First Order Logic and Probability \& Bayesian Nets

Thur, June 30, 2016

Review: First Order Logic

Terms

- Function: LeftLeg(x)
- Constant: King(x)

Atomic Sentences

- $P(x, y)$ reads: x is a P of y
- Eg: Teacher $(x, y): x$ is a teacher of y

Logical Connectives

- \Leftrightarrow (biconditional), \Rightarrow (implication), \wedge (and), $\vee($ or), \neg (negation)

Quantifiers

- Universal Quantifier \forall
- Existential Quantifier

Review: First Order Logic

We could replace \forall with \exists, or vise-versa. (De Morgan's Laws)

$$
\begin{aligned}
& \forall x P(x) \equiv \neg \exists x \neg P(x) \\
& \exists x P(x) \equiv \neg \forall x \neg P(x)
\end{aligned}
$$

which is similar to $\wedge \vee$ relations:

$$
\begin{aligned}
& (P \vee Q) \equiv \neg(\neg P \wedge \neg Q) \\
& (P \wedge Q) \equiv \neg(\neg P \vee \neg Q)
\end{aligned}
$$

First Order Logic: Problems

For the English sentence below, find the best FOL sentence. Then translate other FOL sentences to English sentences.

All students are persons

(A) $\forall x \operatorname{Student}(x) \wedge$ Person (x)
(B) $\quad \forall x \operatorname{Student}(x) \Rightarrow \operatorname{Person}(x)$
(C) $\exists x$ Student $(x) \wedge$ Person (x)

First Order Logic: Problems

For the english sentence below, find the best FOL sentence. Then translate other FOL sentences to english sentences.

All students are persons - (B)

(A) $\quad \forall \times \operatorname{Student}(\mathrm{x}) \wedge$ Person (x)
(B) $\forall x$ Student $(x) \Rightarrow$ Person (x)
(C) $\exists x$ Student $(x) \wedge$ Person (x)

First Order Logic: Problems

For the english sentence below, find the best FOL sentence. Then translate other FOL sentences to english sentences.

All students are persons - (B)

(A) $\quad \forall \times \operatorname{Student}(\mathrm{x}) \wedge$ Person (x)

Every object is a student and is a person.
(B) $\quad \forall x$ Student $(\mathrm{x}) \Rightarrow$ Person (x)
(C) $\exists x$ Student $(x) \wedge$ Person (x)

First Order Logic: Problems

For the english sentence below, find the best FOL sentence. Then translate other FOL sentences to english sentences.

All students are persons - (B)

(A) $\quad \forall \times \operatorname{Student}(\mathrm{x}) \wedge$ Person (x)

Every object is a student and is a person.
(B) $\quad \forall x$ Student $(\mathrm{x}) \Rightarrow$ Person (x)
(C) $\exists x$ Student $(x) \wedge$ Person (x)

Some students are persons.

First Order Logic: Problems

For the english sentence below, find the best FOL sentence. Then translate other FOL sentences to english sentences.

Every student attends all lectures.

(A) $\quad \forall x \forall y[S t u d e n t(x) \wedge$ Lecture $(\mathrm{y})] \Rightarrow$ attend (x, y)
(B) $\forall x \forall y$ Student $(x) \Rightarrow[$ Lecture $(y) \wedge$ attend $(x, y)]$

First Order Logic: Problems

For the english sentence below, find the best FOL sentence. Then translate other FOL sentences to english sentences.

Every student attends all lectures. (A)
(A) $\quad \forall x \forall y[S t u d e n t(x) \wedge$ Lecture $(y)] \Rightarrow$ attend (x, y)
(B) $\forall x \forall y \operatorname{Student}(x) \Rightarrow[$ Lecture $(\mathrm{y}) \wedge$ attend $(\mathrm{x}, \mathrm{y})]$

First Order Logic: Problems

For the english sentence below, find the best FOL sentence. Then translate other FOL sentences to english sentences.

Every student attends all lectures. (A)
(A) $\quad \forall x \forall y[S t u d e n t(x) \wedge$ Lecture $(\mathrm{y})] \Rightarrow$ attend (x, y)
(B) $\forall x \forall y$ Student $(x) \Rightarrow[$ Lecture $(y) \wedge$ attend $(x, y)]$ For every student, every object is a lecture and the student attends it.

First Order Logic: Problems

For the english sentence below, find the best FOL sentence. Then translate other FOL sentences to english sentences.

Some students attend all lectures.

(A) $\quad \exists x \forall y$ [Student(x) \wedge Lecture $(\mathrm{y})] \Rightarrow$ attend (x, y)
(B) $\exists x \forall y$ Lecture $(y) \Rightarrow[$ Student $(x) \wedge$ attend $(x, y)]$

First Order Logic: Problems

For the english sentence below, find the best FOL sentence. Then translate other FOL sentences to english sentences.

Some students attend all lectures. (B)
(A) $\exists x \forall y$ [Student(x) \wedge Lecture(y)] \Rightarrow attend (x, y)
(B) $\exists x \forall y$ Lecture(y) \Rightarrow [Student(x) \wedge attend(x, y)]

First Order Logic: Problems

For the english sentence below, find the best FOL sentence. Then translate other FOL sentences to english sentences.

Some students attend all lectures. (B)
(A) $\quad \exists x \forall y$ [Student(x) \wedge Lecture $(\mathrm{y})] \Rightarrow$ attend (x, y)

There exist an object, that if the object is a student, it will attend all lectures.
(B) $\quad \exists x \forall y$ Lecture(y) \Rightarrow [Student(x) \wedge attend(x, y)]

First Order Logic: Problems

An interesting observation:

> Some persons are students. $\quad \exists x[$ Person $(x) \wedge$ Student $(x)]$
> All persons are students. $\forall x$ Person $(x) \Rightarrow$ Student (x)
\forall is often associated with: $\forall x P(x) \Rightarrow Q(x)$
\exists is often associated with: $\exists \mathbf{x} P(x) \wedge Q(x)$

Probability: Review

Independence and Conditional Independence.

Independence:

Alice and Charlie work for different companies. The time Alice goes home after work is independent of the time Charlie goes home.

Conditional Independence:

Alice and Bob work for the same boss. The time Alice goes home depends on the time Bob goes home;

But given the time the boss leaves the office, the time Alice goes to home is independent of the time Bob goes home.

Probability: Review

Conditional Independence (with graphical model representation)

In both models, A and C are conditionally independent given B

Ex: What people wear depends on the season; but given the temperature, what people wear is independent of the of season.

A: Season
B: Temperature
C: Outfit

Ex: Alice and Bob work for the same boss. Given the time the boss leaves, the time Alice goes to home is independent of the time Bob goes home.

A: The time Alice goes home
B: The time the boss leaves
C: The time Bob goes home

Probability: Problems

You have a drawer full of 4, 8 and 12-sided dice. They are in proportion 2:1:1. Your friend picks one at random and rolls it once getting a 5.
(a) What is the probability your friend picked the 8 -sided die?
(b) (i) What is the probability the next roll will be a 5 ?
(ii) What is the probability the next roll will be a 10 ?

Probability: Problems

You have a drawer full of 4, 8 and 12-sided dice. They are in proportion 2:1:1. Your friend picks one at random and rolls it once getting a 5.
(a) What is the probability your friend picked the 8 -sided die?
(b) (i) What is the probability the next roll will be a 5 ?
(ii) What is the probability the next roll will be a 10 ?

Before we start, write down "obvious" clues:
$P($ Pick 4$)=2 /(2+1+1)=1 / 2 ; \quad P($ Pick 8$)=1 / 4 ; \quad P($ pick 12 $)=1 / 4$
(a) P (pick $8 \mid$ roll 5)
(b) (i) $P($ roll 5 next |roll 5)
(ii) P (roll 10 next | roll 5)

Probability: Problems

You have a drawer full of 4, 8 and 12-sided dice. They are in proportion 2:1:1. Your friend picks one at random and rolls it once getting a 5.
(a) What is the probability your friend picked the 8-sided die?

Notation:
$P(p x)$: Probability of picking x-sided dice $P(r x)$: Probability of rolling x

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{p} 8 \mid \mathrm{r} 5)=\mathrm{P}(\mathrm{p} 8, \mathrm{r} 5) / \mathrm{P}(\mathrm{r} 5)=\mathrm{P}(\mathrm{r} 5 \mid \mathrm{p} 8) \mathrm{P}(\mathrm{p} 8) / \mathrm{P}(\mathrm{r} 5) & \begin{array}{rl}
& P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \\
\mathrm{P}(\mathrm{r} 5 \mid \mathrm{p} 8)=1 / 8 & P(A)=\sum_{B} P(A, B) \\
\mathrm{P}(\mathrm{p} 8)=1 / 4 & P(\mathrm{r} 5)=\mathrm{P}(\mathrm{p} 4, \mathrm{r} 5)+\mathrm{P}(\mathrm{p} 8, \mathrm{r} 5)+\mathrm{P}(\mathrm{p} 12, \mathrm{r} 5) \\
\quad=\mathrm{P}(\mathrm{r} 5 \mid \mathrm{p} 4) \mathrm{P}(\mathrm{p} 4)+\mathrm{P}(\mathrm{r} 5 \mid \mathrm{p} 8) \mathrm{P}(\mathrm{p} 8)+\mathrm{P}(\mathrm{r} 5 \mid \mathrm{p} 12) \mathrm{P}(\mathrm{p} 12)-(1 / 12 \times 1 / 4) & \\
\quad=0+(1 / 8 \times 1 / 4)+(1 / B)=P(B \mid A) P(A) \\
\mathrm{P}(\mathrm{p} 8 \mid \mathrm{r} 5)=(1 / 8 \times 1 / 4) /[(1 / 8 \times 1 / 4)+(1 / 12 \times 1 / 4)]=0.6 &
\end{array}
\end{array}
$$

Probability: Problems

You have a drawer full of 4, 8 and 12-sided dice. They are in proportion 2:1:1. Your friend picks one at random and rolls it once getting a 5.
(b) (i) What is the probability the next roll will be a 5?

$$
\begin{aligned}
P\left(r 5^{*} \mid r 5\right) & =P\left(p 4, r 5^{*} \mid r 5\right)+P\left(p 8, r 5^{*} \mid r 5\right)+P\left(p 12, \text { r }^{*} \mid r 5\right) \\
& =P(p 4 \mid r 5) P\left(r 5^{*} \mid p 4, r 5\right)+P(p 8 \mid r 5) P\left(r 5^{*} \mid p 8, r 5\right)+P(p 12 \mid r 5) P\left(r 5^{*} \mid p 12, r 5\right)
\end{aligned}
$$

Note: Give what dice is picked, the last roll is independent of the new roll. Thus: $P\left(r 5^{*} \mid p 4, r 5\right)=P(r 5 * \mid p 4)$

$$
\begin{aligned}
P\left(r 5^{*} \mid r 5\right) & =P(p 4 \mid r 5) P\left(r 5^{*} \mid p 4\right)+P(p 8 \mid r 5) P\left(r 5^{*} \mid p 8\right)+P(p 12 \mid r 5) P\left(r 5^{*} \mid p 12\right) \\
& =0+0.6 \times 1 / 8+0.4 \times 1 / 12 \\
& =0.1083
\end{aligned}
$$

Probability: Problems

You have a drawer full of 4, 8 and 12-sided dice. They are in proportion 2:1:1. Your friend picks one at random and rolls it once getting a 5.
(b) (ii) What is the probability the next roll will be a 10?

$$
\begin{aligned}
P\left(r 5^{*} \mid r 5\right) & =P(p 4 \mid r 5) P\left(r 10^{*} \mid p 4\right)+P(p 8 \mid r 5) P\left(r 10^{*} \mid p 8\right)+P(p 12 \mid r 5) P\left(r 10^{*} \mid p 12\right) \\
& =0+0+0.4 \times 1 / 12 \\
& =0.0333
\end{aligned}
$$

Bayesian Networks: Example

The joint probability can be factored as:
$P(D, I, A, T, P, G)=P(D) P(I) P(T \mid D, I) P(A) P(P \mid A) P(G \mid T, P)$

Bayesian Networks: Problems

Factor the joint probability
$P(A, B, C, D, E, F, G)$

Bayesian Networks: Problems

Factor the joint probability

$$
\begin{aligned}
& P(A, B, C, D, E, F, G) \\
& \quad=P(A) P(B \mid A) P(G \mid A) P(C) P(D \mid C) P(E \mid D) P(F \mid G, B, D)
\end{aligned}
$$

Bayesian Networks: Problems

Draw the Bayesian network corresponding to the factored conditional probability

$$
\begin{aligned}
& P(A, B, C, D, E, F, G) \\
& \quad=P(A) P(B) P(G \mid A) P(C \mid B) P(D \mid C) P(E \mid C, D) P(F \mid G, C)
\end{aligned}
$$

Bayesian Networks: Problems

Draw the Bayesian network corresponding to the factored conditional probability

$$
\begin{aligned}
& P(A, B, C, D, E, F, G) \\
& \quad=P(A) P(B) P(G \mid A) P(C \mid B) P(D \mid C) P(E \mid C, D) P(F \mid G, C)
\end{aligned}
$$

(There was a question asked in class, whether we should always omit the $\mathrm{C} \rightarrow \mathrm{E}$ link because $\mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$ already exists.
The answer is no. C can be both an indirect cause of E through D, and a direct cause of E.)

