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Today’s Lecture
Why probability?

Quick probability review

Problems with naive usage of probabilities

Bayesian networks

What is it good for?

Russel and Norvig Chapter 13 or discussion or office hours



Brief History of Probability in AI
Early AI (1950-1970)

Probability used to solve AI problems

Mixed success

Logical AI (1970-1990)

Researchers realize full probability models are intractable

Abandoned probability for logic

New problem: logic has troubles in the real world

Probabilistic AI (1990-present)

Judea Pearl invents Bayesian Networks! (1988)

Approximate model of probability is tractable

Developed algorithms to learn these new models

Techniques now used in: vision, speech, video games, etc.



Problems with Logic
Logic deals with true, false, and unknown

No loose implications

What about a value that is almost always true?

Living in Irvine I can reasonably act like it won’t snow

“If I leave two hours ahead of time I will usually arrive
at the airport in time for my flight.”

Solution is to use probability

We have some belief about how likely events are

“99.9% chance it won’t snow tomorrow.”



Reverend Thomas Bayes
Lived from 1701-1761

Developed Bayes’s Rule while trying to prove existence of god

P (A|B) = P (B|A)P (A)
P (B)
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Probability is how often a coin comes up head when
flipped many times
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Bayesians vs. Frequentists
Frequentist: old school of thought

Probability is how often a coin comes up head when
flipped many times

Bayesians: newer school of thought

Probability is a belief

I am 15% sure Brazil will win the 2014 World Cup

My belief will change when presented with new evidence

I remember 2014 World Cup is in Brazil!

⇒ I am now 25% sure Brazil will win

Illustrative example: ”P ( Life on other planets”)”



Probability Review
Space of events: Ω

Made up of atomic events

Rolling two dice: Ω = {(1, 1), (1, 2), (1, 3), . . . (6, 6)}
(5,4) means first die was five and second was four

Random variable - some real valued function of atomic events

Sum of the two dice, value of the first die, etc.



Probability Review
Space of events: Ω

Made up of atomic events

Rolling two dice: Ω = {(1, 1), (1, 2), (1, 3), . . . (6, 6)}
(5,4) means first die was five and second was four

Random variable - some real valued function of atomic events

Sum of the two dice, value of the first die, etc.

Axioms of Probability:

1. ∀e ∈ Ω P (e) ≥ 0

2. P (Ω) = 1

3. If A and B are mutually exclusive then
P (A ∨B) = P (A) + P (B)
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A and B are said to be independent iff P (A ∧B) = P (A)P (B)

This is a very strong statement about events

Relatively uncommon in complicated systems

However very useful when it is applicable
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Independence
A and B are said to be independent iff P (A ∧B) = P (A)P (B)

This is a very strong statement about events

Relatively uncommon in complicated systems

However very useful when it is applicable

Height and reading ability? No!

How do we find out two things are independent?

If we have a table of probabilities,
run through computations and check

Sometimes we can deduce or assume independence
from our model of the world



Probability as Generalized Logic
Statements in logic are one of three values:

True, False, or Unknown

Real world not always simple implication

What if a statement is true in all but one possible model?

Uncertainty due to:

Things we did/could not measure

Imperfect knowledge

Noisy measurements



Probability as Generalized Logic
Statements in logic are one of three values:

True, False, or Unknown

Probability

False = 0, True = 1, Unknown ∈ [0, 1]

Real world not always simple implication

What if a statement is true in all but one possible model?

Uncertainty due to:

Things we did/could not measure

Imperfect knowledge

Noisy measurements

Represent uncertainty and partial knowledge in probabilities



An Example

MaryJohn

Alarm
Earthquake

Burglary



The Random Variables
E - was there an earthquake?

B - was there a burglary?

A - did the alarm go off?

J - did John call me?

M - did Mary call me?

We will use uppercase when talking about a variable
and lowercase when assigning that variable

e.g. a means the alarm went off and
¬e means there was no earthquake



Law of Total Probability
If we have probability of all atomic events then

we can use sums to find probability of a random variable

P (a) = P (a ∧ b) + P (a ∧ ¬b)

If more variables:

P (a) =
∑

x∈B
∑

y∈C
∑

z∈D P (a ∧ x ∧ y ∧ z)

To compute this summation we use a joint distribution table



Joint Distribution
A giant table of probabilities

e

¬e

b

¬b

¬b

b

a ¬a

0.0001 0.00001

0.0009 0.00099

0.0008 0.00009

0.00001 0.9971

P (a ∧ b ∧ ¬e) =
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Joint Distribution
A giant table of probabilities

e

¬e

b

¬b

¬b

b

a ¬a

0.0001 0.00001

0.0009 0.00099

0.0008 0.00009

0.00001 0.9971

Problem: requires 2k − 1 entries where k is the number of variables

P (a ∧ b ∧ ¬e) = 0.0008

P (a) = 0.00181
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given we know another event B happened

P (A|B) read “probability of A given B”
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Conditional Probability
Want to know probability of an event A

given we know another event B happened

P (A|B) read “probability of A given B”

Basic fact: P (A|B) = P (A∧B)
P (B)

P (A) is often called a prior

P (A|B) often called posterior

Example:

P ( rain tomorrow | rain today)

P ( earthquake | alarm went off )



Conditional Independence
A and B are conditionally independent given C iff

P (A ∧B|C) = P (A|C)P (B|C)

Equivalent to saying P (A|B ∧ C) = P (A|C)

In English means if we know about C then
knowing about B does not help us predict A

B contains no information about A
that we didn’t know from C



Conditional Independence
A and B are conditionally independent given C iff

P (A ∧B|C) = P (A|C)P (B|C)

Equivalent to saying P (A|B ∧ C) = P (A|C)

In English means if we know about C then
knowing about B does not help us predict A

B contains no information about A
that we didn’t know from C

NOT the same as independence!

Height and reading ability are not independent

Height and reading ability are conditionally independent
given age
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Bayes Rule
P (A|B) = P (A∧B)

P (B)

⇒ P (A|B)P (B) = P (A ∧B) = P (B|A)P (A)

⇒ P (A|B) = P (B|A)P (A)
P (B)

So what?
Often allows us to transform into probabilities we know

If A is a disease and B is the symptoms then
want to know P (A|B), but only know P (B|A)



Factoring a Joint Distribution
P (A ∧B ∧ C ∧D) = P (A|B ∧ C ∧D)P (B ∧ C ∧D)

= P (A|B ∧ C ∧D)P (B|C ∧D)P (C|D)P (D)

If we use joint distribution tables for all of these then
2k−1 . . . + 4 + 2 + 1 = 2k − 1 different values to store

8 + 4 + 2 + 1 = 15 in above example
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Factoring a Joint Distribution
P (A ∧B ∧ C ∧D) = P (A|B ∧ C ∧D)P (B ∧ C ∧D)

= P (A|B ∧ C ∧D)P (B|C ∧D)P (C|D)P (D)

If we use joint distribution tables for all of these then
2k−1 . . . + 4 + 2 + 1 = 2k − 1 different values to store

Idea: If possible use conditional independence!

P (A ∧B ∧ C ∧D) = P (A|B ∧ C)P (B|D)P (C|D)P (D)

Now only 4 + 2 + 2 + 1 = 9 values

8 + 4 + 2 + 1 = 15 in above example

Factoring order matters!



Improving the Example
P (E ∧B ∧A ∧ J ∧M) =

P (J |A)P (M |A)P (A|B ∧ E)P (E)P (B)

If we know about the alarm, then the phone calls are
independent of each other, the earthquake, and the burglary

Instead of 31 values we only need 10



Improving the Example
P (E ∧B ∧A ∧ J ∧M) =

P (J |A)P (M |A)P (A|B ∧ E)P (E)P (B)

If we know about the alarm, then the phone calls are
independent of each other, the earthquake, and the burglary

Instead of 31 values we only need 10

We just made our first Bayesian network!



Our First Bayesian Network

E B

A

M J

If X appears in the givens for P (Y | . . .)
then draw arrow from X to Y

Can translate back and forth between graph and factorization

Node for each random variable

P (E ∧B ∧A ∧ J ∧M) =
P (J |A)P (M |A)P (A|B ∧ E)P (E)P (B)



Our First Bayesian Network

E B

A

M J

What happens if we had factored differently?

None of the conditional independence helps

P (A ∧B ∧ E ∧M ∧ J) =
P (B|A ∧ E ∧M ∧ J)P (A|E ∧M ∧ J)
P (E|J ∧M)P (J |M)P (M)



Our First Bayesian Network

E B

A

M J

What do we need to store?

P (B) = 0.001P (E) = 0.002

A P (M |A)

a

¬a
0.9

0.05

A P (J |A)

a

¬a
0.7

0.01

E B

e
¬e
e
¬e

b
b
¬b
¬b

P (A|B ∧ E)

0.95
0.94
0.29

0.001



Our First Bayesian Network
P (a ∧ b ∧ ¬e ∧m ∧ ¬j) =

P (¬j|a)P (m|a)P (a|b ∧ ¬e)P (¬e)P (b)

E B

A

M J

P (B) = 0.001

P (E) = 0.002

A P (M |A)

a

¬a
0.9
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0.01

E B

e
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Our First Bayesian Network
P (a ∧ b ∧ ¬e ∧m ∧ ¬j) =

P (¬j|a)P (m|a)P (a|b ∧ ¬e)P (¬e)P (b)

= 0.3× 0.9× 0.94× 0.998× 0.001

= 0.0002532924

E B

A

M J

P (B) = 0.001

P (E) = 0.002

A P (M |A)

a

¬a
0.9

0.05

A P (J |A)

a

¬a
0.7

0.01

E B

e
¬e
e
¬e

b
b
¬b
¬b

P (A|B ∧ E)

0.95
0.94
0.29

0.001



Why is this useful?/Decision Theory
We want to have agents make best decision given

the information they know

Suppose there are two tests for a disease

Test A works 100% of the time but costs $10 to administer

Test B works 90% of the time but costs only $5 to administer

If Test B is positive we always need to run A to confirm

Assume no false negatives only false positives



Why is this useful?/Decision Theory
We want to have agents make best decision given

the information they know

Suppose there are two tests for a disease

Test A works 100% of the time but costs $10 to administer

Test B works 90% of the time but costs only $5 to administer

If Test B is positive we always need to run A to confirm

Assume no false negatives only false positives

Need to compute P ( disease | symptoms )
to pick which test to run

If you have the disease with probability p
then cost of running Test B is:
p× 15 + (1− p)(5 + .1× 10) = 6 + 9p
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Bayesian Networks
Alternate point of view:

Pick a factoring order for the variables

Create a node for each variable

Add an edge from earlier variables to later variables

A

B

C

E D

Delete edges based on conditional independence

Note: no cycles at third step so all Bayesian networks are acyclic

P (A ∧B ∧ C ∧D ∧ E) =
P (E|A ∧B)P (D|A ∧B ∧ C)P (C|B)P (B|A)P (A)



Simple Bayesian Networks

A B C

Known as Markov dependence

Example

A - did it rain yesterday?

B - is it raining today?

C - will it rain tomorrow?

P (A ∧B ∧ C) = P (C|B)P (B|A)P (A)



Simple Bayesian Networks

A B C

P (A ∧B ∧ C) = P (C)P (B)P (A)

Marginal independence

Example

3 coin flips



Simple Bayesian Networks

A
B

C

P (A ∧B ∧ C) = P (B|A ∧ C)P (C)P (A)

Example

Earthquake, burglary, alarm



Simple Bayesian Networks

A

B

C

P (A ∧B ∧ C) = P (A|B)P (C|B)P (B)

Example

Height, reading ability, age



Applications of Bayesian Networks
Spam filtering

Spam-implying variables

The actual ”is it spam?” variable

The spam-implying variables are conditionally independent
once you know whether or not a message is spam

P (S ∧X1 ∧ . . . ∧Xk) = P (X1|S) . . . P (Xk|S)P (S)

X1 Xk
. . .X2

. . .

S



Conclusions
Logic has troubles with uncertainty

Conditional independence helps simplify the world

It is useful to represent and quantify uncertainty

Bayesian networks are nice simple representations

In full generalization, probability is intractable

Encodes conditional probabilities in edges of a graph


