Truth Tables
 - Negation, Conjunction, Disjunction, Implication, Equivalence (Biconditional)
 - Inference by Model Enumeration

You will be expected to know:

- Basic definitions (section 7.1, 7.3)
- Models and entailment (7.3)
- Syntax, logical connectives (7.4.1)
- Semantics (7.4.2)
- Simple inference (7.4.4)

Complete architectures for intelligence?

• Search?

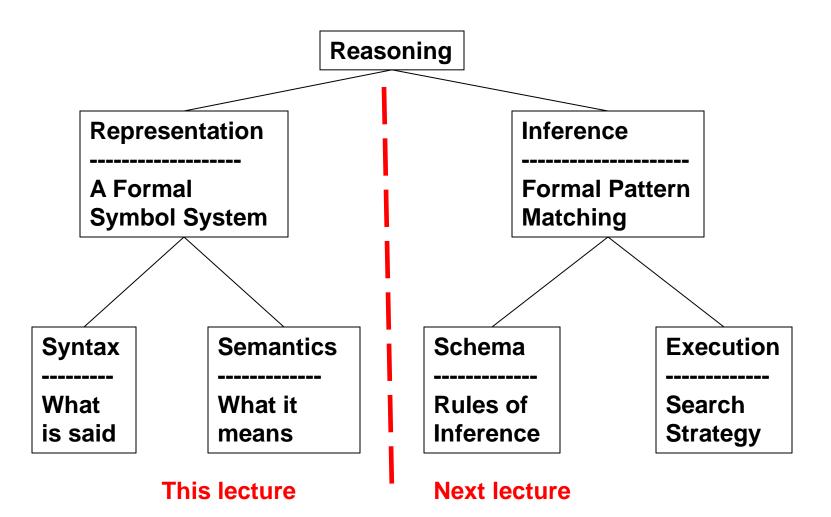
– Solve the problem of what to do.

- Learning?
 - Learn what to do.
- Logic and inference?
 - Reason about what to do.
 - Encoded knowledge/"expert" systems?
 - Know what to do.
- Modern view: It's complex & multi-faceted.

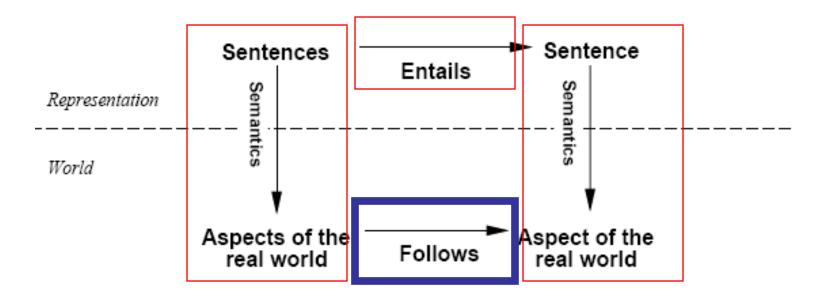
Inference in Formal Symbol Systems: Ontology, Representation, Inference

- Formal Symbol Systems
 - Symbols correspond to things/ideas in the world
 - Pattern matching & rewrite corresponds to inference
- Ontology: What exists in the world?
 - What must be represented?
- Representation: Syntax vs. Semantics
 What's Said vs. What's Meant
- Inference: Schema vs. Mechanism
 - Proof Steps vs. Search Strategy

Ontology: What kind of things exist in the world? What do we need to describe and reason about?



Schematic perspective



If KB is true in the real world, then any sentence α entailed by KB is also true in the real world.

Why Do We Need Logic?

- Problem-solving agents were very inflexible: hard code every possible state.
- Search is almost always exponential in the number of states.
- Problem solving agents cannot infer unobserved information.
- We want an algorithm that reasons in a way that resembles reasoning in humans.

Knowledge-Based Agents

- KB = knowledge base
 - A set of sentences or facts
 - e.g., a set of statements in a logic language
- Inference
 - Deriving new sentences from old
 - e.g., using a set of logical statements to infer new ones

• A simple model for reasoning

- Agent is told or perceives new evidence
 - E.g., A is true
- Agent then infers new facts to add to the KB
 - E.g., KB = { A -> (B OR C) }, then given A and not C we can infer that B is true
 - B is now added to the KB even though it was not explicitly asserted, i.e., the agent inferred B

Types of Logics

- **Propositional logic** deals with specific objects and concrete statements that are either true or false
 - E.g., John is married to Sue.
- Predicate logic (also called first order logic, first order predicate calculus) allows statements to contain variables, functions, and quantifiers

- For all X, Y: If X is married to Y then Y is married to X.

- **Fuzzy logic** deals with statements that are somewhat vague, such as this paint is grey, or the sky is cloudy.
- **Probability** deals with statements that are possibly true, such as whether I will win the lottery next week.
- **Temporal logic** deals with statements about time, such as John was a student at UC Irvine for four years.
- Modal logic deals with statements about belief or knowledge, such as Mary believes that John is married to Sue, or Sue knows that search is NPcomplete.

Wumpus World PEAS description

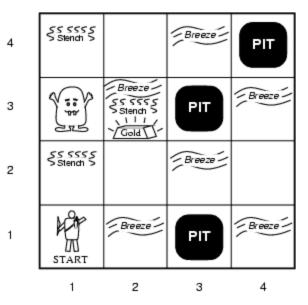
• Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

Environment

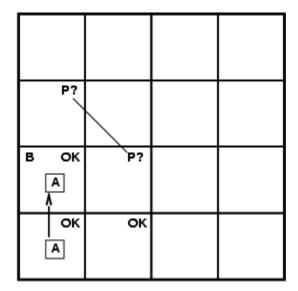
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

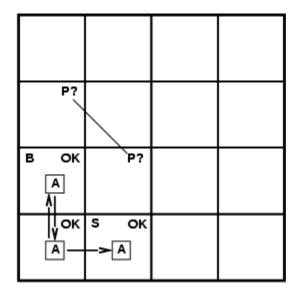
Would DFS work well? A*?



ок		
ок А	ок	

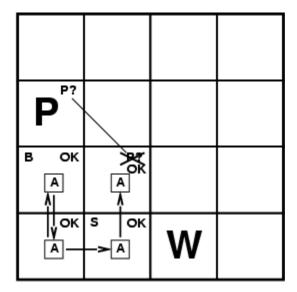
в ок А А		
ок А	ок	

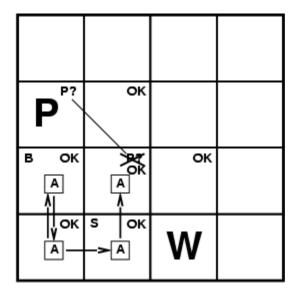


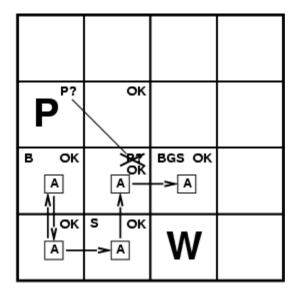




We need rather sophisticated reasoning here!







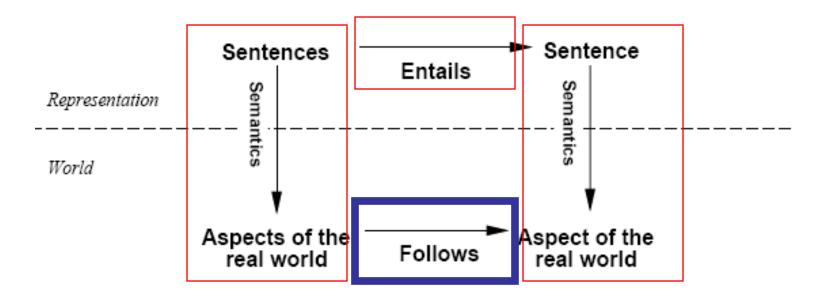
Logic

- We used logical reasoning to find the gold.
- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" or interpretation of sentences;
 - connects symbols to real events in the world,
 - i.e., define truth of a sentence in a world
- E.g., the language of arithmetic

 $-x+2 \ge y$ is a sentence; $x2+y \ge \{\}$ is not a sentence; \longrightarrow syntax

- $-x+2 \ge y$ is true in a world where x = 7, y = 1
- $x+2 \ge y$ is false in a world where x = 0, y = 6

Schematic perspective



If KB is true in the real world, then any sentence α entailed by KB is also true in the real world.

Entailment

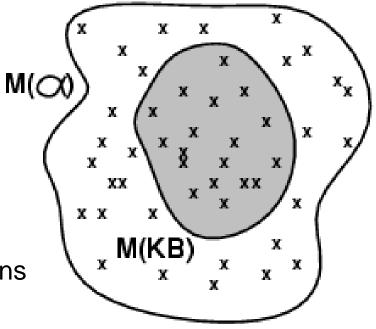
• Entailment means that one thing follows from another:

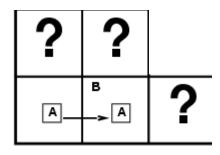
KB ⊨α

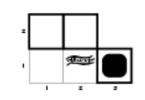
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
 - E.g., the KB containing "the Giants won and the Reds won" entails "The Giants won".
 - E.g., x+y = 4 entails 4 = x+y
 - E.g., "Mary is Sue's sister and Amy is Sue's daughter" entails "Mary is Amy's aunt."

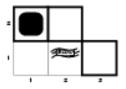
Models

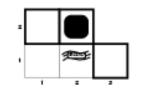
- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say *m* is a model of a sentence α if α is true in *m*
- $M(\alpha)$ is the set of all models of α
- Then KB $\models \alpha$ iff $M(KB) \subseteq M(\alpha)$
 - E.g. KB = Giants won and Reds won α = Giants won
- Think of KB and α as collections of constraints and of models m as possible states. M(KB) are the solutions to KB and M(α) the solutions to α. Then, KB ⊨ α when all solutions to KB are also solutions to α.

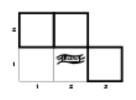


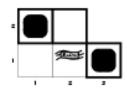


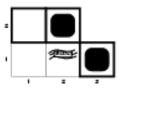


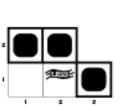


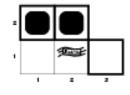




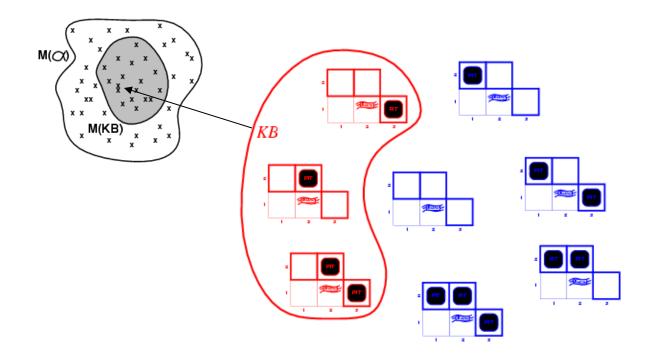




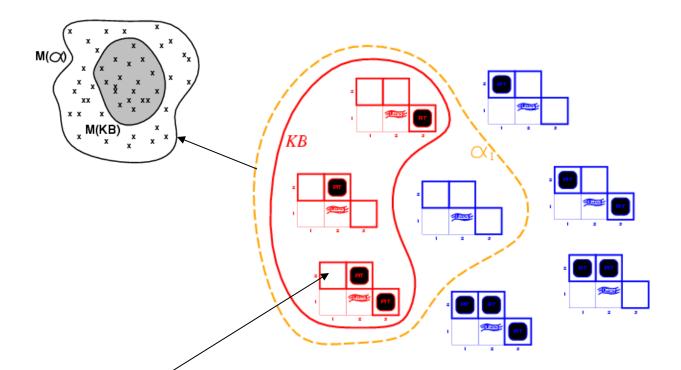




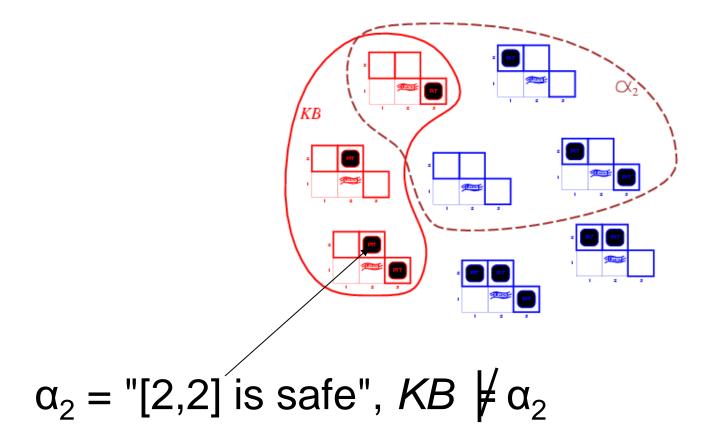
All possible models in this reduced Wumpus world.



 KB = all possible wumpus-worlds consistent with the observations and the "physics" of the Wumpus world.



 $\alpha_1 = [1,2]$ is safe", *KB* $\models \alpha_1$, proved by model checking



Inference Procedures (next lecture)

- $KB \models_i \alpha$ = sentence α can be derived from KB by procedure *i*
- Soundness: *i* is sound if whenever KB |_iα, it is also true that KB |= α (no wrong inferences, but maybe not all inferences)
- Completeness: *i* is complete if whenever KB |= α, it is also true that KB |_i α (all inferences can be made, but maybe some wrong extra ones as well)

Recap propositional logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols P_1 , P_2 etc are sentences
 - If S is a sentence, \neg S is a sentence (negation)
 - If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
 - If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
 - If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
 - If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Recap propositional logic: Semantics

Each model/world specifies true or false for each proposition symbol

E.g. $P_{1,2}$ $P_{2,2}$ $P_{3,1}$ false true false With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model *m*:

$\neg S$	is true iff	S is false	
$S_1 \wedge S_2$	is true iff	S ₁ is true and	S_2 is true
$S_1 \lor S_2$	is true iff	S ₁ is true or	S_2 is true
$S_1 \Rightarrow S_1$	₂ is true iff	S ₁ is false or	S_2 is true
i.e.,	is false iff	S ₁ is true and	S_2 is false
$S_1 \Leftrightarrow S$	₂ is true iff	$S_1 \Rightarrow S_2$ is true and	$ndS_2 \Rightarrow S_1$ is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$

Recap truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$	
false	false	true	false	false	true	true	
false	true	true	false	true	true	false	
true	false	false	false	true	false	false	
true	true	false	true	true	true	true	
OR: P or Q is true or both are true. XOR: P or Q is true but not both.			Implication is always true when the premises are False!				

Inference by enumeration (generate the truth table)

- Enumeration of all models is sound and complete.
- For *n* symbols, time complexity is $O(2^n)$...
- We need a smarter way to do inference!
- In particular, we are going to infer new logical sentences from the data-base and see if they match a query.

Logical equivalence

- To manipulate logical sentences we need some rewrite rules.
- Two sentences are logically equivalent iff they are true in same models: α ≡ ß iff α ⊨ β and β ⊨ α

You need to $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge know these ! $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

Validity and satisfiability

- A sentence is valid if it is true in all models, e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if ($KB \Rightarrow \alpha$) is valid
- A sentence is satisfiable if it is true in some model e.g., $A \lor B$, C
- A sentence is unsatisfiable if it is false in all models e.g., A^-A
- Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable (there is no model for which KB=true and α is false)

Summary (Part I)

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
 - valid: sentence is true in every model (a tautology)
- Logical equivalences allow syntactic manipulations
- Propositional logic lacks expressive power
 - Can only state specific facts about the world.
 - Cannot express general rules about the world (use First Order Predicate Logic)