Knowledge Representation using First-Order Logic

Reading: Chapter 8, 9.1-9.2
First lecture slides read: 8.1-8.2
Second lecture slides read: 8.3-8.4
Third lecture slides read: Chapter 9.1-9.2
(lecture slides spread across two class sessions)

(Please read lecture topic material before and after each
lecture on that topic)

Review: KB |= S means |= (KB = S)

e KB |=S isread “KB entails S.”
— Means “S is true in every world (model) in which KB is true.”
— Means “In the world, S follows from KB.”

e KB |=S isequivalentto |= (KB = YS)
— Means “(KB = S) is true in every world (i.e., is valid).”

e Andso: {} |=Sisequivalentto |={}=Y95)

e So what does ({} = S) mean?
— Means “True implies S.”
— Means “S is valid.”
— In Horn form, means “S is a fact.” p. 256 (3@ ed.; p. 281, 2" ed.)

e Why does {} mean True here, but False in resolution proofs?

Review: (True = S) means “S is a fact.”

e By convention,

— The null conjunct is “syntactic sugar” for True.
— The null disjunct is “syntactic sugar” for False.
— Each is assigned the truth value of its identity element.
e For conjuncts, True is the identity: (A A True) = A
e For disjuncts, False is the identity: (A v False) = A
e A KB is the conjunction of all of its sentences.
— So in the expression: {} |=S
e We see that {} is the null conjunct and means True.
— The expression means “S is true in every world where True is true.”
e l.e., “Sis valid.”

— Better way to think of it: {} does not exclude any worlds (models).

In Conjunctive Normal Form each clause is a disjunct.

— Soin,say, KB={ (PQ (-QR) O (XY -2 }
e We see that () is the null disjunct and means False.

Side Trip: Functions AND, OR, and null values
(Note: These are ‘“‘syntactic sugar” in logic.)

function AND(arglist) returns a truth-value
return ANDOR(arglist, True)

function OR(arglist) returns a truth-value
return ANDOR(arglist, False)

function ANDOR(arglist, nullvalue) returns a truth-value
/™ nullvalue is the identity element for the caller. */
If (arglist = {})
then return nullvalue
If (FIRST(arglist) = NOT(nullvalue))
then return NOT(nullvalue)
return ANDOR(REST(arglist))

Review: Resolution as Implication

©OR[A\B CD) ->Same-> (NOT(OR B C D)) => A
ORVAJEF G ->Same-> A => (OR E F G)

(ORBCDEFG) (NOT (OR B C D)) =>(OR E F G)

(OR B CDEF G)

Outline

e Propositional Logic is Useful --- but has Limited Expressive Power

e First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
— FOPC has greatly expanded expressive power, though still limited.

e New Ontology
— The world consists of OBJECTS (for propositional logic, the world was facts).
— OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS.

 New Syntax
— Constants, Predicates, Functions, Properties, Quantifiers.

e New Semantics
— Meaning of new syntax.

e Knowledge engineering in FOL

e Required Reading:
— For today, all of Chapter 8; for next lecture, all of Chapter 9.

You will be expected to know

FOPC syntax and semantics

— Syntax: Sentences, predicate symbols, function symbols, constant
symbols, variables, quantifiers

— Semantics: Models, interpretations
e De Morgan’s rules for quantifiers
— connections between V and 3
e Nested quantifiers
— Difference between “vV x 3y P(X, y)” and “3I x V y P(X, y)”
— V x 3y Likes(x, y)
— I X V Yy Likes(x, y)
e Translate simple English sentences to FOPC and back
— V x 3y Likes(X, y) < “Everyone has someone that they like.”
— I X V y Likes(X, y) < “There is someone who likes every person.”

Common Sense Reasoning

Example, adapted from Lenat

You are told: John drove to the grocery store and bought a
pound of noodles, a pound of ground beef, and two pounds
of tomatoes.

e Is John 3 years old?

e Is John a child?

e What will John do with the purchases?

e Did John have any money?

e Does John have less money after going to the store?
e Did John buy at least two tomatoes?

e Were the tomatoes made in the supermarket?

e Did John buy any meat?

e Is John a vegetarian?

e Will the tomatoes fit in John’s car?

e Can Propositional Logic support these inferences?

Exploring a Wumpus world

If the Wumpus were

/here, stench should be
__—here. Therefore it is

P '\> //here.
B z x Since, there is no breeze

|__here, the pit must be
—~ there, and it must be OK

o — here
—+a | W

P?

=3 4
él

0|
=
wn
0]
=

We need rather sophisticated reasoning here!

Resolution example

e KB = (Bl,l < (P1’2V P2,1)) AT Bl,l

KB N\
_— e
‘ P,V B, - B,V P,VP,, ‘ =P,V B,

True!

False in
all worlds

Pros and cons of propositional logic

© Propositional logic is declarative
- Knowledge and inference are separate

© Propositional logic allows partial/disjunctive/negated information
— unlike most programming languages and databases

© Propositional logic is compositional:
— meaning of B, ; A P, , is derived from meaning of B, ; and of P, ,

© Meaning in propositional logic is context-independent
— unlike natural language, where meaning depends on context

® Propositional logic has limited expressive power
— E.g., cannot say “Pits cause breezes in adjacent squares.”
e except by writing one sentence for each square
— Needs to refer to objects in the world,
— Needs to express general rules

First-Order Logic (FOL), also called
First-Order Predicate Calculus (FOPC)

Propositional logic assumes the world contains facts.

First-order logic (like natural language) assumes the world contains

— Objects: people, houses, numbers, colors, baseball games, wars, ...
— Functions: father of, best friend, one more than, plus, ...

e Function arguments are objects; function returns an object
— Objects generally correspond to English NOUNS

— Predicates/Relations/Properties: red, round, prime, brother of,
bigger than, part of, comes between, ...

e Predicate arguments are objects; predicate returns a truth value
— Predicates generally correspond to English VERBS
e First argument is generally the subject, the second the object

Aside: First-Order Logic (FOL) vs. Second-Order Logic

e First Order Logic (FOL) allows variables and general rules
— “First order” because quantified variables represent objects.
— “Predicate Calculus” because it quantifies over predicates on objects.
e E.g., “Integral Calculus” quantifies over functions on numbers.

e Aside: Second Order logic

— “Second order” because guantified variables can also represent
predicates and functions.

e E.g., can define “Transitive Relation,” which is beyond FOPC.
e Aside: In FOL we can state that a relationship is transitive
— E.g., BrotherOf is a transitive relationship
— V X, Y, z BrotherOf(x,y) A BrotherOf(y,z) == BrotherOf(x,z)
e Aside: In Second Order logic we can define “Transitive”
— V P, X, ¥y, z Transitive(P) & (P(X,y) A P(y,2) == P(X,2))
— Then we can state directly, Transitive(BrotherOf)

FOL (or FOPC) Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?

Objects --- with their relations, functions, predicates, properties, and general rules.

This lecture

Next lecture

Reasoning
Representation : Inference
A Formal Formal Pattern
Symbol System I Matching
Syntax Semantics I Schema Execution
What is What it I Rules of Search
said means | Inference Strategy

Syntax of FOL: Basic elements

e Constants KingJohn, 2, UCI,...
e Predicates Brother, >,...

e Functions Sqgrt, LeftLegOf,...

e Variables X, Y, a,b,...
e Connectives —, =, A, V, &
e Equality =

e Quantifiers v, 3

Syntax of FOL: Basic syntax elements are symbols

e Constant Symbols (correspond to English nouns)

— Stand for objects in the world.
e E.g., KingJohn, 2, UCI, ...

e Predicate Symbols (correspond to English verbs)
— Stand for relations (maps a tuple of objects to a truth-value)
e E.g., Brother(Richard, John), greater_than(3,2), ...
— P(X, y) is usually read as “x is P of y.”
e E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.”

e Function Symbols (correspond to English nouns)
— Stand for functions (maps a tuple of objects to an object)
e E.g., Sgrt(3), LeftLegOf(John), ...

e Model (world) = set of domain objects, relations, functions

e Interpretation maps symbols onto the model (world)
— Very many interpretations are possible for each KB and world!
— Job of the KB is to rule out models inconsistent with our knowledge.

Syntax : Relations, Predicates, Properties, Functions

e Mathematically, all the Relations, Predicates,
Properties, and Functions CAN BE represented
simply as sets of m-tuples of objects:

e Let W be the set of objects in the world.

e letWM=WXWXx..(mtimes) .. x W

— The set of all possible m-tuples of objects from the world

e An m-ary Relation is a subset of WM,
— Example: Let W = {John, Sue, Bill}
— Then W2 = {<John, John>, <John, Sue>, ..., <Sue, Sue>}
— E.g., MarriedTo = {<John, Sue>, <Sue, John>}
— E.g., FatherOf = {<John, Bill>}

e Analogous to a constraint in CSPs
— The constraint lists the m-tuples that satisfy it.
— The relation lists the m-tuples that participate in it.

Syntax : Relations, Predicates, Properties, Functions

e A Predicate is a list of m-tuples making the predicate true.
— E.g., PrimeFactorOf = {<2,4>, <2,6>, <3,6>, <2,8>, <3,9>, ...}
— This is the same as an m-ary Relation.

— Predicates (and properties) generally correspond to English verbs.

e A Property lists the m-tuples that have the property.

— Formally, it is a predicate that is true of tuples having that property.
— E.g., IsRed = {<Ball-5>, <Toy-7>, <Car-11>, ...}

— This is the same as an m-ary Relation.

e A Function CAN BE represented as an m-ary relation
— the first (m-1) objects are the arguments and the mt is the value.
— E.g., Square = {<1, 1>, <2, 4>, <3, 9>, <4, 16>, ..}

e An Object CAN BE represented as a function of zero
arguments that returns the object.
— This is just a 1-ary relationship.

Syntax of FOL: Terms

e« Term = logical expression that refers to an object

e There are two kinds of terms:

— Constant Symbols stand for (or name) objects:
e E.g., KingJohn, 2, UCI, Wumpus, ...

— Function Symbols map tuples of objects to an object:
e E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
e This is nothing but a complicated kind of name
— No “subroutine” call, no “return value”

Syntax of FOL: Atomic Sentences

e Atomic Sentences state facts (logical truth values).

— An atomic sentence is a Predicate symbol, optionally
followed by a parenthesized list of any argument terms
— E.g., Married(Father(Richard), Mother(John))

— An atomic sentence asserts that some relationship (some
predicate) holds among the objects that are its arguments.

e An Atomic Sentence is true in a given model if the
relation referred to by the predicate symbol holds among
the objects (terms) referred to by the arguments.

Syntax of FOL: Atomic Sentences

e Atomic sentences in logic state facts that are true or false.

e Properties and m-ary relations do just that:
LargerThan(2, 3) is false.
BrotherOf(Mary, Pete) is false.
Married(Father(Richard), Mother(John)) could be true or false.
Properties and m-ary relations are Predicates that are true or false.

e Note: Functions refer to objects, do not state facts, and form no sentence:
— Brother(Pete) refers to John (his brother) and is neither true nor false.
— Plus(2, 3) refers to the number 5 and is neither true nor false.

e BrotherOf(Pete, Brother(Pete)) is True.

| |

Binary relation Function refers to John, an object in the
IS a truth value. world, i.e., John is Pete’s brother.
(Works well iff John is Pete’s only brother.)

Syntax of FOL: Connectives & Complex Sentences

e« Complex Sentences are formed in the same way,
and are formed using the same logical connectives,
as we already know from propositional logic

e The Logical Connectives:
— < biconditional
— = implication
— A and
— v or
— — negation

e Semantics for these logical connectives are the same as
we already know from propositional logic.

Complex Sentences

We make complex sentences with connectives (just like in
propositional logic).

property

—Brother(LeftlLeg(Richard),John) v (Democrat(Bush))
ﬂk

binary function
relation

objects

connectives

Examples

Brother(Richard, John) A Brother(John, Richard)

King(Richard) v King(John)

King(John) == — King(Richard)

LessThan(Plus(1,2) ,4) A GreaterThan(1,2)

(Semantics are the same as in propositional logic)

Syntax of FOL: Variables

e Variables range over objects in the world.

e A variable is like a term because it represents an object.

e A variable may be used wherever a term may be used.
— Variables may be arguments to functions and predicates.

(A term with NO variables is called a ground term.)
e (A variable not bound by a quantifier is called free.)

Syntax of FOL: Logical Quantifiers

e There are two Logical Quantifiers:
— Universal: V x P(xX) means “For all x, P(x).”
e The “upside-down A” reminds you of “ALL.”
— Existential: 3 x P(xX) means “There exists x such that, P(x).
e The “upside-down E” reminds you of “EXISTS.”

e Syntactic “sugar” --- we really only need one quantifier.
— V XP(X) =-3x-PX)
— IXP(X) =V X —P(X)
— You can ALWAYS convert one quantifier to the other.

e RULES: V = —d— a.nd d=-V—

e RULE: To move negation “in” across a quantifier,
change the quantifier to “the other quantifier”
and negate the predicate on “the other side.”

— =V X P(X) =3 x —P(X)
— -3 XPX) =V x-PX)

Universal Quantification V

e YV means “for all”

e Allows us to make statements about all objects that have certain
properties

e Can now state general rules:

VvV X King(x) == Person(x) “All kings are persons.”

VvV x Person(x) => HasHead(x) “Every person has a head.”

vV i Integer(i) == Integer(plus(i,1)) “Ifiis an integer then i+1 is an integer.”
Note that

vV X King(xX) A Person(x) is not correct!

This would imply that all objects x are Kings and are People

vV X King(x) == Person(X) is the correct way to say this

Note that => is the natural connective to use with V .

Universal Quantification V

e Universal quantification is equivalent to:

— Conjunction of all sentences obtained by substitution of an
object for the quantified variable.

e All Cats are Mammals.
— VX Cat(x) = Mammal(x)

e Conjunction of all sentences obtained by substitution of
an object for the quantified variable:

Cat(Spot) = Mammal(Spot) A
Cat(Rick) = Mammal(Rick) A

Cat(LAX) = Mammal(LAX) A
Cat(Shayama) = Mammal(Shayama) A
Cat(France) = Mammal(France) A

Cat(Felix) = Mammal(Felix) A

Existential Quantification 3

e X means “there exists an x such that....” (at least one object x)
e Allows us to make statements about some object without naming it
e Examples:

dx King(x) “Some objectis a king.”

d x Lives_in(John, Castle(x)) “John lives in somebody’s castle.”

di Integer(i) A GreaterThan(i,0) “Some integer is greater than zero.”

Note that A is the natural connective to use with 3

(And note that => is the natural connective to use with V)

Existential Quantification 3

e EXxistential quantification is equivalent to:

— Disjunction of all sentences obtained by substitution of an
object for the quantified variable.

e Spot has a sister who Is a cat.
— 3Jx Sister(x, Spot) A Cat(x)

e Disjunction of all sentences obtained by substitution of
an object for the quantified variable:

Sister(Spot, Spot) 4 Cat(Spot) v
Sister(Rick, Spot) & Cat(Rick) v
Sister(LAX, Spot) A Cat(LAX) v
Sister(Shayama, Spot) » Cat(Shayama) v
Sister(France, Spot) » Cat(France) v
Sister(Felix, Spot) A Cat(Felix) v

Combining Quantifiers --- Order (Scope)

The order of “unlike” quantifiers is important.

vV x dy Loves(X,y)
— For everyone (“all x”) there is someone (“exists y”) whom they love

1 y V x Loves(X,y)

- there is someone (“exists y”) whom everyone loves (“all x”)
Clearer with parentheses: dy (V x Loves(X,y))

The order of “like” quantifiers does not matter.
VX VY P(X, y) = Vy VX P(X, y)
Ix 3y P(X, y) = 3y 3IX P(X, y)

Connections between Quantifiers

e Asserting that all x have property P is the same as asserting
that does not exist any x that does not have the property P

V x Likes(x, CS-171 class) & — dx — Likes(x, CS-171 class)

e Asserting that there exists an x with property P is the same as
asserting that not all x do not have the property P

d x Likes(x, IceCream) & —V x — Likes(x, IceCream)

In effect:
- ¥ IS a conjunction over the universe of objects

- d 1s a disjunction over the universe of objects
Thus, DeMorgan’s rules can be applied

De Morgan’s Law for Quantifiers

De Morgan’s Rule Generalized De Morgan’s Rule
PAR=—(—Pv-Q) Vx P =—Ix(—P)
Pv@=—(-Pr-Q) Ax P =V x(—-P)
~(PArQ)=—-PVv-QR —~Vx P =3x(-P)
(PVQ) =P A-Q —3x P =Vx(=P)

Rule is simple: if you bring a negation inside a disjunction or a conjunction,
always switch between them (or >and, and - or).

Equality

e term,; = term, is true under a given interpretation if and only if
term; and term, refer to the same object

e E.g., definition of Sibling in terms of Parent:

vX,y Sibling(x,y) <
[-(x=Yy) A
am,f — (m = f) A Parent(m,x) A Parent(f,x)
A Parent(m,y) A Parent(f,y)]

Equality can make reasoning much more difficult!

(See R&N, section 9.5.5, page 353)
You may not know when two objects are equal.

E.g., Ancients did not know (MorningStar = EveningStar = Venus)
You may have to prove x = y before proceeding

E.g., a resolution prover may not know 2+1 is the same as 1+2

FOL (or FOPC) Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?

Objects --- with their relations, functions, predicates, properties, and general rules.

This lecture

Next lecture

Reasoning
Representation : Inference
A Formal Formal Pattern
Symbol System I Matching
Syntax Semantics I Schema Execution
What is What it I Rules of Search
said means | Inference Strategy

	Knowledge Representation using First-Order Logic
	Review: KB |= S means |= (KB  S)
	Review: (True  S) means “S is a fact.”
	Side Trip: Functions AND, OR, and null values�(Note: These are “syntactic sugar” in logic.)
	Review: Resolution as Implication
	Outline
	You will be expected to know
	Common Sense Reasoning�Example, adapted from Lenat
	Exploring a Wumpus world
	Resolution example
	Pros and cons of propositional logic
	First-Order Logic (FOL), also called�First-Order Predicate Calculus (FOPC)
	Aside: First-Order Logic (FOL) vs. Second-Order Logic
	Slide Number 14
	Syntax of FOL: Basic elements
	Syntax of FOL: Basic syntax elements are symbols
	Syntax : Relations, Predicates, Properties, Functions
	Syntax : Relations, Predicates, Properties, Functions
	Syntax of FOL: Terms
	Syntax of FOL: Atomic Sentences
	Syntax of FOL: Atomic Sentences
	Syntax of FOL: Connectives & Complex Sentences
	Complex Sentences
	Examples
	Syntax of FOL: Variables
	Syntax of FOL: Logical Quantifiers
	Universal Quantification 
	Universal Quantification 
	Existential Quantification 
	Existential Quantification 
	Combining Quantifiers --- Order (Scope)
	Connections between Quantifiers
	De Morgan’s Law for Quantifiers
	Equality
	Slide Number 35

