Constraint satisfaction problems II

CS171, Fall 2016
Introduction to Artificial Intelligence

Prof. Alexander Ihler

You Should Know

- Node consistency, arc consistency, path consistency, Kconsistency (6.2)
- Forward checking (6.3.2)
- Local search for CSPs
- Min-Conflict Heuristic (6.4)
- The structure of problems (6.5)

Minimum remaining values (MRV)

- A heuristic for selecting the next variable
- a.k.a. most constrained variable (MCV) heuristic

- choose the variable with the fewest legal values
- will immediately detect failure if X has no legal values
- (Related to forward checking, later)

```
Idea: reduce the branching factor now
Smallest domain size = fewest # of children = least branching
```


Detailed MRV example

WA=red

Initially, all regions have $\left|\mathrm{D}_{\mathrm{i}}\right|=3$ Choose one randomly, e.g. WA \& pick value, e.g., red
(Better: tie-break with degree...)

Do forward checking (next topic)
NT \& SA cannot be red
Now NT \& SA have 2 possible values

- pick one randomly

Detailed MRV example

NT \& SA have two possible values Choose one randomly, e.g. NT \& pick value, e.g., green
(Better: tie-break with degree; select value by least constraining)

Do forward checking (next topic) SA \& Q cannot be green

Now SA has only 1 possible value; Q has 2 values.

Detailed MRV example

SA has only one possible value Assign it

Do forward checking (next topic) Now Q, NSW, V cannot be blue

Now Q has only 1 possible value; NSW, V have 2 values.

Degree heuristic

- Another heuristic for selecting the next variable
- a.k.a. most constraining variable heuristic

- Select variable involved in the most constraints on other unassigned variables
- Useful as a tie-breaker among most constrained variables

Note: usually (\& in picture above) we use the degree heuristic as a tiebreaker for MRV; however, in homeworks \& exams we may use it without MRV to show how it works. Let's see an example.

Ex: Degree heuristic (only)

- Select variable involved in largest \# of constraints with other un-assigned vars
- Initially: degree(SA) = 5; assign (e.g., red)
- No neighbor can be red; we remove the edges to assist in counting degree
- Now, degree(NT) $=$ degree $(\mathrm{Q})=$ degree(NSW) $=2$
- Select one at random, e.g. NT; assign to a value, e.g., blue
- Now, degree(NSW)=2
- Idea: reduce branching in the future
- The variable with the largest \# of constraints will likely knock out the most values from other variables, reducing the branching factor in the future

Ex: MRV + degree

- Initially, all variables have 3 values; tie-breaker degree => SA
- No neighbor can be red; we remove the edges to assist in counting degree
- Now, WA, NT, Q, NSW, V have 2 values each
- WA,V have degree 1; NT,Q,NSW all have degree 2
- Select one at random, e.g. NT; assign to a value, e.g., blue
- Now, WA and Q have only one possible value; degree(Q)=1 > degree(WA)=0
- Idea: reduce branching in the future
- The variable with the largest \# of constraints will likely knock out the most values from other variables, reducing the branching factor in the future

Least Constraining Value

- Heuristic for selecting what value to try next
- Given a variable, choose the least constraining value:
- the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

- Makes it more likely to find a solution early

Look-ahead: Constraint propagation

- Intuition:
- Apply propagation at each node in the search tree (reduce future branching)
- Choose a variable that will detect failures early (low branching factor)
- Choose value least likely to yield a dead-end (find solution early if possible)
- Forward-checking
- (check each unassigned variable separately)
- Maintaining arc-consistency (MAC)
- (apply full arc-consistency)

Forward checking
 - Idea:

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

Forward checking

- Idea:
- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

Assign $\{\mathrm{WA}=$ red $\}$
Effect on other variables (neighbors of WA):

- NT can no longer be red
- SA can no longer be red

Forward checking

- Idea:
- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

	NT		NSW			SA		
						-		

Assign $\{\mathrm{Q}=$ green $\}$
Effect on other variables (neighbors of Q):

- NT can no longer be green
- SA can no longer be green
- NSW can no longer be green

(T)
(We already have failure, but FC is too simple to detect it now)

Forward checking
 - Idea:

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

Assign $\{\mathrm{V}=$ blue $\}$
Effect on other variables (neighbors of V):

- NSW can no longer be blue
- SA can no longer be blue (no values possible!)

Forward checking has detected this partial assignment is inconsistent with
any complete assignment

Ex: 4-Queens Problem

Backtracking search with forward checking
Bookkeeping is tricky \& complicated

Ex: 4-Queens Problem

Red = value is assigned to variable

Ex: 4-Queens Problem

Red = value is assigned to variable

Ex: 4-Queens Problem

- X1 Level:

- Deleted:

- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- (Please note: As always in computer science, there are many different ways to implement anything. The book-keeping method shown here was chosen because it is easy to present and understand visually. It is not necessarily the most efficient way to implement the book-keeping in a computer. Your job as an algorithm designer is to think long and hard about your problem, then devise an efficient implementation.)
- One possibly more efficient equivalent alternative (of many):
- Deleted:
- $\{(X 2: 1,2)(X 3: 1,3)(X 4: 1,4)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable

Ex: 4-Queens Problem

Red = value is assigned to variable

Ex: 4-Queens Problem

Red = value is assigned to variable

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- X2 Level:
- Deleted:
- $\{(X 3,2)(X 3,4)(X 4,3)\}$
- (Please note: Of course, we could have failed as soon as we deleted $\{(X 3,2)(X 3,4)\}$. There was no need to continue to delete ($\mathrm{X} 4,3$), because we already had established that the domain of X 3 was null, and so we already knew that this branch was futile and we were going to fail anyway. The book-keeping method shown here was chosen because it is easy to present and understand visually. It is not necessarily the most efficient way to implement the book-keeping in a computer. Your job as an algorithm designer is to think long and hard about your problem, then devise an efficient implementation.)

Ex: 4-Queens Problem

Red = value is assigned to variable

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- X2 Level:
- FAIL at X2=3.
- Restore:
- $\{(X 3,2)(X 3,4)(X 4,3)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- \{ (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) \}
- X2 Level:
- Deleted:
- $\{(X 3,4)(X 4,2)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- \{ (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) \}
- X2 Level:
- Deleted:
- $\{(X 3,4)(X 4,2)\}$
- X3 Level:
- Deleted:
- $\{(\mathrm{X} 4,3)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- X2 Level:
- Deleted:
- $\{(X 3,4)(X 4,2)\}$
- X3 Level:
- Fail at X3=2.
- Restore:
- $\{(X 4,3)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(\mathrm{X} 2,1)(\mathrm{X} 2,2)(\mathrm{X} 3,1)(\mathrm{X} 3,3)(\mathrm{X} 4,1)(\mathrm{X} 4,4)\}$
- X2 Level:
- Fail at X2=4.
- Restore:
- $\{(X 3,4)(X 4,2)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Fail at X1=1.
- Restore:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 2,3)(X 3,2)(X 3,4)(X 4,2)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 2,3)(X 3,2)(X 3,4)(X 4,2)\}$
- X2 Level:
- Deleted:
- $\{(X 3,3)(X 4,4)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 2,3)(X 3,2)(X 3,4)(X 4,2)\}$
- X2 Level:
- Deleted:
- $\{(X 3,3)(X 4,4)\}$
- X3 Level:
- Deleted:
- $\{(\mathrm{X} 4,1)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
X = value led to failure

Constraint propagation

- Forward checking
- propagates information from assigned to unassigned variables
- But, doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally
- Can detect failure earlier
- But, takes more computation - is it worth the extra effort?

Arc consistency (AC-3)

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed value y for $Y \quad$ (note: directed!)

- Consider state after WA=red, $\mathrm{Q}=$ green
- SA \rightarrow NSW consistent if
SA = blue and NSW = red

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed value y for $Y \quad$ (note: directed!)

- Consider state after WA=red, $\mathrm{Q}=$ green
- NSW \rightarrow SA consistent if
NSW = red and SA = blue

$$
\text { NSW = blue and SA = ??? } \quad \Rightarrow \text { NSW = blue can be pruned }
$$

No current domain value for SA is consistȩbt

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed value y for $Y \quad$ (note: directed!)

- Enforce arc consistency:
- arc can be made consistent by removing blue from NSW
- Continue to propagate constraints
- Check $V \rightarrow$ NSW : not consistent for $V=$ red; remove red from V

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed value y for $Y \quad$ (note: directed!)

- Continue to propagate constraints
- SA \rightarrow NT not consistent:
- And cannot be made consistent! Failure
- Arc consistency detects failure earlier than FC
- But requires more computation: is it worth the effort?

Ex: Arc Consistency in Sudoku

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4	6	9				7	$\mathbf{2}$	
		9			4	5	8	1
			3		2	9		

-Variables: 81 slots
-Domains =
\{1,2,3,4,5,6,7,8,9\}
-Constraints:

- 27 not-equal

Each row, column and major block must be alldifferent "Well posed" if it has unique solution: 27 constraints

Arc consistency checking

- Can be run as a preprocessor, or after each assignment
- As preprocessor before search: Removes obvious inconsistencies
- After each assignment: Reduces search cost but increases step cost
- AC is run repeatedly until no inconsistency remains
- Like Forward Checking, but exhaustive until quiescence
- Trade-off
- Requires overhead to do; but usually better than direct search
- In effect, it can successfully eliminate large (and inconsistent) parts of the state space more effectively than can direct search alone
- Need a systematic method for arc-checking
- If X loses a value, neighbors of X need to be rechecked:
i.e., incoming arcs can become inconsistent again (outgoing arcs stay consistent).

Arc consistency algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, else true, may reduce csp domains
inputs: csp, a binary CSP with variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
local variables: queue, a queue of arcs, initially all the arcs in csp

```
    /* initial queue must contain both ( }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{})\mathrm{ and ( }\mp@subsup{X}{j}{},\mp@subsup{X}{i}{
```

while queue is not empty do
$\left(X_{i}, X_{j}\right) \leftarrow$ REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES $\left(X_{j}, X_{j}\right)$ then
if size of $D_{i}=0$ then return false
for each X_{k} in NEIGHBORS $\left[X_{i}\right]-\left\{X_{j}\right\}$ do
add $\left(X_{k}, X_{i}\right)$ to queue if not already there
return true
function REMOVE-INCONSISTENT-VALUES $\left(X_{i}, X_{j}\right)$ returns true iff we delete a
value from the domain of X_{i}
removed \leftarrow false
for each x in DOMAIN $\left[X_{i}\right]$ do
if no value y in $\operatorname{DOMAIN}\left[X_{j}\right]$ allows (x, y) to satisfy the constraints between X_{i} and X_{j}
then delete x from DOMAIN $\left[X_{i}\right]$; removed \leftarrow true
return removed
(from Mackworth, 1977)

Complexity of AC-3

- A binary CSP has at most n^{2} arcs
- Each arc can be inserted in the queue d times (worst case)
- (X, Y): only d values of X to delete
- Consistency of an arc can be checked in $\mathrm{O}\left(\mathrm{d}^{2}\right)$ time
- Complexity is $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{3}\right)$
- Although substantially more expensive than Forward Checking, Arc Consistency is usually worthwhile.

K-consistency

- Arc consistency does not detect all inconsistencies:
- Partial assignment $\{W A=r e d$, NSW=red $\}$ is inconsistent.
- Stronger forms of propagation can be defined using the notion of k-consistency.
- A CSP is k-consistent if for any set of $k-1$ variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
- E.g. 1-consistency = node-consistency
- E.g. 2-consistency = arc-consistency
- E.g. 3-consistency = path-consistency
- Strongly k-consistent:
- k-consistent for all values $\{k, k-1, \ldots 2,1\}$

Trade-offs

- Running stronger consistency checks...
- Takes more time
- But will reduce branching factor and detect more inconsistent partial assignments
- No "free lunch"
- In worst case n-consistency takes exponential time
- "Typically" in practice:
- Often helpful to enforce 2-Consistency (Arc Consistency)
- Sometimes helpful to enforce 3-Consistency
- Higher levels may take more time to enforce than they save.

Improving backtracking

- Before search: (reducing the search space)
- Arc-consistency, path-consistency, i-consistency
- Variable ordering (fixed)
- During search:
- Look-ahead schemes:
- Value ordering/pruning (choose a least restricting value),
- Variable ordering (choose the most constraining variable)
- Constraint propagation (take decision implications forward)
- Look-back schemes:
- Backjumping
- Constraint recording
- Dependency-directed backtracking

Further improvements

- Checking special constraints
- Checking Alldiff(...) constraint
- E.g. $\{W A=r e d, N S W=r e d\}$
- Checking Atmost(...) constraint
- Bounds propagation for larger value domains
- Intelligent backtracking
- Standard form is chronological backtracking, i.e., try different value for preceding variable.
- More intelligent: backtrack to conflict set.
- Set of variables that caused the failure or set of previously assigned variables that are connected to X by constraints.
- Backjumping moves back to most recent element of the conflict set.
- Forward checking can be used to determine conflict set.

Local search for CSPs

- Use complete-state representation
- Initial state = all variables assigned values
- Successor states = change 1 (or more) values
- For CSPs
- allow states with unsatisfied constraints (unlike backtracking)
- operators reassign variable values
- hill-climbing with n-queens is an example
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic
- Select new value that results in a minimum number of conflicts with the other variables

Local search for CSPs

function MIN-CONFLICTS(csp, max_steps) return solution or failure inputs: csp, a constraint satisfaction problem max_steps, the number of steps allowed before giving up
current \leftarrow an initial complete assignment for csp
for $i=1$ to max_steps do
if current is a solution for csp then return current
$v a r \leftarrow$ a randomly chosen, conflicted variable from VARIABLES[csp]
value \leftarrow the value v for var that minimize CONFLICTS(var,v,current,csp)
set var = value in current
return failure

Note: here I check all neighbors \& pick the best; typically in practice pick one at random

- Solving 4-queens with local search

(5 conflicts)

Note: here I check all neighbors \& pick the best; typically in practice pick one at random

- Solving 4-queens with local search

(5 conflicts)

(2 conflicts)

(0 conflicts)

Local optima

- Local search may get stuck at local optima
- Locations where no neighboring value is better
- Success depends on initialization quality \& basins of attraction
- Can use multiple initializations to improve:
- Re-initialize randomly ("repeated" local search)
- Re-initialize by perturbing last optimum ("iterated" local search)
- Can also add sideways \& random moves (e.g., WalkSAT)

Local optimum example

- Solving 4-queens with local search

(1 conflict)

Comparison of CSP algorithms

Evaluate methods on a number of problems

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA	$(>1,000 \mathrm{~K})$	$(>1,000 \mathrm{~K})$	2 K	60	64
n-Queens	$(>40,000 \mathrm{~K})$	$13,500 \mathrm{~K}$	$(>40,000 \mathrm{~K})$	817 K	4 K
Zebra	$3,859 \mathrm{~K}$	1 K	35 K	0.5 K	2 K
Random 1	415 K	3 K	26 K	2 K	
Random 2	942 K	27 K	77 K	15 K	

Median number of consistency checks over 5 runs to solve problem
Parentheses -> no solution found
USA: 4 coloring
n-queens: $\mathrm{n}=2$ to 50
Zebra: see exercise 6.7 ($3^{\text {rd }}$ ed.); exercise 5.13 ($2^{\text {nd }}$ ed.)

Advantages of local search

- Local search can be particularly useful in an online setting
- Airline schedule example
- E.g., mechanical problems require than 1 plane is taken out of service
- Can locally search for another "close" solution in state-space
- Much better (and faster) in practice than finding an entirely new schedule
- Runtime of min-conflicts is roughly independent of problem size.
- Can solve the millions-queen problem in roughly 50 steps.
- Why?
- n-queens is easy for local search because of the relatively high density of solutions in state-space

Hardness of CSPs

- $x_{1} \ldots x_{n}$ discrete, domain size $d: O\left(d^{n}\right)$ configurations
- "SAT": Boolean satisfiability: d=2
- One of the first known NP-complete problems
- "3-SAT"
- Conjunctive normal form (CNF)
- At most 3 variables in each clause:
$\left(x_{1} \vee \neg x_{7} \vee x_{12}\right) \wedge\left(\neg x_{3} \vee x_{2} \vee x_{7}\right) \wedge \ldots$
- Still NP-complete
- How hard are "typical" problems?

Hardness of random CSPs

- Random 3-SAT problems:
-n variables, p clauses in CNF: $\left(x_{1} \vee \neg x_{7} \vee x_{12}\right) \wedge\left(\neg x_{3} \vee x_{2} \vee x_{7}\right) \wedge \ldots$
- Choose any 3 variables, signs uniformly at random
- What's the probability there is no solution to the CSP?
- Phase transition at $(\mathrm{p} / \mathrm{n}) \approx 4.25$
- "Hard" instances fall in a very narrow regime around this point!

Hardness of random CSPs

- Random 3-SAT problems:
-n variables, p clauses in CNF: $\left(x_{1} \vee \neg x_{7} \vee x_{12}\right) \wedge\left(\neg x_{3} \vee x_{2} \vee x_{7}\right) \wedge \ldots$
- Choose any 3 variables, signs uniformly at random
- What's the probability there is no solution to the CSP?
- Phase transition at $(\mathrm{p} / \mathrm{n}) \approx 4.25$
- "Hard" instances fall in a very narrow regime around this point!

Ex: Sudoku

Avg Time vs. R

- $R=$ [number of initially filled cells] / [total number of cells]
- Success Rate $=P($ random puzzle is solvable)
- [total number of cells] $=9 \times 9=81$
- [number of initially filled cells] = variable

Graph structure and complexity

- Disconnected subproblems
- Configuration of one subproblem cannot affect the other: independent!
- Exploit: solve independently
- Suppose each subproblem has c variables out of n
- Worse case cost: O(n/c dc)
- Compare to $O\left(d^{n}\right)$, exponential in n
- Ex: n=80, c=20, d=2 \Rightarrow
- $2^{80}=4$ billion years at 1 million nodes per second
- $4^{*} 2^{20}=0.4$ seconds at 1 million nodes per second

Tree-structured CSPs

- Theorem: If a constraint graph has no cycles, then the CSP can be solved in $O\left(\mathrm{nd}^{\wedge} 2\right)$ time.
- Compare to general CSP: worst case O(d^n)
- Method: directed arc consistency (= dynamic programming)
- Select a root (e.g., A) \& do arc consistency from leaves to root:
$-D \rightarrow F$: remove values for D not consistent with any value for F, etc.)
$-D \rightarrow E, B \rightarrow D, \ldots$ etc
- Select a value for A

- There must be a value for B that is compatible; select it
- There must be values for C, and for D, compatible with B^{\prime}; select them
- There must be values for E, F compatible with D's; select them.
- You've found a consistent solution!

Exploiting structure

- How can we use efficiency of trees?
- Cutset conditioning
- Exploit easy-to-solve problems during search
 Tree!
- Tree decomposition
- Convert non-tree problems into (harder) trees

Summary

- CSPs
- special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking = depth-first search, one variable assigned per node
- Heuristics: variable order \& value selection heuristics help a lot
- Constraint propagation
- does additional work to constrain values and detect inconsistencies
- Works effectively when combined with heuristics
- Iterative min-conflicts is often effective in practice.
- Graph structure of CSPs determines problem complexity
- e.g., tree structured CSPs can be solved in linear time.

