Heuristic search, A*

CS171, Fall 2017
Introduction to Artificial Intelligence
Prof. Richard Lathrop

Reading: R&N 3.5-3.7
Outline

• Review limitations of uninformed search methods

• Informed (or heuristic) search

• Problem-specific heuristics to improve efficiency
 • Best-first, A* (and if needed for memory limits, RBFS, SMA*)
 • Techniques for generating heuristics
 • A* is optimal with admissible (tree)/consistent (graph) heuristics
 • A* is quick and easy to code, and often works *very* well

• Heuristics
 • A structured way to add “smarts” to your solution
 • Provide *significant* speed-ups in practice
 • Still have worst-case exponential time complexity

In AI, “NP-Complete” means “Formally interesting”
Limitations of uninformed search

- Search space size makes search tedious
 - Combinatorial explosion
- Ex: 8-Puzzle
 - Average solution cost is ~ 22 steps
 - Branching factor ~ 3
 - Exhaustive search to depth 22: 3.1×10^{10} states
 - 24-Puzzle: 10^{24} states (much worse!)
Recall: tree search

function TREE-SEARCH (problem, strategy) : returns a solution or failure
 initialize the search tree using the initial state of problem
 while (true):
 if no candidates for expansion: return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state: return the corresponding solution
 else: expand the node and add the resulting nodes to the search tree

This “strategy” is what differentiates different search algorithms
Heuristic function

- Idea: use a heuristic function \(h(n) \) for each node
 - \(g(n) \) = known path cost so far to node \(n \)
 - \(h(n) \) = *estimate* of (optimal) cost to goal from node \(n \)
 - \(f(n) = g(n) + h(n) \) = *estimate* of total cost to goal through \(n \)
 - \(f(n) \) provides an estimate for the total cost

- “Best first” search implementation
 - Order the nodes in frontier by an evaluation function
 - Greedy Best-First: order by \(h(n) \)
 - A* search: order by \(f(n) \)

- Search efficiency depends on heuristic quality!
 - The better your heuristic, the faster your search!
Heuristic function

• Heuristic
 – Def’n: a commonsense rule or rules intended to increase the probability of solving some problem
 – Same linguistic root as “Eureka” = “I have found it”
 – Using rules of thumb to find answers

• Heuristic function $h(n)$
 – Estimate of (optimal) remaining cost from n to goal
 – Defined using only the state of node n
 – $h(n) = 0$ if n is a goal node
 – Example: straight line distance from n to Bucharest
 • Not true state space distance, just estimate! Actual distance can be higher

• Provides problem-specific knowledge to the search algorithm
Ex: 8-Puzzle

- 8-Puzzle
 - Avg solution cost is about 22 steps
 - Branching factor ~ 3
 - Exhaustive search to depth 22 = 3.1×10^{10} states
 - A good heuristic f’n can reduce the search process

- Two commonly used heuristics
 - h_1: the number of misplaced tiles
 $$h_1(s) = 8$$
 - h_2: sum of the distances of the tiles from their goal
 $$h_2(s) = 3+1+2+2+2+3+3+2 = 18$$
Ex: Romania, straight-line distance

<table>
<thead>
<tr>
<th>Location</th>
<th>Straight-line dist to goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobeta</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Relationship of search algorithms

- **Notation**
 - $g(n) =$ known cost so far to reach n
 - $h(n) =$ estimated (optimal) cost from n to goal
 - $f(n) =$ $g(n)+h(n) =$ estimated (optimal) total cost through n

- Uniform cost search: sort frontier by $g(n)$
- Greedy best-first search: sort frontier by $h(n)$
- A* search: sort frontier by $f(n)$
 - Optimal for admissible / consistent heuristics
 - Generally the preferred heuristic search framework
 - Memory-efficient versions of A* are available: RBFS, SMA*
Greedy best-first search
(sometimes just called “best-first”)

• $h(n) =$ estimate of cost from n to goal
 – Ex: $h(n) =$ straight line distance from n to Bucharest

• Greedy best-first search expands the node that appears to be closest to goal
 – Priority queue sort function = $h(n)$
Ex: GBFS for Romania

Straight-line dist to goal

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Drobeta: 242
- Eforie: 161
- Fagaras: 176
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 100
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
Ex: GBFS for Romania

GBFS: 450km

Optimal path: 418 km

<table>
<thead>
<tr>
<th>City</th>
<th>Straight-line dist to goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobota</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy best-first search

- With tree-search, will become stuck in this loop:
 - Order of node expansion: S A D S A D S A D ...
 - Path found: none
 - Cost of path found: none
Properties of greedy best-first search

• Complete?
 – Tree version can get stuck in loops
 – Graph version is complete in finite spaces

• Time? $O(b^m)$
 – A good heuristic can give dramatic improvement

• Space? $O(b^m)$
 – Keeps all nodes in memory

• Optimal? No
A* search

• Idea: avoid expanding paths that are already expensive
 – Generally the preferred (simple) heuristic search
 – Optimal if heuristic is:
 admissible (tree search) / consistent (graph search)

• Evaluation function $f(n) = g(n) + h(n)$
 – $g(n) =$ cost so far to reach n
 – $h(n) =$ estimated cost from n to goal
 – $f(n) = g(n)+h(n) =$ estimated total cost of path through n to goal

• Priority queue sort function = $f(n)$
Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n,
 $$h(n) \leq h^*(n)$$
 $h^*(n) = \text{the true cost to reach the goal state from } n$

- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic (or, never pessimistic)
 - Ex: straight-line distance never overestimates road distance

- Theorem:
 if $h(n)$ is admissible, A^* using Tree-Search is optimal
Admissible heuristics

- Two commonly used heuristics
 - h_1: the number of misplaced tiles
 \[h_1(s) = 8 \]
 - h_2: sum of the distances of the tiles from their goal
 \[h_2(s) = 3+1+2+2+2+3+3+2 \text{ ("Manhattan distance") } = 18 \]
Consistent heuristics

- A heuristic is **consistent** (or **monotone**) if for every node \(n \), every successor \(n' \) of \(n \) generated by any action \(a \),

\[
h(n) \leq c(n,a,n') + h(n')
\]

- If \(h \) is consistent, we have

\[
f(n') = g(n') + h(n')
= g(n) + c(n,a,n') + h(n')
\geq g(n) + h(n)
= f(n)
\]

i.e., \(f(n) \) is non-decreasing along any path.

- Consistent \(\) admissible (stronger condition)

- **Theorem:** If \(h(n) \) is consistent, A* using Graph-Search is optimal (Triangle inequality)
Optimality conditions

- Tree search optimal if admissible
- Graph search optimal if consistent

Why two different conditions?
- In graph search you often find a long cheap path to a node after a short expensive one, so you might have to update all of its descendants to use the new cheaper path cost so far
- A consistent heuristic avoids this problem (it can’t happen)
- Consistent is slightly stronger than admissible
- Almost all admissible heuristics are also consistent

Could we do optimal graph search with an admissible heuristic?
- Yes, but you would have to do additional work to update descendants when a cheaper path to a node is found
- A consistent heuristic avoids this problem
Ex: A* for Romania

Straight-line dist to goal
Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Fagaras 176
Lugoj 244
Mehadia 241
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374
Ex: A* for Romania

Expanded: None

Children: None

Frontier: Arad/366 (0+366),

Straight-line dist to goal
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Drobeta: 242
- Fagaras: 176
- Lugoj: 244
- Mehadia: 241
- Oradea: 380
- Pitesti: 100
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Zerind: 374
Ex: A* for Romania

<table>
<thead>
<tr>
<th>City</th>
<th>Straight-line dist to goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobeta</td>
<td>242</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Oradea</td>
<td>241</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Ex: A* for Romania

Expanded: Arad/366 (0+366),

Children: Sibiu/393 (140+253), Timisoara/447 (118+329), Zerind/449 (75+374),

Frontier: Arad/366 (0+366), Sibiu/393 (140+253), Timisoara/447 (118+329), Zerind/449 (75+374),

Straight-line dist to goal:
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobrogea: 242
- Fagaras: 176
- Lugoj: 244
- Mehadia: 241
- Oradea: 380
- Pitesti: 100
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Zerind: 374
Ex: A* for Romania

Straight-line dist to goal
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Drobeta: 242
- Fagaras: 176
- Lugoj: 244
- Mehadia: 241
- Oradea: 380
- Pitesti: 100
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Zerind: 374
Ex: A* for Romania

Expanded: Arad/366 (0+366), Sibiu/393 (140+253),

Children: Arad/646 (280+366), Fagaras/415 (239+176), Oradea/671 (291+380), RimnicuVilcea/413 (220+193),

Frontier: Arad/366 (0+366), Sibiu/393 (140+253), Timisoara/447 (118+329), Zerind/449 (75+374), Arad/646 (280+366), Fagaras/415 (239+176), Oradea/671 (291+380), RimnicuVilcea/413 (220+193),

Straight-line dist to goal
<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobeta</td>
<td>242</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>RimnicuVilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Ex: A* for Romania

Straight-line dist to goal

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Drobeta: 242
- Fagaras: 176
- Lugoj: 244
- Mehadia: 241
- Oradea: 380
- Pitesti: 100
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Zerind: 374
Ex: A* for Romania

Expanded: Arad/366 (0+366), Sibiu/393 (140+253), RimnicuVilcea/413 (220+193),

Children: Craiova/526 (366+160), Pitesti/417 (317+100), Sibiu/553 (300+253),

Frontier: Arad/366 (0+366), Sibiu/393 (140+253), Timisoara/447 (118+329), Zerind/449 (75+374), Arad/646 (280+366), Fagaras/415 (239+176), Oradea/671 (291+380), RimnicuVilcea/413 (220+193), Craiova/526 (366+160), Pitesti/417 (317+100), Sibiu/553 (300+253),

Straight-line dist to goal

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobrogea</td>
<td>242</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>RimnicuVilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Ex: A* for Romania

Straight-line dist to goal

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobota</td>
<td>242</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Pitesti</td>
<td>142</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
</tbody>
</table>

Note: search does not “backtrack”; both routes are pursued.
Ex: A* for Romania

Expanded: Arad/366 (0+366), Sibiu/393 (140+253), RimnicuVilcea/413 (220+193), Fagaras/415 (239+176),

Children: Bucharest/450 (450+0), Sibiu/591 (338+253),

Frontier: Arad/366 (0+366), Sibiu/393 (140+253), Timisoara/447 (118+329), Zerind/449 (75+374), Arad/646 (280+366), Fagaras/415 (239+176), Oradea/671 (291+380), RimnicuVilcea/413 (220+193), Craiova/526 (366+160), Pitesti/417 (317+100), Sibiu/553 (300+253), Bucharest/450 (450+0), Sibiu/591 (338+253),

Straight-line dist to goal

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobeta</td>
<td>242</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Ex: A* for Romania

Straight-line dist to goal

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobeta</td>
<td>242</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Ex: A* for Romania

Expanded: Arad/366 (0+366), Sibiu/393 (140+253), RimnicuVilcea/413 (220+193), Fagaras/415 (239+176), Pitesti/417 (317+100),

Children: Bucharest/418 (418+0), Craiova/615 (455+160), RimnicuVilcea/607 (414+193),

Frontier: Arad/366 (0+366), Sibiu/393 (140+253), Timisoara/447 (118+329), Zerind/449 (75+374), Arad/646 (280+366), Fagaras/415 (239+176), Oradea/671 (291+380), RimnicuVilcea/413 (220+193), Craiova/526 (366+160), Pitesti/417 (317+100), Sibiu/553 (300+253), Bucharest/450 (450+0), Sibiu/591 (338+253), Bucharest/418 (418+0), Craiova/615 (455+160), RimnicuVilcea/607 (414+193)

Straight-line dist to goal
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Drobeta: 242
- Fagaras: 176
- Lugoj: 244
- Mehadia: 241
- Oradea: 380
- Pitesti: 100
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Zerind: 374
Ex: A* for Romania

<table>
<thead>
<tr>
<th>City</th>
<th>Straight-line dist to goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobeta</td>
<td>242</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>

Diagram showing a tree with cities and their connections, distances, and straight-line distances to the goal.
Ex: A* for Romania

Expanded: Arad/366 (0+366), Sibiu/393 (140+253), RimnicuVilcea/413 (220+193), Fagaras/415 (239+176), Pitesti/417 (317+100), Bucharest/418 (418+0)

Children: None *(goal test succeeds)*

Frontier: Arad/366 (0+366), Sibiu/393 (140+253), Timisoara/447 (118+329), Zerind/449 (75+374), Arad/646 (280+366), Fagaras/415 (239+176), Oradea/671 (291+380), RimnicuVilcea/413 (220+193), Craiova/526 (366+160), Pitesti/417 (317+100), Sibiu/553 (300+253), Bucharest/450 (450+0), Sibiu/591 (338+253), Bucharest/418 (418+0), Craiova/615 (455+160), RimnicuVilcea/607 (414+193)

Shorter, more expensive path remains on queue

Cheaper path will be found & returned
Contours of A* search

- For consistent heuristic, A* expands in order of increasing f value
- Gradually adds “f-contours” of nodes
- Contour i has all nodes with $f=f_i$, where $f_i < f_{i+1}$
Properties of A* search

- **Complete?** Yes
 - Unless infinitely many nodes with $f < f(G)$
 - Cannot happen if step-cost $\geq \varepsilon > 0$

- **Time/Space?** $O(b^m)$
 - Except if $|h(n) - h^*(n)| \leq O(\log h^*(n))$

- **Optimal?** Yes
 - With: Tree-Search, admissible heuristic; Graph-Search, consistent heuristic

- **Optimally efficient?** Yes
 - No optimal algorithm with same heuristic is guaranteed to expand fewer nodes
Optimality of A*

Proof:
- Suppose some suboptimal goal G_2 has been generated & is on the frontier. Let n be an unexpanded node on the path to an optimal goal G

- Show: $f(n) < f(G_2)$ (so, n is expanded before G_2)

$f(G_2) = g(G_2)$ since $h(G_2) = 0$

$f(G) = g(G)$ since $h(G) = 0$

$g(G_2) > g(G)$ since G_2 is suboptimal

$f(G_2) > f(G)$ from above, with $h=0$

$h(n) \leq h^*(n)$ since h is admissible (under-estimate)

$g(n) + h(n) \leq g(n) + h^*(n)$ from above

$f(n) \leq f(G)$ since $g(n)+h(n)=f(n)$ & $g(n)+h^*(n)=f(G)$

$f(n) < f(G_2)$ from above
Memory-bounded heuristic search

• Memory is a major limitation of A*
 – Usually run out of memory before run out of time

• How can we solve the memory problem?

• Idea: recursive best-first search (RBFS)
 – Try something like depth-first search, but don’t forget everything about the branches we have partially explored
 – Remember the best f(n) value we have found so far in the branch we’re deleting
RBFS: changes its mind very often in practice. This is because the \(f = g + h \) become more accurate (less optimistic) as we approach the goal. Hence, higher level nodes have smaller \(f \)-values and will be explored first.

Problem: We should keep in memory whatever we can.
Simple Memory Bounded A* (SMA*)

- Memory limited, but uses available memory well:
 - Like A*, but if memory full: delete the worst node (largest f-val)
 - Like RBFS, remember the best descendent in deleted branch
 - If there is a tie (equal f-values) we delete the oldest nodes first.
 - SMA* finds the optimal *reachable* solution given memory constraint.
 - Time can still be exponential.

- Best of search algorithms we’ve seen
 - Using memory avoids double work; heuristic guides exploration
 - If memory is not a problem, basic A* is easy to code & performs well

A solution is not reachable if a single path from root to goal does not fit in memory.
SMA* Pseudocode

Note: not in 2nd edition of R&N

```plaintext
function SMA*(problem) returns a solution sequence
inputs: problem, a problem
static: Queue, a queue of nodes ordered by f-cost

Queue ← MAKE-QUEUE(\{MAKE-NODE(INITIAL-STATE[problem])\})
loop do
  if Queue is empty then return failure
  n ← deepest least-f-cost node in Queue
  if GOAL-TEST(n) then return success
  s ← NEXT-SUCCESSOR(n)
  if s is not a goal and is at maximum depth then
    f(s) ← ∞
  else
    f(s) ← MAX(f(n), g(s)+h(s))
  if all of n’s successors have been generated then
    update n’s f-cost and those of its ancestors if necessary
  if SUCCESSORS(n) all in memory then remove n from Queue
  if memory is full then
    delete shallowest, highest-f-cost node in Queue
    remove it from its parent’s successor list
    insert its parent on Queue if necessary
  insert s in Queue
end
```
Simple memory-bounded A* (SMA*)

(Example with 3-node memory)

Progress of SMA*. Each node is labeled with its current f-cost. Values in parentheses show the value of the best forgotten descendant.

Search space

g+h = f □ = goal

Algorithm can tell you when best solution found within memory constraint is optimal or not.
Heuristic functions

• 8-Puzzle
 – Avg solution cost is about 22 steps
 – Branching factor ~ 3
 – Exhaustive search to depth 22 = 3.1 x 10^10 states
 – A good heuristic f’n can reduce the search process
 – True cost for this start & goal: 26

• Two commonly used heuristics
 – h_1: the number of misplaced tiles
 $h_1(s) = 8$
 – h_2: sum of the distances of the tiles from their goal
 $h_2(s) = 3+1+2+2+2+3+3+2$ ("Manhattan distance")
 $= 18$
Dominance

- Definition:
 If $h_2(n) \geq h_1(n)$ for all n
 then h_2 dominates h_1
 - h_2 is almost always better for search than h_1
 - h_2 is guaranteed to expand no more nodes than h_1
 - h_2 almost always expands fewer nodes than h_1
 - Not useful unless are h_1, h_2 are admissible / consistent

- Ex: 8-Puzzle / sliding tiles
 - h_1: the number of misplaced tiles
 - h_2: sum of the distances of the tiles from their goal
Ex: 8-Puzzle

Average number of nodes expanded

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>A*(h1)</th>
<th>A*(h2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
</tr>
<tr>
<td>20</td>
<td>-------</td>
<td>7276</td>
<td>676</td>
</tr>
<tr>
<td>24</td>
<td>-------</td>
<td>39135</td>
<td>1641</td>
</tr>
</tbody>
</table>

Average over 100 randomly generated 8-puzzle problems

- h1 = number of tiles in the wrong position
- h2 = sum of Manhattan distances
Effective branching factor, b^*

- Let A^* generate N nodes to find a goal at depth d
 - Effective branching b^* is the branching factor a uniform tree of depth d would have in order to contain $N+1$ nodes:
 \[
 N + 1 = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d \\
 = \frac{((b^*)^d - 1)}{(b^* - 1)} \\
 N \approx (b^*)^d \quad \Rightarrow \quad b^* \approx \sqrt[d]{N}
 \]

- For sufficiently hard problems, b^* is often fairly constant across different problem instances

- A good guide to the heuristic’s overall usefulness
- A good way to compare different heuristics
Designing heuristics

• Often constructed via problem relaxations
 – A problem with fewer restrictions on actions
 – Cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

• Ex: 8-Puzzle
 – Relax rules so a tile can move anywhere: $h_1(n)$
 – Relax rules so tile can move to any adjacent square: $h_2(n)$

• A useful way to generate heuristics
 – Ex: ABSOLVER (Prieditis 1993) discovered the first useful heuristic for the Rubik’s cube
More on heuristics

• Combining heuristics
 – \(H(n) = \max \{ h_1(n), h_2(n), \ldots, h_k(n) \} \)
 – “max” chooses the least optimistic heuristic at each node

• Pattern databases
 – Solve a subproblem of the true problem
 \((= \text{a lower bound on the cost of the true problem}) \)
 – Store the exact solution for each possible subproblem

\begin{figure}
\centering
\includegraphics[width=\textwidth]{pattern_databases.png}
\caption{Pattern Databases Example}
\end{figure}
Summary

• Uninformed search has uses but also severe limitations
• Heuristics are a structured way to make search smarter

• Informed (or heuristic) search uses problem-specific heuristics to improve efficiency
 – Best-first, A* (and if needed for memory, RBFS, SMA*)
 – Techniques for generating heuristics
 – A* is optimal with admissible (tree) / consistent (graph heuristics)

• Can provide significant speed-ups in practice
 – Ex: 8-Puzzle, dramatic speed-up
 – Still worst-case exponential time complexity (NP-complete)

• Next: local search techniques (hill climbing, GAs, annealing...)
 – Read R&N Ch 4 before next lecture
You should know...

- **evaluation function** $f(n)$ and **heuristic function** $h(n)$ for each node n
 - $g(n) =$ known path cost so far to node n.
 - $h(n) =$ *estimate* of (optimal) cost to goal from node n.
 - $f(n) = g(n)+h(n) =$ *estimate* of total cost to goal through node n.

- Heuristic searches: **Greedy-best-first, A***
 - A* is optimal with admissible (tree)/consistent (graph) heuristics
 - Prove that A* is optimal with admissible heuristic for tree search
 - Recognize when a heuristic is admissible or consistent

- h_2 dominates h_1 iff $h_2(n) \geq h_1(n)$ for all n
- Effective branching factor: b^*
- Inventing heuristics: relaxed problems; max or convex combination