Introduction to
Artificial Intelligence

CS171, Fall Quarter, 2019
Introduction to Artificial Intelligence
Prof. Richard Lathrop

\ v Read Beforehand: All assigned reading so far

" (D 0
EREJ:!U[@E UNIVERSITY of CALIFORNIA O TRVINE

FORMATION A

Final Review

First-Order Logic: R&N Chap 8.1-8.5, 9.1-9.5
Probability: R&N Chap 13

Bayesian Networks: R&N Chap 14.1-14.5
Machine Learning: R&N Chap 18.1-18.12, 20.2

Review First-Order Logic
Chapter 8.1-8.5, 9.1-9.5

Syntax & Semantics
— Predicate symbols, function symbols, constant symbols, variables, quantifiers.
— Models, symbols, and interpretations
De Morgan’s rules for quantifiers
Nested quantifiers
— Difference between “V x 3y P(x, y)” and “dx V y P(x, y)”
Translate simple English sentences to FOPC and back
— V x 3y Likes(x, y) < “Everyone has someone that they like.”
— dx VyLikes(x, y) < “There is someone who likes every person.”
Unification and the Most General Unifier
Inference in FOL
— By Resolution (CNF)
— By Backward & Forward Chaining (Horn Clauses)
Knowledge engineering in FOL

Syntax of FOL: Basic syntax elements are symbols

Constant Symbols (correspond to English nouns)

— Stand for objects in the world.
* E.g., Kinglohn, 2, UC], ...

Predicate Symbols (correspond to English verbs)

— Stand for relations (maps a tuple of objects to a truth-value)
* E.g., Brother(Richard, John), greater_than(3,2), ...

— P(x, y) is usually read as “x is P of y.”
* E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.”

Function Symbols (correspond to English nouns)

— Stand for functions (maps a tuple of objects to an object)
* E.g., Sqrt(3), LeftLegOf(John), ...

Model (world) = set of domain objects, relations, functions

Interpretation maps symbols onto the model (world)
— Very many interpretations are possible for each KB and world!
— The KB is to rule out those inconsistent with our knowledge.

Syntax of FOL: Terms

 Term = logical expression that refers to an object

e There are two kinds of terms:

— Constant Symbols stand for (or name) objects:
* E.g., KingJohn, 2, UCI, Wumpus, ...

— Function Symbols map tuples of objects to an object:
e E.g., LeftLeg(Kinglohn), Mother(Mary), Sqrt(x)
* This is nothing but a complicated kind of name
— No “subroutine” call, no “return value”

Syntax of FOL: Atomic Sentences

* Atomic Sentences state facts (logical truth values).

— An atomic sentence is a Predicate symbol, optionally followed by a
parenthesized list of any argument terms

— E.g., Married(Father(Richard), Mother(John))

— An atomic sentence asserts that some relationship (some predicate) holds
among the objects that are its arguments.

* An Atomic Sentence is true in a given model if the relation referred to
by the predicate symbol holds among the objects (terms) referred to
by the arguments.

Syntax of FOL:
Connectives & Complex Sentences

* Complex Sentences are formed in the same way, using
the same logical connectives, as in propositional logic

 The Logical Connectives:
— <& biconditional
— = implication
— A and
— Vv or
— — hegation

* Semantics for these logical connectives are the same as
we already know from propositional logic.

Syntax of FOL: Variables

Variables range over objects in the world.
A variable is like a term because it represents an object.

A variable may be used wherever a term may be used.
— Variables may be arguments to functions and predicates.

(A term with NO variables is called a ground term.)

(A variable not bound by a quantifier is called free.)
— All variables we will use are bound by a quantifier.

Syntax of FOL: Logical Quantifiers

 There are two Logical Quantifiers:

— Universal: V x P(x) means “For all x, P(x).”
* The “upside-down A” reminds you of “ALL.”
* Some texts put a comma after the variable: V x, P(x)

— Existential: 3 x P(x) means “There exists x such that, P(x).”
* The “backward E” reminds you of “EXISTS.”
* Some texts put a comma after the variable: 3 x, P(x)

* You can ALWAYS convert one quantifier to the other.
— V x P(x) = —=3 x —P(x)
— A xP(x) ==V x —=P(x)
— RULES: V=—d— and d=—-V—

 RULES: To move negation “in” across a quantifier,
Change the quantifier to “the other quantifier”
and negate the predicate on “the other side.”

— =V X P(x) =——3d x =P(x) =3 x =P(x)
— —3dXxP(x)=— =V x =P(x) =V x =P(x)

Universal Quantification V

Y x means “for all x it is true that...”

Allows us to make statements about all objects that have
certain properties

Can now state general rules:

Vv x King(x) => Person(x) “All kings are persons.”
V¥ x Person(x) => HasHead(x) “Every person has a head.”
YV i Integer(i) => Integer(plus(i,1)) “Ifiis an integer then i+1 is an integer.”

Note: V x King(x) A Person(x) is not correct!
This would imply that all objects x are Kings and are People (!)

Y x King(x) => Person(x) is the correct way to say this

Note that => (or <) is the natural connective to use with V .

Existential Quantification -

d x means “there exists an x such that....”
— There is in the world at least one such object x

Allows us to make statements about some object without naming it, or
even knowing what that object is:

dx King(x) “Some object is a king.”
3 x Lives_in(John, Castle(x)) “John lives in somebody’s castle.”
Ji Integer(i) A Greater(i,0) “Some integer is greater than zero.”

Note: 3i Integer(i) = Greater(i,0) is not correct!
It is vacuously true if anything in the world were not an integer (!)

di Integer(i) A Greater(i,0) is the correct way to say this

Note that A is the natural connective to use with 3.

Combining Quantifiers --- Order (Scope)

The order of “unlike” quantifiers is important.
Like nested variable scopes in a programming language.
Like nested ANDs and ORs in a logical sentence.

vV x3y Loves(x,y)
— For everyone (“all x”) there is someone (“exists y”) whom they love.
— There might be a different y for each x (y is inside the scope of x)
Jdy V x Loves(x,y)
— There is someone (“exists y”) whom everyone loves (“all x”).
— Every x loves the same y (x is inside the scope of y)

Clearer with parentheses: 3y (V x Loves(x,y))

The order of “like” quantifiers does not matter.
Like nested ANDs and ANDs in a logical sentence
Vx Yy P(x, y) = Vy Vx P(x, y)
dx Jy P(x, y) = dy Ix P(x, y)

De Morgan’s Law for Quantifiers

De Morgan’s Rule Generalized De Morgan’s Rule
PAQ==(-=Pv-0Q) V X P(X) =— 3 X = P(X)
PvQ=—=(—=PA-=Q) X P(X) =V X = P(X)
- (PAQ)=(-Pv-0Q) -V XP(x) =3 x = P(x)
- (PvQ)=(-PA-0Q) — 33X P(X) =V x = P(X)

AND/OR Rule is simple: if you bring a negation inside a disjunction or a
conjunction, always switch between them (- OR - AND —; —AND - OR —).

QUANTIFIER Rule is similar: if you bring a negation inside a universal or
existential, always switch between them (w3 2V —; =V 2 3).

Fun with sentences

Brothers are siblings

Vax,y Brother(xz,y) = Sibling(x,y).

“Sibling” is symmetric

Va,y Sibling(z,y) < Sibling(y,x).

One's mother is one’s female parent

Va,y Mother(z,y) < (Female(x) N Parent(x,y)).
A first cousin is a child of a parent’s sibling

Vz,y FirstCousin(z,y) < dp,ps Parent(p,xz) N Sibling(ps,p) N
Parent(ps,y)

Chapter T 21

Semantics: Interpretation

An interpretation of a sentence is an assignment that maps
— Object constants to objects in the worlds,
— n-ary function symbols to n-ary functions in the world,
— n-ary relation symbols to n-ary relations in the world

Given an interpretation, an atomic sentence has the value
“true” if it denotes a relation that holds for those individuals
denoted in the terms. Otherwise it has the value “false.”

— Example: Block world:

B

A, B,C, Floor, On, Clear A

— On(A,B) is false, Clear(B) is true, On(C,Floor) is true... C
e Under an interpretation that maps symbol A to block A, Floor

symbol B to block B, symbol C to block C, symbol Floor to the Floor
* Some other interpretation might result in different truth values.

Semantics: Models and Definitions

*An interpretation and possible world satisfies a wff (sentence) if the wff
has the value “true” under that interpretation in that possible world.

*Model: A domain and an interpretation that satisfies a wff is a model of
that wff

*Validity: Any wff that has the value “true” in all possible worlds and
under all interpretations is valid.

*Any wff that does not have a model under any interpretation is
inconsistent or unsatisfiable.

*Any wff that is true in at least one possible world under at least one
interpretation is satisfiable.

*If a wff w has a value true under all the models and all interpretations of
a set of sentences KB then KB logically entails w.

Conversion to CNF

* Everyone who loves all animals is loved by someone:

Vx [Vy Animal(y) = Loves(x,y)] = [3y Loves(y,x)]

1. Eliminate biconditionals and implications

Vx [=Vy —=Animal(y) v Loves(x,y)] v [3y Loves(y,x)]

2. Move — inwards:
—VXpPE=dX—p, = IXPE=VX—p

Vx [Ay =(—Animal(y) v Loves(x,y))] v [Ty Loves(y,x)]
Vx [y =——Animal(y) A —=Loves(x,y)] v [dy Loves(y,x)]
Vx [Ay Animal(y) A —Loves(x,y)] v [Ty Loves(y,x)]

3.

4.

5.

6.

Conversion to CNF contd.

Standardize variables: each quantifier should use a different one

Vx [y Animal(y) A —Loves(x,y)] v [dz Loves(z,x)]

Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally
guantified variables:

Vx [Animal(F(x)) A —Loves(x,F(x))] v Loves(G(x),x)

Drop universal quantifiers:
[Animal(F(x)) A —Loves(x,F(x))] v Loves(G(x),x)

Distribute v over A :
[Animal(F(x)) v Loves(G(x),x)] A [—Loves(x,F(x)) v Loves(G(x),x)]

Unification

*Recall: Subst(B, p) = result of substituting 8 into sentence p

*Unify algorithm: takes 2 sentences p and g and returns a unifier if one exists
Unify(p,q) =0 where Subst(0, p) = Subst(8, q)

where 0 is a list of variable/substitution pairs
that will make p and g syntactically identical

*Example:

p = Knows(John,x)
q = Knows(John, Jane)

Unify(p,q) = {x/Jane}

Unification examples

 simple example: query = Knows(John,x), i.e., who does John know?

p
Knows(John,x)

Knows(John,x)
Knows(John,x)
Knows(John,x)

q
Knows(John,Jane)

Knows(y,0J)
Knows(y,Mother(y))
Knows(x,0))

{x/Jane}

{x/0J,y/John}
{y/John,x/Mother(John)}
{fail}

e Last unification fails: only because x can’t take values John and OJ at the same time
— But we know that if John knows x, and everyone (x) knows OJ, we should be able to infer that John

knows OJ

e Problem is due to use of same variable x in both sentences

 Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,0))

1)

2)

3)

4)

5)

6)

7)

Unification examples

UNIFY(Knows(John, x), Knows(John, Jane))

UNIFY(Knows(John, x), Knows(vy, Jane))

UNIFY(Knows(y, x), Knows(John, Jane))

UNIFY(Knows(John, x), Knows(y, Father (y)))

UNIFY(Knows(John, F(x)), Knows(y, F(F(z))))

UNIFY(Knows(John, F(x)), Knows(y, G(z)))

UNIFY(Knows(John, F(x)), Knows(y, F(G(y))))

{x/Jane}

{x/Jane,y/John}

{x/Jane,y/John}

{y /John, x / Father (John) }

{y/lJohn,x/F(z)}

None

{y/John, x/ G (John) }

Example knowledge base

 The law says that it is a crime for an American to sell weapons
to hostile nations. The country Nono, an enemy of America,

has some missiles, and all of its missiles were sold to it by
Colonel West, who is American.

* Prove that Col. West is a criminal

Example knowledge base (Horn clauses)

... itis a crime for an American to sell weapons to hostile nations:
American(x) A Weapon(y) » Sells(x,y,z) A Hostile(z) = Criminal(x)

Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M,) A Missile(M,)

... all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

Missiles are weapons:
Missile(x) = Weapon(x)

An enemy of America counts as "hostile”:
Enemy(x,America) = Hostile(x)

West, who is American ...
American(West)

The country Nono, an enemy of America ...
Enemy(Nono,America)

Resolution proof:

S American(x) v o Weapon(y) v - Sellsix,y,z) v - Hostile(z) v Criminalix) | -1 Criminali West) |
w
American West) | 1V American{ West) v 0 Weapor(v) v Sells{ West,v,z) v 1 Hostile(z) .
______________—_-—-_-——_
- Missile(x) v Weapon(x) - Weapon(y) v - Sells{West,v,z) v — Hostile(z)

_-—“'—\—\—-________

Missilel M1) T Missile(y) v Sells{ West,v,z) v — Hastile(z)

___________-_‘_-—-—__-—
-1 Missile(x) v — Owns{Nono,x) v SellsiWest,x Nono) | -1 Sells{ West.Mlz) v - Hostile(z) |

Y |

MissilefM 1) - MissilefM 1) v 2 OwnsiNoro M) v — Hostile!Nornao)

Chrsi Noro, M) — OwRsiNoma M) v — Hosrife! Noro)
-1 Enemvix,America) W Hostile{x) -1 Hostilel Nomo) |

Enemw Nono, America) T Enemw Nono America) |

=] =

Review Probability
Chapter 13

* Basic probability notation/definitions:

— Probability model, unconditional/prior and
conditional/posterior probabilities, factored
representation (= variable/value pairs), random variable,
(joint) probability distribution, probability density function
(pdf), marginal probability, (conditional) independence,
normalization, etc.

* Basic probability formulae:

— Probability axioms, sum rule, product rule, Bayes’ rule.

* How to use Bayes’ rule:

— Naive Bayes model (naive Bayes classifier)

Syntax

eBasic element: random variable

eSimilar to propositional logic: possible worlds defined by
assignment of values to random variables.

*Boolean random variables

e.g., Cavity (= do | have a cavity?)
eDiscrete random variables

e.g., Weather is one of <sunny,rainy,cloudy,snow>
eDomain values must be exhaustive and mutually exclusive

eElementary proposition is an assignment of a value to a random variable:
e.g., Weather = sunny; Cavity = false(abbreviated as -cavity)

eComplex propositions formed from elementary propositions and standard
logical connectives :

e.g., Weather = sunny Vv Cavity = false

Probability

P(a) is the probability of proposition “a”
— e.g., P(it will rain in London tomorrow)
— The proposition a is actually true or false in the real-world

Probability Axioms:

— 0 £P(a)<1

— P(NOT(a)) =1 -P(a) => 2, P(A) =1
— P(true) = 1

— P(false) = 0

— P(A ORB) =P(A) + P(B) = P(A AND B)

Any agent that holds degrees of beliefs that contradict these
axioms will act irrationally in some cases

Rational agents cannot violate probability theory.
— Acting otherwise results in irrational behavior.

Conditional Probability

P(a|b) is the conditional probability of proposition a,
conditioned on knowing that b is true,
— E.g., P(rain in London tomorrow | raining in London today)
— P(a]b) is a “posterior” or conditional probability
— The updated probability that a is true, now that we know b
— P(a]b)=P(a Ab)/P(b)
— Syntax: P(a | b) is the probability of a given that b is true

* aand b can be any propositional sentences
* e.g., p(John wins OR Mary wins | Bob wins AND Jack loses)

P(a|b) obeys the same rules as probabilities,

— E.g.,P(a | b) + P(NOT(a) | b)=1

— All probabilities in effect are conditional probabilities
* E.g., P(a) =P(a | our background knowledge)

Concepts of Probability

 Unconditional Probability
— P(a), the probability of “a” being true, or P(a=True)
— Does not depend on anything else to be true (unconditional)

— Represents the probability prior to further information that may adjust it
(prior)

e Conditional Probability
— P(a]b), the probability of “a” being true, given that “b” is true
— Relies on “b” = true (conditional)

— Represents the prior probability adjusted based upon new information “b”
(posterior)

— Can be generalized to more than 2 random variables:
= e.g.P(alb,c,d)

* Joint Probability
— P(a, b) =P(a A b), the probability of “a” and “b” both being true
— Can be generalized to more than 2 random variables:
= e.g.P(a, b,cd)

Basic Probability Relationships

P(A) + P(—A) =1

— Implies that P(—= A) =1 —P(A)
P(A,B)=P(AAB)=P(A) + P(B)—P(AV B)
— Implies that P(A v B) = P(A) + P(B) — P(A A B)
P(A | B) = P(A, B) / P(B)

— Conditional probability; “Probability of A given B”
P(A, B) = P(A | B) P(B)

— Product Rule (Factoring); applies to any number of variables
— P(a, b, c,...z)=P(a| b, c,...z) P(b | c,...z) P(c|...2)...P(2)

P(A) = z“B,C P(A! B! C) = ZbEB,CEC P(A! b! C)

— Sum Rule (Marginal Probabilities); for any number of variables
- P(A,D)=%25 2; P(A,B,C,D)=Z%,_g Z¢.cc P(A b, c, D)
P(B|A)=P(A|B)P(B)/P(A)

— Bayes’ Rule; for any number of variables

You need to
know these !

Full Joint Distribution

* We can fully specify a probability space by
constructing a full joint distribution:

— A full joint distribution contains a probability for
every possible combination of variable values.

— E.g., P(J=f, M=t, A=t, B=t, E=f)

* From a full joint distribution, the product rule,
sum rule, and Bayes’ rule can create any
desired joint and conditional probabilities.

Computing with Probabilities: Law of Total Probability

Law of Total Probability (aka “summing out” or marginalization)
P(a) =%, P(a, b)
=3, P(a| b)P(b) where Bisany random variable

Why is this useful?
Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any
“marginal” probability (e.g., P(b)) by summing out the other
variables, e.g.,

P(b) =2, 2. 24 Pla, b, c,d)

We can compute any conditional probability given a joint distribution, e.g.,

P(c|b) =2,%,P(a,c,d | b)
= X, 24 P(a, c,d, b)/P(b)
where P(b) can be computed as above

Computing with Probabilities:
The Chain Rule or Factoring

We can always write
P(a,b,c,..z) =P(a]|b,c,...2z)P(b,c,..2)
(by definition of joint probability)

Repeatedly applying this idea, we can write
P(a,b,c,..z) =P(a]|b,c,...z)P(b]c,..z)P(c]|..z)..P(2)

This factorization holds for any ordering of the variables

This is the chain rule for probabilities

Independence

Formal Definition:

— 2 random variables A and B are independent iff:
P(a, b) = P(a) P(b), forallvaluesa,b

Informal Definition:
— 2 random variables A and B are independent iff:
P(a| b)=P(a) OR P(b| a)=P(b), forallvaluesa,b

— P(a | b) = P(a) tells us that knowing b provides no change in our probability
for a, and thus b contains no information about a.

Also known as marginal independence, as all other variables have
been marginalized out.

In practice true independence is very rare:
— “butterfly in China” effect
— Conditional independence is much more common and useful

Conditional Independence

 Formal Definition:
— 2 random variables A and B are conditionally independent given C iff:
P(a, b|c) =P(a]c) P(b|c), forallvaluesa,b,c

* |Informal Definition:
— 2 random variables A and B are conditionally independent given C iff:
P(a]b,c)=P(aljc) OR P(b]a,c)=P(b|c), forallvaluesa,b,c

— P(a|b, c) = P(a]c) tells us that learning about b, given that we already know c,
provides no change in our probability for a, and thus b contains no
information about a beyond what c provides.

 Naive Bayes Model:

— Often a single variable can directly influence a number of other variables, all
of which are conditionally independent, given the single variable.

— E.g., k different symptom variables X,, X,, ... X,, and C = disease, reducing to:
P(X,, X,,.... X, | C) =P(C) IT P(X; | C)

Examples of Conditional Independence

H=Heat, S=Smoke, F=Fire

— P(H,S|F)=P(H| F)P(S| F)

— P(S|FS)=P(S|F)

— If we know there is/is not a fire, observing heat tells us no more
information about smoke

* F=Fever, R=RedSpots, M=Measles
— P(FER| M)=P(F| M)P(R | M)
— P(R| M, F)=P(R| M)
— If we know we do/don’t have measles, observing fever tells us no
more information about red spots

* C=SharpClaws, F=SharpFangs, S=Species
— P(C,F|S)=P(C|S)P(F|S)
— P(F|S,C)=P(F|S)
— If we know the species, observing sharp claws tells us no more
information about sharp fangs

Review Bayesian Networks
Chapter 14.1-5

Basic concepts and vocabulary of Bayesian networks.
— Nodes represent random variables.
— Directed arcs represent (informally) direct influences.
— Conditional probability tables, P(Xi | Parents(Xi)).

Given a Bayesian network:
— Write down the full joint distribution it represents.

Given a full joint distribution in factored form:
— Draw the Bayesian network that represents it.

Given a variable ordering and background assertions of conditional

independence among the variables:
— Write down the factored form of the full joint distribution, as simplified by the
conditional independence assertions.

Use the network to find answers to probability questions about it.

Bayesian Networks

Represent dependence/independence via a directed graph
— Nodes = random variables
— Edges = direct dependence

Structure of the graph <~ Conditional independence

Recall the chain rule of repeated conditioning:
P(X17X2aX3'“7XN) — P(X1|X23X3'“7XN)P(X2|X37 JXN) to P(XN)
P(X1,X9, X5...., Xn) = [1—, P(X;|parents(X;))

The full joint distribution The graph-structured approximation

Requires that graph is acyclic (no directed cycles)

2 components to a Bayesian network
— The graph structure (conditional independence assumptions)
— The numerical probabilities (of each variable given its parents)

Bayesian Network

« A Bayesian network specifies a joint distribution in a structured form:

Full factorization

!

p(A,B,C)

P(A)

0.33

P(C|A,B)p(A[B)p(B)e——

@)

= p(C|A,B)p(A)p(B)

T

After applying
conditional
independence
from the graph

* Dependence/independence represented via a directed graph:

- Node = random variable

— Directed Edge
— Absence of Edge

= conditional dependence
= conditional independence

*Allows concise view of joint distribution relationships:
— Graph nodes and edges show conditional relationships between variables.

— Tables provide probability data.

P(B)

0.67

P(C)

-+ = ~+ ~+|>>

- o+ —n |

0.2
0.4
0.3
0.3

Burglar Alarm Example

Consider the following 5 binary variables:

— B =a burglary occurs at your house

— E = an earthquake occurs at your house
— A =the alarm goes off

— J =John calls to report the alarm

— M = Mary calls to report the alarm

Sample Query: What is P(B| M, J) ?
Using full joint distribution to answer this question requires
— 2°-1=31 parameters

Can we use prior domain knowledge to come up with a
Bayesian network that requires fewer probabilities?

The Resulting Bayesian Network

P(E)
A j)
Burglar) o
A P(M)
t .70
f 01

Example of Answering a Simple Query
 Whatis P(—j, m, a, —e, b) = P(J = false A M=true A A=true A E=false A B=true)
P(J, M, A, E,B)= P(J | A)P(M | A) P(A| E, B) P(E) P(B) ; by conditional independence

P(—j, m, a, —e, b) = P(—j | a) P(m | a) P(a| —e, b) P(—e) P(b)

= 0.10 x 0.70 x 0.94 x 0.998 x 0.001 ~.0000657
0.001 0.002
| | Burglary | |

Earthquake

11 .

10
o] 1
1| 0.90 0|0

0 0.05

0.95
0.94
0.29
0.001

0 0.01

Given a graph, can we “read off”
conditional independencies?

The “Markov Blanket” of X
(the gray area in the figure)

X is conditionally independent of
everything else, GIVEN the
values of:

* X's parents

* X’s children

* X’s children’s parents

X is conditionally independent of
its non-descendants, GIVEN the
values of its parents.

Summary

Bayesian networks represent a joint distribution using a graph
The graph encodes a set of conditional independence assumptions

Answering queries (or inference or reasoning) in a Bayesian network
amounts to computation of appropriate conditional probabilities

Probabilistic inference is intractable in the general case

— Can be done in linear time for certain classes of Bayesian networks (polytrees:
at most one directed path between any two nodes)

— Usually faster and easier than manipulating the full joint distribution

Review Intro Machine Learning
Chapter 18.1-18.4

Understand Attributes, Target Variable, Error (loss) function,
Classification & Regression, Hypothesis (Predictor) function

What is Supervised Learning?

Decision Tree Algorithm

Entropy & Information Gain

Tradeoff between train and test with model complexity
Cross validation

Supervised Learning

Use supervised learning — training data is given
with correct output

We write program to reproduce this output with
new test data

Eg : face detection
Classification : face detection, spam email

Regression : Netflix guesses how much you will
rate the movie

Classification Graph Regression Graph
WT (lhs)

2007 .
1807
1607
1407

1207

1[”]“: . t t t } t t
18 w0 22 24 1% 28 30

Terminology

e Attributes

- Also known as features, variables, independent
variables, covariates

e Target Variable
- Also known as goal predicate, dependent variable, ...

e Classification

— Also known as discrimination, supervised
classification, ...

e Error function
- Also known as objective function, loss function, ...

Inductive or Supervised learning

e Let X = input vector of attributes (feature vectors)

e Let f(x) = target label
— The implicit mapping from x to f(x) is unknown to us
- We only have training data pairs, D = {x, f(x)} available

e We want to learn a mapping from x to f(x)
e Our hypothesis function is h(x, 0)
e h(x, 0) = f(x) for all training data points x
e 0 are the parameters of our predictor function h

e Examples:
- h(x, 0) = sign(6;x; + 6 ,X,+ 6 3) (perceptron)
- h(XI 9) = e0 + e1X1 + e2X2 (regression)
= hp(x) = (X Axa) V (X3 A =xy)

Empirical Error Functions
e E(h) = X, distance[h(x, 6) , f(X)]

Sum is over all training pairs in the training data D

Examples:

distance = squared error if h and f are real-valued
(regression)

distance = delta-function if h and f are categorical
(classification)

In learning, we get to choose

1. what class of functions h(..) we want to learn
- potentially a huge space! (“hypothesis space”)

2. what error function/distance we want to use
- should be chosen to reflect real “loss” in problem
- but often chosen for mathematical/algorithmic
convenience

Decision Tree Representations

*Decision trees are fully expressive
—Can represent any Boolean function (in DNF)
—Every path in the tree could represent 1 row in the truth table

—Might yield an exponentially large tree
*Truth table is of size 29, where d is the number of attributes

A B AxorB /\
F F F
F B B
. F F
F

AxorB=(-AAB)V(AA=B) in
DNF

Decision Tree Representations

e Decision trees are DNF representations

- often used in practice > often result in compact approximate
representations for complex functions

- E.g., consider a truth table where most of the variables are irrelevant to the
function

- Simple DNF formulae can be easily represented
e Eg., f=(AAB)V(=AAD)
e DNF = disjunction of conjunctions

e Trees can be very inefficient for certain types of functions
— Parity function: 1 only if an even number of 1’s in the input vector
eTrees are very inefficient at representing such functions
— Majority function: 1 if more than 2 the inputs are 1’s
eAlso inefficient

Pseudocode for Decision tree learning

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all ezamples have the same classification then return the classification
else if attributes is empty then return MoDE(ezamples)
else
best <— CHOOSE- ATTRIBUTE(attributes, examples)
tree «— a new decision tree with root test best
for each value v; of best do
examples; +— {elements of examples with best = v;}
subtree +— DTL(examples;, attributes — best, MODE(ezamples))
add a branch to tree with label v; and subtree subtree
return free

Choosing an attribute

e Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

000000 00000
200000 00000
Fatrons? Type?
Nﬂmull e ncm rger
000 00 O © 00 o0
o0 o000 o ® 00 o0

e Patrons? is a better choice
- How can we quantify this?
— One approach would be to use the classification error E directly (greedily)
e Empirically it is found that this works poorly
- Much better is to use information gain (next slides)
— Other metrics are also used, e.g., Gini impurity, variance reduction
— Often very similar results to information gain in practice

Entropy and Information

- “Entropy” is a measure of randomness

If the particles represent gas molecules at normal temperatures \r
inside a closed container, which of the illustrated configurations

came first?
eee
eee . .
*ee Time's .
arrow . *
/ >»| - \
.
.
Low ¢ High
Entropy Entropy

If you tossed bricks off a truck, which kind of pile of bricks
would you more likely produce?
Disorder is
I_;_I more probable
C T 1 1 than order.
C T T 1 1
C 1T 1T 1T 1T 1

https://www.youtube.com/watch?v=ZsY4WcQOrfk

Entropy, H(p), with only 2 outcomes

Consider 2 class problem:
p = probability of class #1,
1 — p = probability of class #2

In binary case:
H(p) =-plogp - (1-p) log (1-p)

H(p) high entropy,

< — high disorder,
high
uncertainty

0 0.5 1
p
Low entropy, low disorder, low
uncertainty

Entropy and Information

- Entropy H(X) =E[log 1/P(X)] =X
= =2 xex P(x) log P(x)

— Log base two, units of entropy are “bits”

P(x) log 1/P(x)

xeX

= Ifonly two outcomes: H(p) = - p log(p) - (1-p) log(1-p)

06 1

05 1

04 ,

03 1

02 ,

0.1 1
0 1 2 3 4

H(x)=.25log4 +.25log 4 + H(x) =.75 log 4/3 + .25 log 4 H(x)=1log1
251log 4 +.25log 4 = (0.8133 bits = 0 bits
= log 4 =2 bits

Max entropy for 4 outcomes Min entropy

Information Gain

 H(P) = current entropy of class distribution P
at a particular node,

before further partitioning the data

 H(P | A) = conditional entropy given attribute
A

= weighted average entropy of conditional
class distribution,

after partitioning the data according to
the values in A

Choosing an attribute

000000 00000
200000 00000
Fatrons? Type?
Nﬂmull e ncm rger
000 00 O © 00 o0
o0 o000 o ® 00 o0

IG(Patrons) = 0.541 bits IG(Type) = 0 bits

Example of Test Performance

Restaurant problem
- simulate 100 data sets of different sizes
- train on this data, and assess performance on an independent test set
- learning curve = plotting accuracy as a function of training set size
- typical “diminishing returns” effect (some nice theory to explain this)

Sl & 'r‘:_. % ?wégf ® ﬁllﬁlgr
0.9 | %Qﬁm&ﬁﬁ“ ‘ :
P #oY
7]
z 08 F W
g i
= |
S 07} |
o 7
2 |
S5 ||
0.5 k¢
0.4 ' ' - '
0 20 40 60 80 100

Training set size

Overfitting and Underfitting

A Complex Model

Y = high-order polynomial in X

A Much Simpler Model

Y=aX +b + noise

How Overfitting affects Prediction

<
<

 Underfitting Overfitting

v

[

Predictive
Error

Error on Test Data

Error on Training Data

[
»

Model Complexity

—>

Ideal Range
for Model Complexity

Too-Simple Models Too-Complex Models

Training and Validation Data

Full Data Set Idea: train each

/ Training Data model on the
“——“training data”
and then test

- Validation Data accurac;y O,n
*— the validation data

Disjoint Validation Data Sets

Validation Data (aka Test Data)

Full Data Set

Validation
Data

1 partition 2"d partition

Training Data

3rd partition 4% partition 5% partition

The k-fold Cross-Validation Method

e Why just choose one particular 90/10 “split” of the data?
— In principle we could do this multiple times

e “k-fold Cross-Validation” (e.g., k=10)
— randomly partition our full data set into k_disjoint subsets (each
roughly of size n/k, n = total number of training data points)
ofor i = 1:10 (here k = 10)
—train on 90% of data,
—Acc(i) = accuracy on other 10%
eend

«Cross-Validation-Accuracy = 1/k 2 Acc(i)
— choose the method with the highest cross-validation accuracy
— common values for k are 5 and 10
— Can also do “leave-one-out” where k = n

You will be expected to know

. Understand Attributes, Error function, Classification,
Regression, Hypothesis (Predictor function)

« What is Supervised Learning?

« Decision Tree Algorithm

« Entropy

« Information Gain

« Tradeoff between train and test with model complexity

. Cross validation

Review Machine Learning Classifiers
Chapters 18.5-18.12; 20.2.2

* Decision Regions and Decision Boundaries

e C(Classifiers:
* Decision trees
* K-nearest neighbors
* Perceptrons

e Support vector Machines (SVMs), Neural
Networks

* Naive Bayes

A Different View on Data

Representation

e Data pairs can be plotted in
“feature space”

 Each axis represents one
feature.

— This is a d dimensional space,
where dis the number of
features.

 Each data case corresponds
to one point in the space.

— In this figure we use color to
represent their class label.

Feature Space

T_

6_

o+

Feature B
3_

2+

0
a

Feature A

Data Points
(Color
represents
which class
they are in)

Decision Boundaries

Can we find a boundary that separates the two classes?

8 1 1 1 1 1 1 1
Decision

FEATURE 2

fei *
DeC|_S|on aleale * *
1 Region 2]

FEATURE 1

Classification in Euclidean Space

* A classifier is a partition of the feature space into
disjoint decision regions
— Each region has a label attached
— Regions with the same label need not be contiguous

— For a new test point, find what decision region it is in, and
predict the corresponding label

 Decision boundaries = boundaries between decision
regions

— The “dual representation” of decision regions

* Learning a classifier <> searching for the decision
boundaries that optimize our objective function

Decision Tree Example

Debt 4

t2 __._'I'.:__+

3 t1

Note: tree boundaries are
linear and axis-parallel

Income

Income > t1

/

Debt > t2

N

AN

Income > t3

N

A Simple Classifier:
Minimum Distance Classifier

Training
— Separate training vectors by class
— Compute the mean for each class, y,, k=1,..m

Prediction

— Compute the closest mean to a test vector x’ (using Euclidean
distance)

— Predict the corresponding class

In the 2-class case, the decision boundary is defined by the
locus of the hyperplane that is halfway between the 2 means
and is orthogonal to the line connecting them

This is a very simple-minded classifier — easy to think of cases
where it will not work very well

Minimum Distance Classifier

FEATURE 2

FEATURE 1

Another Example: Nearest
Neighbor Classifier

* The nearest-neighbor classifier

— Given a test point x’, compute the distance
between x’ and each input data point

— Find the closest neighbor in the training data
— As:
— (sc

ex

ier to

* The
piece <o e .

Image Courtesy: http:// scott.for-tmann-roe.com [docs/BiasVariance.html

Overall Boundary = Piecewise

Feature 2

Linear
Decision Region Decision Region
for Class 1 for Class 2
2
2

Feature 1

kNN Decision Boundary

» piecewise linear decision boundary

» Increasing k "simplifies” decision boundary
— Majority voting means less emphasis on individual points

R Ly
° }l'ﬁ-i;’ % o 3!'1.:?
v, C +

kNN Decision Boundary

e piecewise linear decision boundary

e Increasing k "simplifies” decision boundary
— Majority voting means less emphasis on individual points

K =25
e True ("best”) decision boundary

— In this case is linear
— Compared to kNN: not bad! s @

Larger K = Smoother boundary

Linear Classifiers

Linear classifiers classification decision based on the
value of a linear combination of the characteristics.
— Linear decision boundary (single boundary for 2-class case)

We can always represent a linear decision boundary by a
linear equation:

UL + Wakg + ... T WIxLq = Z;‘ Wi;T; = wlc =0

The w, are weights; the X; are feature values

Linear Classifiers

This equation defines a hyperplane in d dimensions

— A hyperplane is a subspace whose dimension is one less than that of its
ambient space.

If a space is 3-dimensional, its hyperplanes are the 2-dimensional planes;
if @ space is 2-dimensional, its hyperplanes are the 1-dimensional lines.

A hyperplane in a

3-dimensional space\

https://towardsdatascience.com/applied-deep-learmning-part-1-artificial-neural-networks-d7834
fo7a4f6

Linear Classifiers

« For prediction we simply see if Z; w;z; > 0
for new data x.
— If so, predict x to be positive
— If not, predict x to be negative

« Learning consists of searching in the d-dimensional
weight space for the set of weights (the linear boundary)
that minimizes an error measure

« A threshold can be introduced by a "dummy” feature

— The feature value is always 1.0
— Its weight corresponds to (the negative of) the threshold

 Note that a minimum distance classifier is a special case
of a linear classifier

The Perceptron Classifier
(pages 729-731 in text)

f % Cutput
Transfer
\ Function

Bias or
Threshold
Input Weights
(Features) Attributes https://towardsdatascience.com/applied-deep-learning-part-1-artificial-

neural-networks-d7834f67a4f6

Two different types of perceptron output

x-axis below is f(x) = f = weighted sum of inputs
y-axis is the perceptron output

Thresholded output,

oD — takes values +1 or -1

[
»

f

A

o(h) Sigmoid output, takes

f real values between -1 and +1

The sigmoid is in effect an approximation
to the threshold function above, but
has a gradient that we can use for learning

K\“
H
A

Sigmoid function is defined as
off]=[2/(1+exp[-f])]-1

Multi-Layer Perceptrons

(Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

Key

Qutput

Perceptron

Input

ol 1

Multi-Layer Perceptrons

(Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

What if we took K perceptrons and trained them in parallel and then took
a weighted sum of their sigmoidal outputs?

— This is a multi-layer neural network with a single “hidden” layer (the outputs
of the first set of perceptrons) What if we hooked them up into a general
Directed Acyclic Graph?

— Can create simple “neural circuits” (but no feedback; not fully general)
— Often called neural networks with hidden units

How would we train such a model?
— Backpropagation algorithm = clever way to do gradient descent
— Bad news: many local minima and many parameters
e trainingis hard and slow
— Good news: can learn general non-linear decision boundaries
— Generated much excitement in Al in the late 1980’s and 1990’s

— New current excitement with very large “deep learning” networks

Which decision boundary is “better”?
* Both have zero training error (perfect
training accuracy).

* But one seems intuitively better, more
robust to error

| e
@
8%
U.‘ P
@
x ? @ x
o ® e ‘. . * o
iy o ® o B
E ‘t ° Y E
s @ *® s
L on e L
&4 oe®® 23
o3e%f, o
L ®
@
® i -
Decision boundary . Decision boundary

Feature 1, X, Feature 1, X,

[4

Support Vector Machines (SVM): "Modern perceptrons’
(section 18.9, R&N)

e A modern linear separator classifier
- Essentially, a perceptron with a few extra wrinkles

e (Constructs a "maximum margin separator”

— A linear decision boundary with the largest possible distance from the
decision boundary to the example points it separates

— “Margin” = Distance from decision boundary to closest example
— The "maximum margin” helps SVMs to generalize well

e (Can embed the data in a non-linear higher dimension space
— Constructs a linear separating hyperplane in that space
e This can be a non-linear boundary in the original space
— Algorithmic advantages and simplicity of linear classifiers
— Representational advantages of non-linear decision boundaries

e Currently most popular “off-the shelf” supervised classifier.

Constructs a “maximum margin
separator”

(a) (®)

Figure 18.30 FILES: . Support vector machine classification: (a) Two classes of points (black and
white circles) and three candidate linear separators. (b) The maximum margin separator (heavy line),
is at the midpoint of the margin (area between dashed lines). The support vectors (points with large
circles) are the examples closest to the separator.

Can embed the data in a non-linear
higher dimension space

13 {gﬂg I
ok o oa)
P850 ° ° 5a% 0
1_%"-" o] Q__F{FEIOGJ@' o
@ — -
o ﬂ.- - 3 ,\ler
) o g '--‘ .\ @
031, eo ., \ e o i
G’I - [] [] ™ II| "%F‘ -
a . . 5] 1
o 09 | . * e
| el
5 - L
0.5 ° o\ e - M = -1
0.5 . . -2
o ﬂ@@ . ., %O% o] 3
ﬁ o] L1 E o
1 2 @ T— T 5 :
e D ® ooe @
g o % g
1; nﬂ = @ [3] @C k= i‘%

(a) (b)

Figure 18.31 FILES:. (3a) A two-dimensional traiming set with posifive examples as black circles
and negative examples as white circles. The true decision boundary, =7 + =3 < 1. is also shown.
(b) The same data after mapping into a three-dimensional input space (7,23, 2z 1a2). The circular
decision boundary in (a) becomes a linear decision boundary in three dimensions. Figure 18 29(b) gives
a closeup of the separator in (b).

Naive Bayes Model sector

20.2.2 R&N 3" ed.)

@& ---------------------- x

Basic Idea: We want to estimate P(C | X,,...X.), but it's hard to think about
computing the probability of a class from input attributes of an example.

Solution: Use Bayes’ Rule to turn P(C | X,,...X)) into a proportionally
equivalent expression that involves only P(C) and P(X,,... X, | C).
Then assume that feature values are conditionally independent given class,

which allows us to turn P(X,,...X, | C)into I, P(X; | C).
P(C | X,,...X,) = P(C) P(X,...X, | C)/ P(X1,...Xn) oc P(C)II, P(Xi| C)

We estimate P(C) easily from the frequency with which each class appears
within our training data, and we estimate P(X; | C) easily from the frequency
with which each X, appears in each class C within our training data.

N a.l.Ve B aye S M O d e I (section 20.2.2 R&N

rded.)

% ---------------------- x

By Bayes Rule: P(C | X,,...X\) is proportional to P (C) 1L, P(X;| C)
[note: denominator P(X,,...X,) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C
* choose the class value c; with the highest P(c, | x4,..., X;,)
» simple to implement, often works very well
* e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(X; | C) can easily be estimated from labeled date
* Problem: Need to avoid zeroes, e.g., from limited training data
» Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Naive Bayes Model (2)

P(C|X,,...X,) = a IT P(Xi| C) P (C)
Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data
P(C = cj) = #(Examples with class label cj) / #(Examples)
P(Xi = xik | C = ¢j)
= #(Examples with Xi value xik and class label cj)
| #(Examples with class label cj)
Usually easiest to work with logs

log [P(C | X4,...X,)]
=loga+ X [logP(X|C) +logP (C)]

DANGER: Suppose ZERO examples with Xi value xik and class label cj ?
An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Final Review

First-Order Logic: R&N Chap 8.1-8.5, 9.1-9.5
Probability: R&N Chap 13

Bayesian Networks: R&N Chap 14.1-14.5
Machine Learning: R&N Chap 18.1-18.12, 20.2

	Introduction to �Artificial Intelligence
	Final Review
	Review First-Order Logic�Chapter 8.1-8.5, 9.1-9.5
	Syntax of FOL: Basic syntax elements are symbols
	Syntax of FOL: Terms
	Syntax of FOL: Atomic Sentences
	Syntax of FOL:�Connectives & Complex Sentences
	Syntax of FOL: Variables
	Syntax of FOL: Logical Quantifiers
	Universal Quantification 
	Existential Quantification 
	Combining Quantifiers --- Order (Scope)
	De Morgan’s Law for Quantifiers
	Slide Number 14
	Semantics: Interpretation
	Semantics: Models and Definitions
	Conversion to CNF
	Conversion to CNF contd.
	Unification
	Unification examples
	Unification examples
	Example knowledge base
	Example knowledge base (Horn clauses)
	Resolution proof:
	Review Probability�Chapter 13
	Syntax
	Probability
	Conditional Probability
	Concepts of Probability
	Basic Probability Relationships
	Full Joint Distribution
	Computing with Probabilities: Law of Total Probability
	Computing with Probabilities:�The Chain Rule or Factoring
	Independence
	Conditional Independence
	Examples of Conditional Independence
	Review Bayesian Networks�Chapter 14.1-5
	Bayesian Networks
	Bayesian Network
	Burglar Alarm Example
	The Resulting Bayesian Network
	Example of Answering a Simple Query
	Given a graph, can we “read off” conditional independencies?
	Summary
	Review Intro Machine Learning�Chapter 18.1-18.4
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Decision Tree Representations
	Slide Number 53
	Pseudocode for Decision tree learning
	Slide Number 55
	Entropy and Information
	Slide Number 57
	Entropy and Information
	Information Gain
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Review Machine Learning Classifiers�Chapters 18.5-18.12; 20.2.2
	A Different View on Data Representation
	Decision Boundaries�Can we find a boundary that separates the two classes?
	Classification in Euclidean Space
	Decision Tree Example
	A Simple Classifier:�Minimum Distance Classifier
	Minimum Distance Classifier
	Another Example: Nearest Neighbor Classifier
	Overall Boundary = Piecewise Linear
	Slide Number 79
	Slide Number 81
	Linear Classifiers
	Linear Classifiers
	Linear Classifiers
	The Perceptron Classifier�(pages 729-731 in text)
	Two different types of perceptron output
	Multi-Layer Perceptrons�(Artificial Neural Networks)�(sections 18.7.3-18.7.4 in textbook)
	Multi-Layer Perceptrons�(Artificial Neural Networks)�(sections 18.7.3-18.7.4 in textbook)
	Which decision boundary is “better”?
	Support Vector Machines (SVM): “Modern perceptrons”�(section 18.9, R&N)
	Constructs a “maximum margin separator”
	Can embed the data in a non-linear higher dimension space
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (2)
	Final Review

