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Types	of	games	

•  Start	with	determinis=c,	perfect	info	games	(easiest)	

•  Not	considered:	
–  Physical	games	like	tennis,	ice	hockey,	etc.	
–  But,	see	“robot	soccer”,	hQp://www.robocup.org/	

chess,	checkers,	go,	
othello	

backgammon,	
monopoly	

baQleship,	Kriegspiel	 Bridge,	poker,	
scrabble,	…	

Deterministic: Chance: 

Perfect 
  Information: 

Imperfect 
  Information: 



Typical	assump=ons		
•  Two	agents,	whose	ac=ons	alternate	
•  U=lity	values	for	each	agent	are	the	opposite	of	the	other	

–  “Zero-sum”	game;	this	creates	adversarial	situa=on	

•  Fully	observable	environments	

•  In	game	theory	terms:	
–  Determinis=c,	turn-taking,	zero-sum,	perfect	informa=on	

•  Generalizes:	stochas=c,	mul=player,	non	zero-sum,	etc.	

•  Compare	to	e.g.,	Prisoner’s	Dilemma”	(R&N	pp.	666-668)	
–  Non-turn-taking,	Non-zero-sum,	Imperfect	informa=on	



Game	Tree	(=c-tac-toe)	
•  All	possible	moves	at	each	step	

•  How	do	we	search	this	tree	to	find	the	op=mal	move?	



Search	versus	Games	
•  Search:	no	adversary	

–  Solu=on	is	(heuris=c)	method	for	finding	goal	
–  Heuris=cs	&	CSP	techniques	can	find	op=mal	solu=on	
–  Evalua=on	func=on:	es=mate	cost	from	start	to	goal	through	a	given	node	
–  Examples:	path	planning,	scheduling	ac=vi=es,	…	

•  Games:	adversary	
–  Solu=on	is	a	strategy	

•  Specifices	move	for	every	possible	opponent	reply	

–  Time	limits	force	an	approximate	solu=on	
–  Evalua=on	func=on:	evaluate	“goodness”	of	game	posi=on	
–  Examples:	chess,	checkers,	Othello,	backgammon	



Games	as	search	
•  Two	players,	“MAX”	and	“MIN”	

•  MAX	moves	first,	&	take	turns	un=l	game	is	over	
–  Winner	gets	reward,	loser	gets	penalty	
–  “Zero	sum”:	sum	of	reward	and	penalty	is	constant	

•  Formal	defini=on	as	a	search	problem:	
–  Ini=al	state:	set-up	defined	by	rules,	e.g.,	ini=al	board	for	chess	
–  Player(s):	which	player	has	the	move	in	state	s	
–  Ac=ons(s):	set	of	legal	moves	in	a	state	
–  Results(s,a):	transi=on	model	defines	result	of	a	move	
–  Terminal-Test(s):	true	if	the	game	is	finished;	false	otherwise	
–  U=lity(s,p):	the	numerical	value	of	terminal	state	s	for	player	p	

•  E.g.,	win	(+1),	lose	(-1),	and	draw	(0)	in	=c-tac-toe	
•  E.g.,	win	(+1),	lose	(0),	and	draw	(1/2)	in	chess	

•  MAX	uses	search	tree	to	determine	“best”	next	move	



•  Designed	to	find	the	op=mal	strategy	&	best	move	for	MAX:	
	

1.	Generate	the	whole	game	tree	to	leaves	
2.	Apply	u=lity	(payoff)	func=on	to	leaves	
3.		Back-up	values	from	leaves	toward	the	root:	

•  a	Max	node	computes	the	max	of	its	child	values	
•  a	Min	node	computes	the	min	of	its	child	values	

4.	At	root:	choose	move	leading	to	the	child	of	highest	value	
	

Min-Max:	an	op=mal	procedure	



Two-ply	Game	Tree	

MIN 

MAX 

3 12 8 2 4 6 14 5 2 

3 2 2 

3 The minimax decision 

Minimax maximizes the utility of the worst-case outcome for MAX 



Recursive	min-max	search	
mmSearch(state) 
   return argmax( [ minValue( apply(state,a) ) for each action a ] ) 
 
 
maxValue(state) 
   if (terminal(state)) return utility(state); 
   v = -infty 
   for each action a: 
      v = max( v,  minValue( apply(state,a) ) ) 
  return v 
 
 
minValue(state) 
   if (terminal(state)) return utility(state); 
   v = infty 
   for each action a: 
      v = min( v,  maxValue( apply(state,a) ) ) 
  return v 

Simple stub to call recursion f’ns 

If recursion limit reached, eval position 
 
Otherwise, find our best child: 
    

If recursion limit reached, eval position 
 
Otherwise, find the worst child: 
    



Proper=es	of	minimax	
•  Complete?		Yes		(if	tree	is	finite)	

•  Op=mal?				
–  Yes	(against	an	op=mal	opponent)	
–  Can	it	be	beaten	by	a	subop=mal	opponent?		(No	–	why?)	

•  Time?			O(bm)	

•  Space?			
–  O(bm)				(depth-first	search,	generate	all	ac=ons	at	once)	
–  O(m)						(backtracking	search,	generate	ac=ons	one	at	a	=me)	



Game	tree	size	
•  Tic-tac-toe	

–  B	¼	5	legal	ac=ons	per	state	on	average;	total	9	plies	in	game	
•  “ply”	=	one	ac=on	by	one	player;	“move”	=	two	plies	

–  59	=	1,953,125	
–  9!	=	362,880		(computer	goes	first)	
–  8!	=	40,320	(computer	goes	second)	
–  Exact	solu=on	is	quite	reasonable	

•  Chess	
–  B	¼	35	(approximate	average	branching	factor)	
–  D	¼	100	(depth	of	game	tree	for	“typical”	game)	
–  Bd	=	35100	¼	10154	nodes!!!	
–  Exact	solu=on	completely	infeasible	

It	is	usually	impossible	to	develop	the	whole	search	tree.	



Cuqng	off	search	
•  One	solu=on:	cut	off	tree	before	game	ends	
•  Replace	

–  Terminal(s) 	with			Cutoff(s)		 	–	e.g.,	stop	at	some	max	depth	
–  U=lity(s,p)	 	with			Eval(s,p)	 	–	es=mate	posi=on	quality	

•  Does	it	work	in	prac=ce?	
–  Bm	=	106,	b	=	35		)		m	=	4	
–  4-ply	lookahead	is	a	poor	chess	player	
–  4-ply	¼	human	novice	
–  8-ply	¼	typical	PC,	human	master	
–  12-ply	¼	Deep	Blue,	Kasparov	



Sta=c	(Heuris=c)	Evalua=on	Func=ons	
•  An	Evalua=on	Func=on:	

–  Es=mate	how	good	the	current	board	configura=on	is	for	a	player.	
–  Typically,	evaluate	how	good	it	is	for	the	player,	and	how	good	it	is	for	the	

opponent,	and	subtract	the	opponent’s	score	from	the	player’s.	
–  Oren	called	“sta=c”	because	it	is	called	on	a	sta=c	board	posi=on	
–  Ex:	Othello:	Number	of	white	pieces	-	Number	of	black	pieces	
–  Ex:	Chess:		Value	of	all	white	pieces	-	Value	of	all	black	pieces	

•  Typical	value	ranges:	
	[	-1,	1	]		(loss/win)	 	or 	[	-1	,	+1	] 	or 	[	0	,	1	]	

•  Board	evalua=on:		X	for	one	player	)	-X	for	opponent	
–  Zero-sum	game:	scores	sum	to	a	constant	





Applying	minimax	to	=c-tac-toe	
•  The	sta=c	heuris=c	evalua=on	func=on:	

–  Count	the	number	of	possible	win	lines	

X 

O 

X 

O 

X has 6 
possible win 
paths 

X 

O 

O has 5 
possible win 
paths 

E(s) = 6 – 5 = 1 

X O X 

O 

X has 4 possible wins 
O has 6 possible wins 
 
E(n) = 4 – 6 = -2 

X has 5 possible wins 
O has 4 possible wins 
 
E(n) = 5 – 4 = 1 



Minimax	values	(two	ply)	



Minimax	values	(two	ply)	



Minimax	values	(two	ply)	





Itera=ve	deepening	
•  In	real	games,	there	is	usually	a	=me	limit	T	to	make	a	move	

•  How	do	we	take	this	into	account?	
•  Minimax	cannot	use	“par=al”	results	with	any	confidence,	unless	

the	full	tree	has	been	searched	
–  Conserva=ve:	set	small	depth	limit	to	guarantee	finding	a	move	in	=me	<	T	
–  But,	we	may	finish	early	–	could	do	more	search!	

•  In	prac=ce,	itera=ve	deepening	search	(IDS)	is	used	
–  IDS:	depth-first	search	with	increasing	depth	limit	
–  When	=me	runs	out,	use	the	solu=on	from	previous	depth	
–  With	alpha-beta	pruning	(next),	we	can	sort	the	nodes	based	on	values	

from	the	previous	depth	limit	in	order	to	maximize	pruning	during	the	next	
depth	limit	)	search	deeper!	



•  The	Horizon	Effect	
–  Some=mes	there’s	a	major	“effect”	(such	as	a	piece	being	captured)	

which	is	just	“below”	the	depth	to	which	the	tree	has	been	expanded.	
–  The	computer	cannot	see	that	this	major	event	could	happen	because	it	

has	a	“limited	horizon”.	
–  There	are	heuris=cs	to	try	to	follow	certain	branches	more	deeply	to	

detect	such	important	events	
–  This	helps	to	avoid	catastrophic	losses	due	to	“short-sightedness”	

	

•  Heuris=cs	for	Tree	Explora=on	
–  Oren	beQer	to	explore	some	branches	more	deeply	in	the	alloQed	=me	
–  Various	heuris=cs	exist	to	iden=fy	“promising”	branches	
–  Stop	at	“quiescent”	posi=ons	–	all	baQles	are	over,	things	are	quiet	
–  Con=nue	when	things	are	in	violent	flux	–	the	middle	of	a	baQle	

Limited	horizon	effects	



Selec=vely	deeper	game	trees	

MIN 
(Opponent’s move) 

MAX 
(Computer’s move) 

3 5 
5 8 

7 8 

3 4 

4 

0 
5 

0 7 

4 

MIN 
(Opponent’s move) 

MAX 
(Computer’s move) 



Eliminate	redundant	nodes	
•  On	average,	each	board	posi=on	appears	in	the	search	tree	

approximately	10150	/	1040	=	10100	=mes	
–  Vastly	redundant	search	effort	

•  Can’t	remember	all	nodes	(too	many)	
–  Can’t	eliminate	all	redundant	nodes	

•  Some	short	move	sequences	provably	lead	to	a	redundant	
posi=on	
–  These	can	be	deleted	dynamically	with	no	memory	cost	

•  Example:	
1.		P-QR4		P-QR4;	 	2.	P-KR4		P-KR4	
leads	to	the	same	posi=on	as	
1.		P-QR4		P-KR4;		 	2.	P-KR4		P-QR4	



Summary	
•  Game	playing	as	a	search	problem	

•  Game	trees	represent	alternate	computer	/	opponent	moves	

•  Minimax:	choose	moves	by	assuming	the	opponent	will	always	choose	the	
move	that	is	best	for	them	
–  Avoids	all	worst-case	outcomes	for	Max,	to	find	the	best	
–  If	opponent	makes	an	error,	Minimax	will	take	op=mal	advantage	(arer)	&	make	

the	best	possible	play	that	exploits	the	error	

•  Cuqng	off	search	
–  In	general,	it’s	infeasible	to	search	the	en=re	game	tree	
–  In	prac=ce,	Cutoff-Test	decides	when	to	stop	searching	
–  Prefer	to	stop	at	quiescent	posi=ons	
–  Prefer	to	keep	searching	in	posi=ons	that	are	s=ll	in	flux	

•  Sta=c	heuris=c	evalua=on	func=on	
–  Es=mate	the	quality	of	a	given	board	configura=on	for	MAX	player	
–  Called	when	search	is	cut	off,	to	determine	value	of	posi=on	found	
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Alpha-Beta	pruning	
•  Exploit	the	“fact”	of	an	adversary	

•  If	a	posi=on	is	provably	bad	
–  It’s	no	use	searching	to	find	out	just	how	bad	

•  If	the	adversary	can	force	a	bad	posi=on	
–  It’s	no	use	searching	to	find	the	good	posi=ons	the	adversary	
won’t	let	you	achieve	

•  Bad	=	not	beQer	than	we	can	get	elsewhere	



Pruning	with	Alpha/Beta	

Do	these	nodes	maQer?	
If	they	=	+1	million?	
If	they	=	−1	million?	



?? 

Alpha-Beta	Example	

MAX 

Initially, possibilities are unknown: range (®=-1, ¯=+1) 

® = -1 
¯ = +1 

?? ?? MIN 

Do a depth-first search to the first leaf. 

® = -1 
¯ = +1 

Child inherits 
current ® and ¯ 

?? ?? 



® = -1 
¯ = +1 

Alpha-Beta	Example	

MIN 

MAX 

3 

® = -1 
¯ = +1 

See the first leaf, after MIN’s move: MIN updates ¯ 

?? ?? 

?? ?? 

® = -1 
¯ = 3 · 3 

® < ¯ so 
 no pruning 



Alpha-Beta	Example	

MIN 

MAX 

3 12 8 

® = -1 
¯ = +1 

® = -1 
¯ = 3 ?? ?? 

See remaining leaves; value is known 

 3 

Pass outcome to caller; MAX updates ® 
® = 3 
¯ = +1 
¸ 3 



Alpha-Beta	Example	

MIN 

MAX 

3 12 8 

® = 3 
¯ = +1 

¸ 3 

® = -1 
¯ = 3  3 

Pass ®, ¯ to descendants 
® = 3 
¯ = +1 

Continue depth-first search to next leaf. 

Child inherits 
current ® and ¯ 

?? 

?? ?? 



® = 3 
¯ = +1 

Alpha-Beta	Example	

MIN 

MAX 

3 12 8 2 

® = 3 
¯ = 2  .     

¸ 3 

® = -1 
¯ = 3  3 

® = 3 
¯ = +1 

Observe leaf value; MIN’s level; MIN updates \beta 

?? 

?? ?? 

® ¸ ¯ !!! 
(what does this mean?) 

· 2 
(This node is 
worse for MAX) 

Prune!!! X X 

Prune – play will never reach the other nodes! 



Alpha-Beta	Example	

MIN 

MAX 

3 12 8 2 

® = 3 
¯ = +1 

® = -1 
¯ = 3 

X X 

® = 3 
¯ = 2 · 2 

¸ 3 

MAX level, 3 ¸ 2  
 ) no change 

?? 

Pass outcome to caller & update caller: 



Alpha-Beta	Example	

MIN 

MAX 

3 12 8 2 

® = 3 
¯ = +1 

® = -1 
¯ = 3 

X X 

® = 3 
¯ = 2 · 2 

¸ 3 

Continue depth-first exploration… 

14 5 2 

® = 3 
¯ = +1 

Child inherits 
current ® and ¯ 

No pruning here; value is not resolved until final leaf. 

 2 



Alpha-Beta	Example	

MIN 

MAX 

3 12 8 2 

® = -1 
¯ = 3 

X X 

® = 3 
¯ = 2 · 2 

 3 

Value at the root is resolved. 

14 5 2 

® = 3 
¯ = 2  2 

Pass outcome to 
caller & update 

® = 3 
¯ = +1 



General	alpha-beta	pruning	
•  Consider	a	node	n	in	the	tree:	

•  If	player	has	a	beQer	choice	at	
–  Parent	node	of	n	
–  Or,	any	choice	further	up!	

•  Then	n	is	never	reached	in	play	

•  So:	
– When	that	much	is	known	about	n,	it	can	be	pruned	



Recursive	®-¯	pruning	
abSearch(state) 
   alpha, beta, a  = -infty, +infty, None 
   for each action a: 
       alpha, a = max( (alpha,a) , (minValue( apply(state,a), alpha, beta), a) ) 
   return a 
 
maxValue(state, al, be) 
   if (cutoff(state)) return eval(state); 
   for each action a: 
      al = max( al,  minValue( apply(state,a), al, be) 
      if (al ¸ be)  return  +infty 
  return al 
 
 
minValue(state, al, be) 
   if (cutoff(state)) return eval(state); 
   for each action a: 
      be = min( be,  maxValue( apply(state,a), al, be) 
      if (al ¸ be)  return  -infty 
   return be 

Simple stub to call recursion f’ns 
Initialize alpha, beta; no move found 
Score each action; update alpha & best action 

If recursion limit reached, eval heuristic 
 
Otherwise, find our best child: 
If our options are too good, our min 
    ancestor will never let us come this way 
Otherwise return the best we can find 

If recursion limit reached, eval heuristic 
 
Otherwise, find the worst child:   
If our options are too bad, our max  
   ancestor will never let us come this way 
Otherwise return the worst we can find 



Effec=veness	of	®-¯	Search	
•  Worst-Case	

–  Branches	are	ordered	so	that	no	pruning	takes	place.	In	this	case	alpha-beta	
gives	no	improvement	over	exhaus=ve	search	
	

•  Best-Case	
–  Each	player’s	best	move	is	the	ler-most	alterna=ve	(i.e.,	evaluated	first)	
–  In	prac=ce,	performance	is	closer	to	best	rather	than	worst-case	

	

•  In	prac=ce	oren	get	O(b(d/2))	rather	than	O(bd)		
–  This	is	the	same	as	having	a	branching	factor	of	sqrt(b),		

•  since	(sqrt(b))d	=		b(d/2)	(i.e.,	we	have	effec=vely	gone	from	b	to	square	root	of	b)	

–  In	chess	go	from	b	~	35		to		b	~	6	
•  permi=ng	much	deeper	search	in	the	same	amount	of	=me	



Itera=ve	deepening	
•  In	real	games,	there	is	usually	a	=me	limit	T	to	make	a	move	

•  How	do	we	take	this	into	account?	
•  Minimax	cannot	use	“par=al”	results	with	any	confidence,	unless	

the	full	tree	has	been	searched	
–  Conserva=ve:	set	small	depth	limit	to	guarantee	finding	a	move	in	=me	<	T	
–  But,	we	may	finish	early	–	could	do	more	search!	

•  Added	benefit	with	Alpha-Beta	Pruning:	
–  Remember	node	values	found	at	the	previous	depth	limit	
–  Sort	current	nodes	so	that	each	player’s	best	move	is	ler-most	child	
–  Likely	to	yield	good	Alpha-Beta	Pruning		)	beQer,	faster	search	
–  Only	a	heuris=c:	node	values	will	change	with	the	deeper	search	
–  Usually	works	well	in	prac=ce	



Comments	on	alpha-beta	pruning	
•  Pruning	does	not	affect	final	results	

•  En=re	subtrees	can	be	pruned	

•  Good	move	ordering	improves	pruning	
–  Order	nodes	so	player’s	best	moves	are	checked	first	

•  Repeated	states	are	s=ll	possible	
–  Store	them	in	memory	=	transposi=on	table	



Itera=ve	deepening	reordering	

MIN 

MAX 

3 4 

Which leaves can be pruned? 

1 2 7 8 5 6 

None!   
 

because the most 
favorable nodes 
are explored last… 



Itera=ve	deepening	reordering	

MIN 

MAX 

6 5 

Different exploration order: now which leaves can be pruned? 

8 7 2 1 3 4 

Lots!   
 

because the most 
favorable nodes 
are explored first! 



Itera=ve	deepening	reordering	

MIN 

MAX 

3 4 

Order with no pruning; use iterative deepening approach. 
Assume node score is the average of leaf values below.  

1 2 7 8 5 6 

L=0 4.5 



Itera=ve	deepening	reordering	

MIN 

MAX 

3 4 

Order with no pruning; use iterative deepening approach. 
Assume node score is the average of leaf values below.  

1 2 7 8 5 6 

6.5 

L=1 2.5 6.5 

For L=2,  
switch the order of 
these nodes!  



Itera=ve	deepening	reordering	

MIN 

MAX 

7 8 

Order with no pruning; use iterative deepening approach. 
Assume node score is the average of leaf values below.  

5 6 3 4 1 2 

6.5 

L=1 6.5 2.5 

For L=2,  
switch the order of 
these nodes!  



Itera=ve	deepening	reordering	

MIN 

MAX 

7 8 

Order with no pruning; use iterative deepening approach. 
Assume node score is the average of leaf values below.  

5 6 3 4 1 2 

5.5 

L=2 

5.5 3.5 

Alpha-Beta pruning 
would prune this node 
at L=2 

7.5 5.5 3.5 

For L=3, switch the 
order of these nodes! 



Itera=ve	deepening	reordering	

MIN 

MAX 

5 6 

Order with no pruning; use iterative deepening approach. 
Assume node score is the average of leaf values below.  

7 8 3 4 1 2 

5.5 

L=2 

5.5 3.5 

Alpha-Beta pruning 
would prune this node 
at L=2 

5.5 7.5 3.5 

For L=3, switch the 
order of these nodes! 



Itera=ve	deepening	reordering	

MIN 

MAX 

5 6 

Order with no pruning; use iterative deepening approach. 
Assume node score is the average of leaf values below.  

7 8 3 4 1 2 

6 

L=3 

6 4 

Lots of pruning! 
The most favorable 
nodes are explored 
earlier. 

6 7 4 



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

MAX	

MIN	

MAX	

5	

α=−∞	
β=+∞	

α,	β,	ini%al	values	
Branch nodes are labelel A..K for easy discussion 

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

5	

α=−∞	
β=+∞	current	α,	β,	

passed	to	kids	

MAX	

MIN	

MAX	
α=−∞	
β=+∞	
kid=A	

α=−∞	
β=+∞	
kid=E	

Longer	Alpha-Beta	Example	
Note that cut-off occurs at different depths… 



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

4	

5	

α=−∞	
β=+∞	

see	first	leaf,	
MAX	updates	α	

4	

MAX	

MIN	

MAX	
α=−∞	
β=+∞	
kid=A	

α=4	
β=+∞	
kid=E	

We	also	are	running	MiniMax	search	and	recording	node	values	within	the	triangles,	without	explicit	comment.	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

5	

5	

α=−∞	
β	=+∞	

see	next	leaf,	
MAX	updates	α	

5	

MAX	

MIN	

MAX	
α=−∞	
β=+∞	
kid=A	

α=5	
β=+∞	
kid=E	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

5	

α=−∞	
β	=+∞	

see	next	leaf,	
MAX	updates	α	

6	

MAX	

MIN	

MAX	
α=−∞	
β=+∞	
kid=A	

α=6	
β=+∞	
kid=E	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

5	

α=−∞	
β	=+∞	

return	node	value,	
MIN	updates	β	

6	

MAX	

MIN	

MAX	
α=−∞	
β=6	
kid=A	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

5	

α=−∞	
β	=+∞	

current	α,	β,	
passed	to	kid	F	

MAX	

MIN	

MAX	
α=−∞	
β=6	
kid=A	

α=−∞	
β=6	
kid=F	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

5	

α=−∞	
β	=+∞	

see	first	leaf,	
MAX	updates	α	

6	

6	 MAX	

MIN	

MAX	
α=−∞	
β=6	
kid=A	

α=6	
β=6	
kid=F	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

5	

α=−∞	
β	=+∞	

6	 MAX	

MIN	

MAX	

α ≥ β !! 
Prune!!	

X X 

α=−∞	
β=6	
kid=A	

α=6	
β=6	
kid=F	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

5	

α=−∞	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X 

return	node	value,	
MIN	updates	β, 
no	change	to	β	

6	

If	we	had	conGnued	searching	at	node	F,	we	would	see	the	9	from	its	third	leaf.	Our	returned	value	would	be	9	instead	of	6.	But	
at	A,	MIN	would	choose	E(=6)	instead	of	F(=9).	Internal	values	may	change;	root	values	do	not.	

α=−∞	
β=6	
kid=A	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

5	

α=−∞	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X 

9	

see	next	leaf,	
MIN	updates	β, 
no change to β 

α=−∞	
β=6	
kid=A	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

6	

5	

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X 

6	

return	node	value,	
MAX	updates	α	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

6	

5	

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X 

α=6	
β=+∞	
kid=B	

α=6	
β=+∞	
kid=G	

current	α,	β,	
passed	to	kids	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

6	

5	

5	

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X 

α=6	
β=+∞	
kid=B	

α=6	
β=+∞	
kid=G	

see	first	leaf,	
MAX	updates	α,	
no	change	to α	

5	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	

6	

6	

5	

5	

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X 

α=6	
β=+∞	
kid=B	

α=6	
β=+∞	
kid=G	

see	next	leaf,	
MAX	updates	α,	
no	change	to α 

4	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	

6	

6	

5	

5	

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X 

α=6	
β=5	
kid=B	

return	node	value,	
MIN	updates	β	

5	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	

6	

6	

5	

5	 ?

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X 

α=6	
β=5	
kid=B	

α ≥ β !! 
Prune!!	

X 

X 

X 
Note	that	we	never	find	out,	what	is	the	node	value	of	H?	But	we	have	proven	it	doesn’t	maTer,	so	we	don’t	care.	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	

6	

6	

5	

5	 ?

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X 

5	

return	node	value,	
MAX	updates	α, 
no change to α	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	

6	

6	

5	

5	 ?

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X 

α=6	
β=+∞	
kid=C	

current	α,	β,	
passed	to	kid=C	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 9	

6	

6	

5	

5	 ?

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X 

α=6	
β=9	
kid=C	

see	first	leaf,	
MIN	updates	β	

9	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 9	

6	

6	

5	

5	 ?

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X 

α=6	
β=9	
kid=C	

α=6	
β=9	
kid=I	

current	α,	β,	
passed	to	kid	I	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 9	

6	

6	

5	

5	 ? 2 

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X 

α=6	
β=9	
kid=C	

α=6	
β=9	
kid=I	

see	first	leaf,	
MAX	updates	α,	
no	change	to α	

2	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 9	

6	

6	

5	

5	 ? 6 

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X 

α=6	
β=9	
kid=C	

α=6	
β=9	
kid=I	

see	next	leaf,	
MAX	updates	α,	
no	change	to α	

6	

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 6	

6	

6	

5	

5	 ? 6 

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X 

α=6	
β=6	
kid=C	

6	

return	node	value,	
MIN	updates	β	

Longer	Alpha-Beta	Example	



α=6	
β=6	
kid=C	

4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 6	

6	

6	

5	

5	 ? 6	 ?

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X 

α ≥ β !! 
Prune!!	

X X X 

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 6	

6	

6	

5	

5	 ? 6	 ?

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X X X X 

6	

return	node	value,	
MAX	updates	α, 
no change to α	

Longer	Alpha-Beta	Example	



α=6	
β=+∞	
kid=D	

4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 6	

6	

6	

5	

5	 ? 6	 ?

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X X X X 

current	α,	β,	
passed	to	kid=D	

Longer	Alpha-Beta	Example	



α=6	
β=6	
kid=D	

4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 6	 6	

6	

6	

5	

5	 ? 6	 ?

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X X X X 

see	first	leaf,	
MIN	updates	β	

6	

Longer	Alpha-Beta	Example	



α=6	
β=6	
kid=D	

4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 6	 6	

6	

6	

5	

5	 ? 6	 ? ?	

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X X X X 

α ≥ β !! 
Prune!!	

X X X 

Longer	Alpha-Beta	Example	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 6	 6	

6	

6	

5	

5	 ? 6	 ? ?	

α=6	
β	=+∞	

6	 MAX	

MIN	

MAX	

X X X 

X 

X X X X X X X 

6	

return	node	value,	
MAX	updates	α, 
no change to α	

Alpha-Beta	Example	#2	



4	

A B C	 D

E	 F	 J	 K	G H I	

9	 9	4	 6	

6	 6	 1	 9	 5	 4	 1	 3	 2	 6	 1	 3	 6	 8	 6	 3	5	

6	 5	 6	 6	

6	

6	

5	

5	 ? 6	 ? ?	6	 MAX	

MIN	

MAX	

X X X 

X 

X X X X X X X 

MAX’s	
move	

MAX	moves	to	A, 
and expects to get 6	

Although	we	may	have	changed	some	internal	branch	node	return	values,	the	final	root	acGon	and	expected	outcome	are	
idenGcal	to	if	we	had	not	done	alpha-beta	pruning.	Internal	values	may	change;	root	values	do	not.	

Alpha-Beta	Example	#2	



Nondeterminis=c	games	
•  Ex:	Backgammon	

–  Roll	dice	to	determine	how	far	to	move		(random)	
–  Player	selects	which	checkers	to	move				(strategy)	

https://commons.wikimedia.org/wiki/File:Backgammon_lg.jpg 



Nondeterminis=c	games	
•  Chance	(random	effects)	due	to	dice,	card	shuffle,	…	
•  Chance	nodes:	expecta=on	(weighted	average)	of	successors	
•  Simplified	example:	coin	flips	

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

2 4 0 -2 

0.5 0.5 0.5 0.5 

MAX’s	
move	

“Expectiminimax” 



Pruning	in	nondeterminis=c	games	
•  Can	s=ll	apply	a	form	of	alpha-beta	pruning		

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

2 4 0 -2 

0.5 0.5 0.5 0.5 



Pruning	in	nondeterminis=c	games	
•  Can	s=ll	apply	a	form	of	alpha-beta	pruning		

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

(-1, 1) 

0.5 0.5 0.5 0.5 

(-1, 1) (-1, 1) (-1, 1) 

(-1, 1) (-1, 1) 

(-1, 1) 



Pruning	in	nondeterminis=c	games	
•  Can	s=ll	apply	a	form	of	alpha-beta	pruning		

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

(-1, 2) 

0.5 0.5 0.5 0.5 

(-1, 1) (-1, 1) (-1, 1) 

(-1, 1) (-1, 1) 

(-1, 1) 



Pruning	in	nondeterminis=c	games	
•  Can	s=ll	apply	a	form	of	alpha-beta	pruning		

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

(2, 2) 

0.5 0.5 0.5 0.5 

(-1, 1) (-1, 1) (-1, 1) 

(-1, 1) (-1, 1) 

(-1, 1) 



Pruning	in	nondeterminis=c	games	
•  Can	s=ll	apply	a	form	of	alpha-beta	pruning		

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

(2, 2) 

0.5 0.5 0.5 0.5 

(-1, 7) (-1, 1) (-1, 1) 

(-1, 4.5) (-1, 1) 

(-1, 1) 



Pruning	in	nondeterminis=c	games	
•  Can	s=ll	apply	a	form	of	alpha-beta	pruning		

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

(2, 2) 

0.5 0.5 0.5 0.5 

(4, 4) (-1, 1) (-1, 1) 

(3, 3) 

(3, 1) 

(-1, 1) 



Pruning	in	nondeterminis=c	games	
•  Can	s=ll	apply	a	form	of	alpha-beta	pruning		

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

(2, 2) 

0.5 0.5 0.5 0.5 

(4, 4) (-1, 6) (-1, 1) 

(3, 3) (-1, 1) 

(3, 1) 



Pruning	in	nondeterminis=c	games	
•  Can	s=ll	apply	a	form	of	alpha-beta	pruning		

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

(2, 2) 

0.5 0.5 0.5 0.5 

(4, 4) (0, 0) (-1, 1) 

(3, 3) 

(3, 1) 

(-1, 1) 



Pruning	in	nondeterminis=c	games	
•  Can	s=ll	apply	a	form	of	alpha-beta	pruning		

MIN 

MAX 

2 4 

3 -1 

3 

7 4 6 0 5 -2 

Chance 

(2, 2) 

0.5 0.5 0.5 0.5 

(4, 4) (0, 0) (-1, 5) 

(3, 3) (-1, 2.5) 

(3, 1) 

X Prune! 



Par=ally	observable	games	
•  R&N	Chapter	5.6	–	“The	fog	of	war”	
•  Background:	R&N,	Chapter	4.3-4	

–  Searching	with	Nondeterminis=c	Ac=ons/Par=al	Observa=ons	

•  Search	through	Belief	States	(see	Fig.	4.14)	
–  Agent’s	current	belief	about	which	states	it	might	be	in,	

	given	the	sequence	of	ac=ons	&	percepts	to	that	point	

•  Ac=ons(b)	=	??		Union?		Intersec=on?	
–  Tricky:	an	ac=on	legal	in	one	state	may	be	illegal	in	another	
–  Is	an	illegal	ac=on	a	NO-OP?		or	the	end	of	the	world?	

•  Transi=on	Model:	
–  Result(b,a)	=	{	s’	:	s’	=	Result(s,	a)	and	s	is	a	state	in	b	}	

•  Goaltest(b)	=	every	state	in	b	is	a	goal	state	



103 

Belief	States	for	Unobservable	Vacuum	World	



Par=ally	observable	games	
•  R&N	Chapter	5.6	
•  Player’s	current	node	is	a	belief	state	
•  Player’s	move	(ac=on)	generates	child	belief	state	
•  Opponent’s	move	is	replaced	by	Percepts(s)	

–  Each	possible	percept	leads	to	the	belief	state	that	is	consistent	with	that	
percept	

•  Strategy	=	a	move	for	every	possible	percept	sequence	
•  Minimax	returns	the	worst	state	in	the	belief	state	

•  Many	more	complica=ons	and	possibili=es!!	
–  Opponent	may	select	a	move	that	is	not	op=mal,	but	instead	minimizes	the	

informa=on	transmiQed,	or	confuses	the	opponent	
–  May	not	be	reasonable	to	consider	ALL	moves;	open	P-QR3??	

•  See	R&N,	Chapter	5.6,	for	more	info	



•  Checkers:		
–  Chinook	ended	40-year-reign	of	human	world	champion	Marion	Tinsley	in	

1994.		

•  Chess:		
–  Deep	Blue	defeated	human	world	champion	Garry	Kasparov	in	a	six-game	

match	in	1997.		

•  Othello:		
–  human	champions	refuse	to	compete	against	computers:		

	they	are	too	good.	

•  Go:		
–  AlphaGo	recently	(3/2016)	beat	9th	dan	Lee	Sedol	
–  b	>	300	(!);	full	game	tree	has	>	10^760	leaf	nodes	(!!)	

•  See	(e.g.)	hQp://www.cs.ualberta.ca/~games/	for	more	info	

The	State	of	Play	



High	branching	factors	
•  What	can	we	do	when	the	search	tree	is	too	large?	

–  Ex:	Go		(	b	=	50-200+	moves	per	state)	
–  Heuris=c	state	evalua=on	(score	a	par=al	game)	

•  Where	does	this	heuris=c	come	from?	
–  Hand	designed	
– Machine	learning	on	historical	game	paQerns	
– Monte	Carlo	methods	–	play	random	games	



Monte	Carlo	heuris=c	scoring	
•  Idea:	play	out	the	game	randomly,	and	use	the	results	
as	a	score	
–  Easy	to	generate	&	score	lots	of	random	games	
– May	use	1000s	of	games	for	a	node	

•  The	basis	of	Monte	Carlo	tree	search	algorithms…	

Image from www.mcts.ai 



Monte	Carlo	Tree	Search	
•  Should	we	explore	the	whole	(top	of)	the	tree?	

–  Some	moves	are	obviously	not	good…	
–  Should	spend	=me	exploring	/	scoring	promising	ones	

•  This	is	a	mul%-armed	bandit	problem:	
•  Want	to	spend	our	=me	on	good	moves	
•  Which	moves	have	high	payout?	

–  Hard	to	tell	–	random…	

•  Explore	vs.	exploit	tradeoff	

Image from Microsoft Research 



Visualizing	MCTS	
•  At	each	level	of	the	tree,	keep	track	of	

–  Number	of	=mes	we’ve	explored	a	path	
–  Number	of	=mes	we	won	

•  Follow	winning	(from	max/min	perspec=ve)	strategies	more	
oren,	but	also	explore	others		
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Summary	
•  Game	playing	is	best	modeled	as	a	search	problem	

•  Game	trees	represent	alternate	computer/opponent	moves	

•  Evalua=on	func=ons	es=mate	the	quality	of	a	given	board	
configura=on	for	the	Max	player.		

•  Minimax	is	a	procedure	which	chooses	moves	by	assuming	that	
the	opponent	will	always	choose	the	move	which	is	best	for	them	

•  Alpha-Beta	is	a	procedure	which	can	prune	large	parts	of	the	
search	tree	and	allow	search	to	go	deeper		

•  For	many	well-known	games,	computer	algorithms	based	on	
heuris=c	search	match	or	out-perform	human	world	experts.	


