
Solving problems by searching
Uninformed search algorithms

Discussion Class CS 171
Friday, October, 2nd

(Please read lecture topic material before and after each lecture on that topic)

Thanks to professor Kask

Some of the slides (page 2-7) were copied from his lectures.

1

time complexity analysis

• Suppose goal is at level g:
• DFS:

• Best time : g
• Worst time : 1+ b + b2 + … + bg

• BFS:
• Best time : 1+ b + b2 + … + bg-1 +1
• Worst time : 1+ b + b2 + … + bg

Comparing BFS and DFS
• DFS is not optimal, BFS optimal if path cost is a non-decreasing function of depth, but BFS is not

optimal in general.
• Time Complexity worse-case is the same, but
– In the worst-case BFS is always better than DFS
– Sometime, on the average DFS is better if:
 • many goals, no loops and no infinite paths
 • BFS is much worse memory-wise
 • DFS can be linear space
 • BFS may store the whole search space.
• In general
 • BFS is better if goal is not deep, if long paths, if many loops, if small search space
 • DFS is better if many goals, not many loops
 • DFS is much better in terms of memory

• Number of expanded nodes at each iteration:
• d = 0 : 1
• d = 1 : 1 + b
• d = 2 : 1 + b + b^2
• d = 3 : 1 + b + b^2 + b^3
• ….
• Total ?

Iterative deepening search - Complexity

Find BFS, DFS and Iterative deepening orders?

Djikestra (uniformed cost search)

1- create vertex set Queue
dist[source] = 0;
2- for each vertex v in Graph:
 if v ≠ source:
 dist[v] ← INFINITY
 prev[v] ← UNDEFINED
 add v to Q

3- while Q is not empty: // RUN THIS PART FOR V TIMES
 u ← vertex in Q with min dist[u] // IT TAKES AT LEAST LOG(V)
 remove u from Q
 for each neighbor v of u: // RUN THIS PART FOR E TIMES
 alt ← dist[u] + length(u, v)
 if alt < dist[v]:
 dist[v] ← alt
 prev[v] ← u

Example

• Answer the following questions about the search problem shown
above. Break any ties alphabetically. For the questions that ask for a
path? (DFS, BFS and uniform cost)

A* algorithm

A* algorithm- Run it on this example?

A* algorithm

• Step1:
• A: 5 , Select A

• Step2:
• B=5 , C=8 , Select B

• Step 3:
• C=8, D=6, Select D

• Step 4:
• D is the goal.

• Why A* doesn't work correctly?

Consistent heuristics

• A heuristic is consistent if for every node n, every successor n' of n
generated by any action a,

• h(n) ≤ c(n,a,n') + h(n')
• If h is consistent, we have
• f(n’) = g(n’) + h(n’) (by def.)

 = g(n) + c(n,a,n') + h(n’) (g(n’)=g(n)+c(n.a.n’))
 ≥ g(n) + h(n) = f(n) (consistency)
f(n’) ≥ f(n)
• i.e., f(n) is non-decreasing along any path.

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h* (n),
 where h* (n) is the true cost to reach the goal state from n.
• An admissible heuristic never overestimates the cost to reach the
 goal, i.e., it is optimistic (or at least, never pessimistic)
– Example: hSLD(n) (never overestimates actual road distance)
• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Question

• Provide an example of a graph, which is not admissible so A* cannot
find optimal answer?

	Solving problems by searching�Uninformed search algorithms
	Slide Number 2
	Slide Number 3
	time complexity analysis
	Comparing BFS and DFS
	Slide Number 6
	Slide Number 7
	Iterative deepening search - Complexity
	Find BFS, DFS and Iterative deepening orders?
	Djikestra (uniformed cost search)
	Slide Number 11
	Example
	A* algorithm
	A* algorithm- Run it on this example?
	A* algorithm
	Consistent heuristics
	Admissible heuristics
	Question

