Introduction to Artificial Intelligence

CS171, Fall Quarter, 2019 Introduction to Artificial Intelligence Prof. Richard Lathrop

Read Beforehand: All assigned reading so far

Final Review

- First-Order Logic: R\&N Chap 8.1-8.5, 9.1-9.5
- Probability: R\&N Chap 13
- Bayesian Networks: R\&N Chap 14.1-14.5
- Machine Learning: R\&N Chap 18.1-18.12, 20.2

Review First-Order Logic Chapter 8.1-8.5, 9.1-9.5

- Syntax \& Semantics
- Predicate symbols, function symbols, constant symbols, variables, quantifiers.
- Models, symbols, and interpretations
- De Morgan's rules for quantifiers
- Nested quantifiers
- Difference between " $\forall x \exists y P(x, y)$ " and " $\exists x \forall y P(x, y)$ "
- Translate simple English sentences to FOPC and back
$-\forall x \exists \mathrm{y} \operatorname{Likes}(\mathrm{x}, \mathrm{y}) \Leftrightarrow$ "Everyone has someone that they like."
$-\exists x \forall y \operatorname{Likes}(x, y) \Leftrightarrow$ "There is someone who likes every person."
- Unification and the Most General Unifier
- Inference in FOL
- By Resolution (CNF)
- By Backward \& Forward Chaining (Horn Clauses)
- Knowledge engineering in FOL

Syntax of FOL: Basic syntax elements are symbols

- Constant Symbols (correspond to English nouns)
- Stand for objects in the world.
- E.g., KingJohn, 2, UCI, ...
- Predicate Symbols (correspond to English verbs)
- Stand for relations (maps a tuple of objects to a truth-value)
- E.g., Brother(Richard, John), greater_than(3,2), ...
$-P(x, y)$ is usually read as " x is P of y. ."
- E.g., Mother(Ann, Sue) is usually "Ann is Mother of Sue."
- Function Symbols (correspond to English nouns)
- Stand for functions (maps a tuple of objects to an object)
- E.g., Sqrt(3), LeftLegOf(John), ...
- Model (world) = set of domain objects, relations, functions
- Interpretation maps symbols onto the model (world)
- Very many interpretations are possible for each KB and world!
- The KB is to rule out those inconsistent with our knowledge.

Syntax of FOL: Terms

- Term = logical expression that refers to an object
- There are two kinds of terms:
- Constant Symbols stand for (or name) objects:
- E.g., KingJohn, 2, UCI, Wumpus, ...
- Function Symbols map tuples of objects to an object:
- E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
- This is nothing but a complicated kind of name
- No "subroutine" call, no "return value"

Syntax of FOL: Atomic Sentences

- Atomic Sentences state facts (logical truth values).
- An atomic sentence is a Predicate symbol, optionally followed by a parenthesized list of any argument terms
- E.g., Married(Father(Richard), Mother(John))
- An atomic sentence asserts that some relationship (some predicate) holds among the objects that are its arguments.
- An Atomic Sentence is true in a given model if the relation referred to by the predicate symbol holds among the objects (terms) referred to by the arguments.

Syntax of FOL:

Connectives \& Complex Sentences

- Complex Sentences are formed in the same way, using the same logical connectives, as in propositional logic
- The Logical Connectives:
$-\Leftrightarrow$ biconditional
$-\Rightarrow$ implication
- \wedge and
- \vee or
- \neg negation
- Semantics for these logical connectives are the same as we already know from propositional logic.

Syntax of FOL: Variables

- Variables range over objects in the world.
- A variable is like a term because it represents an object.
- A variable may be used wherever a term may be used.
- Variables may be arguments to functions and predicates.
- (A term with NO variables is called a ground term.)
- (A variable not bound by a quantifier is called free.)
- All variables we will use are bound by a quantifier.

Syntax of FOL: Logical Quantifiers

- There are two Logical Quantifiers:
- Universal: $\forall x P(x)$ means "For all $x, P(x)$."
- The "upside-down A" reminds you of "ALL."
- Some texts put a comma after the variable: $\forall \mathrm{x}, \mathrm{P}(\mathrm{x})$
- Existential: $\exists \mathrm{xP}(\mathrm{x})$ means "There exists x such that, $\mathrm{P}(\mathrm{x})$."
- The "backward E" reminds you of "EXISTS."
- Some texts put a comma after the variable: $\exists \mathrm{x}, \mathrm{P}(\mathrm{x})$
- You can ALWAYS convert one quantifier to the other.
$-\forall x P(x) \equiv \neg \exists x \neg P(x)$
$-\exists \mathrm{xP}(\mathrm{x}) \equiv \neg \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
- RULES: $\forall \equiv \neg \exists \neg$ and $\exists \equiv \neg \forall \neg$
- RULES: To move negation "in" across a quantifier,

Change the quantifier to "the other quantifier" and negate the predicate on "the other side."
$-\neg \forall \mathrm{xP}(\mathrm{x}) \equiv \neg \neg \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
$-\neg \exists \mathrm{xP}(\mathrm{x}) \equiv \neg \neg \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$

Universal Quantification \forall

- $\forall x$ means "for all x it is true that..."
- Allows us to make statements about all objects that have certain properties
- Can now state general rules:
$\forall x$ King $(x)=>\operatorname{Person}(x) \quad$ "All kings are persons."
$\forall x$ Person(x) => HasHead(x) "Every person has a head."
$\forall \mathrm{i} \operatorname{Integer}(\mathrm{i})=>\operatorname{Integer}(\mathrm{plus}(\mathrm{i}, 1)) \quad$ "If i is an integer then $\mathrm{i}+1$ is an integer."
- Note: $\forall \mathrm{x}$ King(x$) \wedge$ Person(x) is not correct!

This would imply that all objects x are Kings and are People (!)
$\forall x \operatorname{King}(x)=>\operatorname{Person}(x)$ is the correct way to say this

- Note that $=>($ or $\Leftrightarrow)$ is the natural connective to use with \forall.

Existential Quantification \exists

- $\exists x$ means "there exists an x such that...."
- There is in the world at least one such object x
- Allows us to make statements about some object without naming it, or even knowing what that object is:
$\exists \mathrm{x}$ King(x) "Some object is a king."
$\exists x$ Lives_in(John, Castle(x)) "John lives in somebody’s castle."
$\exists \mathrm{i} \operatorname{Integer}(\mathrm{i}) \wedge$ Greater (i, O) "Some integer is greater than zero."
- Note: $\exists \mathbf{i} \quad \operatorname{Integer}(\mathrm{i}) \Rightarrow \operatorname{Greater}(\mathrm{i}, 0)$ is not correct!

It is vacuously true if anything in the world were not an integer (!)
$\exists \mathrm{i} \operatorname{Integer}(\mathrm{i}) \wedge$ Greater $(\mathrm{i}, 0)$ is the correct way to say this

- Note that \wedge is the natural connective to use with \exists.

Combining Quantifiers --- Order (Scope)

The order of "unlike" quantifiers is important.
Like nested variable scopes in a programming language.
Like nested ANDs and ORs in a logical sentence.
$\forall x \exists y \operatorname{Loves}(x, y)$

- For everyone ("all x ") there is someone ("exists y ") whom they love.
- There might be a different y for each x (y is inside the scope of x)
$\exists y \forall x$ Loves (x, y)
- There is someone ("exists y ") whom everyone loves ("all x ").
- Every x loves the same y (x is inside the scope of y)

Clearer with parentheses: $\exists \mathrm{y}(\forall \mathrm{x} \quad \operatorname{Loves}(\mathrm{x}, \mathrm{y}))$
The order of "like" quantifiers does not matter.
Like nested ANDs and ANDs in a logical sentence

$$
\begin{aligned}
& \forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y) \\
& \exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)
\end{aligned}
$$

De Morgan's Law for Quantifiers

De Morgan's Rule

$$
\begin{aligned}
& \mathrm{P} \wedge \mathrm{Q} \equiv \neg(\neg \mathrm{P} \vee \neg \mathrm{Q}) \\
& \mathrm{P} \vee \mathrm{Q} \equiv \neg(\neg \mathrm{P} \wedge \neg \mathrm{Q}) \\
& \neg(\mathrm{P} \wedge \mathrm{Q}) \equiv(\neg \mathrm{P} \vee \neg \mathrm{Q}) \\
& \neg(\mathrm{P} \vee \mathrm{Q}) \equiv(\neg \mathrm{P} \wedge \neg \mathrm{Q})
\end{aligned}
$$

Generalized De Morgan's Rule

$$
\begin{aligned}
& \forall \mathrm{xP}(\mathrm{x}) \equiv \neg \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \exists \mathrm{xP}(\mathrm{x}) \equiv \neg \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{xP}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

AND/OR Rule is simple: if you bring a negation inside a disjunction or a conjunction, always switch between them (\neg OR \rightarrow AND $\neg ; \neg$ AND \rightarrow OR \neg).

QUANTIFIER Rule is similar: if you bring a negation inside a universal or existential, always switch between them $(\neg \exists \rightarrow \forall \neg ; \neg \forall \rightarrow \exists \neg)$.

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$.
A first cousin is a child of a parent's sibling
$\forall x, y \quad \operatorname{FirstCousin}(x, y) \Leftrightarrow \exists p, p s \quad \operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge$ Parent(ps,y)

Semantics: Interpretation

- An interpretation of a sentence is an assignment that maps
- Object constants to objects in the worlds,
- n-ary function symbols to n-ary functions in the world,
- n-ary relation symbols to n-ary relations in the world
- Given an interpretation, an atomic sentence has the value "true" if it denotes a relation that holds for those individuals denoted in the terms. Otherwise it has the value "false."
- Example: Block world:
- A, B, C, Floor, On, Clear
- On(A,B) is false, Clear(B) is true, On(C,Floor) is true...
- Under an interpretation that maps symbol A to block A, symbol B to block B, symbol C to block C, symbol Floor to the Floor
- Some other interpretation might result in different truth values.

Semantics: Models and Definitions

- An interpretation and possible world satisfies a wff (sentence) if the wff has the value "true" under that interpretation in that possible world.
- Model: A domain and an interpretation that satisfies a wff is a model of that wff
-Validity: Any wff that has the value "true" in all possible worlds and under all interpretations is valid.
-Any wff that does not have a model under any interpretation is inconsistent or unsatisfiable.
- Any wff that is true in at least one possible world under at least one interpretation is satisfiable.
- If a wff w has a value true under all the models and all interpretations of a set of sentences KB then KB logically entails w.

Conversion to CNF

- Everyone who loves all animals is loved by someone:

$$
\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]
$$

1. Eliminate biconditionals and implications
$\forall \mathrm{x}[\neg \forall \mathrm{y} \neg \operatorname{Animal}(\mathrm{y}) \vee \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(\mathrm{y}, \mathrm{x})]$
2. Move \neg inwards:

$$
\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p
$$

$\forall x[\exists y \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \operatorname{Loves}(y, x)]$
$\forall \mathrm{x}[\exists \mathrm{y} \neg \neg$ Animal $(\mathrm{y}) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists \mathrm{L} \operatorname{Loves}(\mathrm{y}, \mathrm{x})]$
$\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one
$\forall x[\exists \mathrm{y}$ Animal $(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]$
4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall \mathrm{x}[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
5. Drop universal quantifiers:
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
6. Distribute \vee over \wedge :
$[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

Unification

-Recall: $\operatorname{Subst}(\theta, p)=$ result of substituting θ into sentence p
-Unify algorithm: takes 2 sentences p and q and returns a unifier if one exists

$$
\operatorname{Unify}(p, q)=\theta \quad \text { where } \operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)
$$

where θ is a list of variable/substitution pairs that will make p and q syntactically identical
-Example:

$$
\begin{aligned}
& p=\operatorname{Knows}(J o h n, x) \\
& q=\operatorname{Knows}(J o h n, \text { Jane }) \\
& \\
& \operatorname{Unify}(p, q)=\{x / \text { Jane }\}
\end{aligned}
$$

Unification examples

- \quad simple example: query $=$ Knows(John,x), i.e., who does John know?

		θ
p	q	
Knows(John, x)	Knows(John,Jane)	$\{x / J a n e\}$
Knows(John, $x)$	Knows(y,OJ)	$\{x / O J, y / J o h n\}$
Knows(John, $x)$	Knows(y,Mother(y))	$\{y /$ John, $x /$ Mother(John) $\}$
Knows(John, $x)$	Knows(x,OJ)	$\{f a i l\}$

- Last unification fails: only because x can't take values John and OJ at the same time
- But we know that if John knows x, and everyone (x) knows OJ, we should be able to infer that John knows OJ
- Problem is due to use of same variable x in both sentences
- Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,OJ)

Unificationexanneles

1) UNIFY(Knows(John, x), Knows(John, Jane))
2) UNIFY(Knows(John, x), Knows(y, Jane))
3) UNIFY(Knows(y, x), Knows(John, Jane))
4) UNIFY(Knows(John, x), Knows(y, Father (y)))
5) UNIFY(Knows(John, F(x)), Knows(y, F(F(z))))
6) UNIFY(Knows(John, F(x)), Knows(y, G(z)))
7) $\operatorname{UNIFY}($ Knows(John, $F(x)$), Knows($y, F(G(y))))$
\{ x/Jane \}
\{ $\mathrm{x} / \mathrm{Jane}, \mathrm{y} /$ John $\}$
\{ $\mathrm{x} / \mathrm{Jane}, \mathrm{y} /$ John $\}$
\{ y / John, x / Father (John) \}
\{y/John, x/F(z) \}

None
\{ y/John, x/G(John) \}

Example knowledge base

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Col. West is a criminal

Example knowledge base (Horn clauses)

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Rightarrow \operatorname{Criminal}(x)$
Nono ... has some missiles, i.e., $\exists x \operatorname{Owns}($ Nono, $x) \wedge$ Missile (x) :
Owns $\left(\right.$ Nono,$\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West
Missile (x) ^Owns(Nono, x) \Rightarrow Sells(West, x, Nono)
Missiles are weapons:
Missile $(x) \Rightarrow$ Weapon (x)
An enemy of America counts as "hostile":
Enemy(x, America) \Rightarrow Hostile((x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Resolution proof:

```
\negAmerican(x) \vee ᄀ Weapon(y) \vee ᄀSells(x,y,z) \vee ᄀ Hostile(z) \vee Criminal(x)
```


Review Probability

Chapter 13

- Basic probability notation/definitions:
- Probability model, unconditional/prior and conditional/posterior probabilities, factored representation (= variable/value pairs), random variable, (joint) probability distribution, probability density function (pdf), marginal probability, (conditional) independence, normalization, etc.
- Basic probability formulae:
- Probability axioms, sum rule, product rule, Bayes' rule.
- How to use Bayes' rule:
- Naïve Bayes model (naïve Bayes classifier)

Syntax

-Basic element: random variable

- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
e.g., Cavity (= do I have a cavity?)
-Discrete random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition is an assignment of a value to a random variable:
e.g., Weather = sunny; Cavity = false(abbreviated as \neg cavity)
-Complex propositions formed from elementary propositions and standard logical connectives:
e.g., Weather = sunny V Cavity = false

Probability

- $P(a)$ is the probability of proposition " a "
- e.g., P(it will rain in London tomorrow)
- The proposition a is actually true or false in the real-world
- Probability Axioms:
$-0 \leq P(a) \leq 1$
- $\mathrm{P}(\mathrm{NOT}(\mathrm{a}))=1-\mathrm{P}(\mathrm{a}) \quad \Rightarrow \quad \Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{A})=1$
- $P($ true $)=1$
- $P($ false $)=0$
$-P(A$ OR B) $=P(A)+P(B)-P(A$ AND B)
- Any agent that holds degrees of beliefs that contradict these axioms will act irrationally in some cases
- Rational agents cannot violate probability theory.
- Acting otherwise results in irrational behavior.

Conditional Probability

- $\mathrm{P}(\mathrm{a} \mid \mathrm{b})$ is the conditional probability of proposition a, conditioned on knowing that b is true,
- E.g., P(rain in London tomorrow | raining in London today)
- $\mathrm{P}(\mathrm{a} \mid \mathrm{b})$ is a "posterior" or conditional probability
- The updated probability that a is true, now that we know b
$-P(a \mid b)=P(a \wedge b) / P(b)$
- Syntax: $P(a \mid b)$ is the probability of a given that b is true
- a and b can be any propositional sentences
- e.g., p(John wins OR Mary wins \| Bob wins AND Jack loses)
- $P(a \mid b)$ obeys the same rules as probabilities,
- E.g., P(a | b) $+\mathrm{P}(\mathrm{NOT}(\mathrm{a}) \mid \mathrm{b})=1$
- All probabilities in effect are conditional probabilities
- E.g., $P(a)=P(a \mid$ our background knowledge)

conceptsof pronability

- Unconditional Probability
- P(a), the probability of "a" being true, or P(a=True)
- Does not depend on anything else to be true (unconditional)
- Represents the probability prior to further information that may adjust it (prior)
- Conditional Probability
- P(a|b), the probability of " a " being true, given that " b " is true
- Relies on " b " = true (conditional)
- Represents the prior probability adjusted based upon new information "b" (posterior)
- Can be generalized to more than 2 random variables:
- e.g. P(a|b, c, d)
- Joint Probability
- $P(a, b)=P(a \wedge b)$, the probability of "a" and " b " both being true
- Can be generalized to more than 2 random variables:
- e.g. P(a, b, c, d)

Basic Probability Relationships

- $P(A)+P(\neg A)=1$
- Implies that $P(\neg A)=1-P(A)$
- $P(A, B)=P(A \wedge B)=P(A)+P(B)-P(A \vee B)$
- Implies that $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$
- $P(A \mid B)=P(A, B) / P(B)$

- Conditional probability; "Probability of A given B"
- $\mathbf{P}(\mathbf{A}, \mathrm{B})=\mathbf{P}(\mathrm{A} \mid \mathrm{B}) \mathbf{P (B)}$
- Product Rule (Factoring); applies to any number of variables
$-P(a, b, c, \ldots z)=P(a \mid b, c, \ldots z) P(b \mid c, \ldots z) P(c \mid \ldots z) \ldots P(z)$
- $\mathbf{P}(\mathbf{A})=\Sigma_{\mathrm{B}, \mathrm{C}} \mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma_{\mathrm{b} \in \mathrm{B}, \mathrm{c} \in \mathrm{C}} \mathbf{P}(\mathrm{A}, \mathrm{b}, \mathrm{c})$
- Sum Rule (Marginal Probabilities); for any number of variables
- $\mathrm{P}(\mathrm{A}, \mathrm{D})=\Sigma_{\mathrm{B}} \Sigma_{\mathrm{C}} \mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma_{\mathrm{b} \in \mathrm{B}} \Sigma_{\mathrm{c} \in \mathrm{C}} \mathrm{P}(\mathrm{A}, \mathrm{b}, \mathrm{c}, \mathrm{D})$
- $P(B \mid A)=P(A \mid B) P(B) / P(A)$
- Bayes' Rule; for any number of variables

Full Joint Distribution

- We can fully specify a probability space by constructing a full joint distribution:
- A full joint distribution contains a probability for every possible combination of variable values.
- E.g., $P(J=f, M=t, A=t, B=t, E=f)$
- From a full joint distribution, the product rule, sum rule, and Bayes' rule can create any desired joint and conditional probabilities.

Computing with Probabilities: Law of Total Probability

Law of Total Probability (aka "summing out" or marginalization)

$$
\begin{aligned}
\mathrm{P}(\mathrm{a}) & =\Sigma_{\mathrm{b}} \mathrm{P}(\mathrm{a}, \mathrm{~b}) \\
& =\Sigma_{\mathrm{b}} \mathrm{P}(\mathrm{a} \mid \mathrm{b}) \mathrm{P}(\mathrm{~b}) \quad \text { where } \mathrm{B} \text { is any random variable }
\end{aligned}
$$

Why is this useful?
Given a joint distribution (e.g., $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$) we can obtain any "marginal" probability (e.g., P(b)) by summing out the other variables, e.g.,

$$
\mathrm{P}(\mathrm{~b})=\sum_{\mathrm{a}} \sum_{\mathrm{c}} \sum_{\mathrm{d}} \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})
$$

We can compute any conditional probability given a joint distribution, e.g.,

$$
\begin{aligned}
& P(c \mid b)=\Sigma_{a} \Sigma_{d} P(a, c, d \mid b) \\
& \quad=\Sigma_{a} \Sigma_{d} P(a, c, d, b) / P(b) \\
& \quad \text { where } P(b) \text { can be computed as above }
\end{aligned}
$$

Computing with Probabilities: The Chain Rule or Factoring

We can always write

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots . z) P(b, c, \ldots z)
$$

(by definition of joint probability)

Repeatedly applying this idea, we can write

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots . z) P(b \mid c, . . z) P(c \mid . . z) . . P(z)
$$

This factorization holds for any ordering of the variables

This is the chain rule for probabilities

Independence

- Formal Definition:
- 2 random variables A and B are independent iff:

$$
P(a, b)=P(a) P(b), \quad \text { for all values } a, b
$$

- Informal Definition:
- 2 random variables A and B are independent iff:

$$
P(a \mid b)=P(a) \quad O R \quad P(b \mid a)=P(b), \quad \text { for all values } a, b
$$

$-P(a \mid b)=P(a)$ tells us that knowing b provides no change in our probability for a, and thus b contains no information about a.

- Also known as marginal independence, as all other variables have been marginalized out.
- In practice true independence is very rare:
- "butterfly in China" effect
- Conditional independence is much more common and useful

Conditional Independence

- Formal Definition:
- 2 random variables A and B are conditionally independent given C iff: $P(a, b \mid c)=P(a \mid c) P(b \mid c), \quad$ for all values a, b, c
- Informal Definition:
- 2 random variables A and B are conditionally independent given C iff: $P(a \mid b, c)=P(a \mid c) \quad O R \quad P(b \mid a, c)=P(b \mid c)$, for all values a, b, c
- $P(a \mid b, c)=P(a \mid c)$ tells us that learning about b, given that we already know c, provides no change in our probability for a, and thus b contains no information about a beyond what c provides.
- Naïve Bayes Model:
- Often a single variable can directly influence a number of other variables, all of which are conditionally independent, given the single variable.
- E.g., k different symptom variables $X_{1}, X_{2}, \ldots X_{k}$, and $C=$ disease, reducing to:

$$
P\left(X_{1}, X_{2}, \ldots X_{K} \mid C\right)=P(C) \Pi P\left(X_{i} \mid C\right)
$$

Examples of Conditional Independence

- H=Heat, S=Smoke, F=Fire
$-P(H, S \mid F)=P(H \mid F) P(S \mid F)$
- $P(S \mid F, S)=P(S \mid F)$
- If we know there is/is not a fire, observing heat tells us no more information about smoke
- $\mathbf{F}=$ Fever, $\mathrm{R}=$ RedSpots, $\mathrm{M}=$ Measles
$-P(F, R \mid M)=P(F \mid M) P(R \mid M)$
- $P(R \mid M, F)=P(R \mid M)$
- If we know we do/don't have measles, observing fever tells us no more information about red spots
- $\mathbf{C}=$ SharpClaws, $\mathrm{F}=$ SharpFangs, $\mathrm{S}=$ Species
$-P(C, F \mid S)=P(C \mid S) P(F \mid S)$
$-P(F \mid S, C)=P(F \mid S)$
- If we know the species, observing sharp claws tells us no more information about sharp fangs

Review Bayesian Networks Chapter 14.1-5

- Basic concepts and vocabulary of Bayesian networks.
- Nodes represent random variables.
- Directed arcs represent (informally) direct influences.
- Conditional probability tables, $\mathrm{P}(\mathrm{Xi} \mid \operatorname{Parents}(\mathrm{Xi})$).
- Given a Bayesian network:
- Write down the full joint distribution it represents.
- Given a full joint distribution in factored form:
- Draw the Bayesian network that represents it.
- Given a variable ordering and background assertions of conditional independence among the variables:
- Write down the factored form of the full joint distribution, as simplified by the conditional independence assertions.
- Use the network to find answers to probability questions about it.

Bayesian Networks

- Represent dependence/independence via a directed graph
- Nodes = random variables
- Edges = direct dependence
- Structure of the graph \Leftrightarrow Conditional independence
- Recall the chain rule of repeated conditioning:

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3} \ldots, X_{N}\right)=P\left(X_{1} \mid X_{2}, X_{3} \ldots, X_{N}\right) P\left(X_{2} \mid X_{3}, \ldots, X_{N}\right) \cdots P\left(X_{N}\right) \\
& P\left(X_{1}, X_{2}, X_{3} \ldots, X_{N}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
\end{aligned}
$$

The full joint distribution
The graph-structured approximation

- Requires that graph is acyclic (no directed cycles)
- 2 components to a Bayesian network
- The graph structure (conditional independence assumptions)
- The numerical probabilities (of each variable given its parents)

Bayesian Network

- A Bayesian network specifies a joint distribution in a structured form:
Full factorization

$$
p(A, B, C)=p(C \mid A, B) p(A \mid B) p(B) \longleftrightarrow
$$

$$
=p(C \mid A, B) p(A) p(B)
$$

After applying
conditional
independence
from the graph

- Dependence/independence represented via a directed graph:
- Node
= random variable
- Directed Edge
= conditional dependence
- Absence of Edge = conditional independence
-Allows concise view of joint distribution relationships:
- Graph nodes and edges show conditional relationships between variables.
- Tables provide probability data.

Burglar Alarm Example

- Consider the following 5 binary variables:
- $\quad B=$ a burglary occurs at your house
- $E=$ an earthquake occurs at your house
- A = the alarm goes off
- J = John calls to report the alarm
- $M=$ Mary calls to report the alarm
- Sample Query: What is $\mathrm{P}(\mathrm{B} \mid \mathrm{M}, \mathrm{J})$?
- Using full joint distribution to answer this question requires
- $2^{5}-1=31$ parameters
- Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

The Resulting Bayesian Network

Example of Answering a Simple Query

- What is $P(\neg j, m, a, \neg e, b)=P(J=$ false $\wedge M=$ true $\wedge A=$ true $\wedge E=$ false $\wedge B=$ true $)$
$P(J, M, A, E, B) \approx P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)$; by conditional independence

$$
\begin{aligned}
\mathrm{P}(\neg \mathrm{j}, \mathrm{~m}, \mathrm{a}, \neg \mathrm{e}, \mathrm{~b}) & \approx \mathrm{P}(\neg \mathrm{j} \mid \mathrm{a}) \mathrm{P}(\mathrm{~m} \mid \mathrm{a}) \mathrm{P}(\mathrm{a} \mid \neg \mathrm{e}, \mathrm{~b}) \mathrm{P}(\neg \mathrm{e}) \mathrm{P}(\mathrm{~b}) \\
& =0.10 \times 0.70 \times 0.94 \times 0.998 \times 0.001 \approx .0000657
\end{aligned}
$$

Given a graph, can we "read off" conditional independencies?

The "Markov Blanket" of X (the gray area in the figure)

X is conditionally independent of everything else, GIVEN the values of:

* X's parents
* X's children
* X's children's parents

X is conditionally independent of its non-descendants, GIVEN the values of its parents.

Summary

- Bayesian networks represent a joint distribution using a graph
- The graph encodes a set of conditional independence assumptions
- Answering queries (or inference or reasoning) in a Bayesian network amounts to computation of appropriate conditional probabilities
- Probabilistic inference is intractable in the general case
- Can be done in linear time for certain classes of Bayesian networks (polytrees: at most one directed path between any two nodes)
- Usually faster and easier than manipulating the full joint distribution

Review Intro Machine Learning Chapter 18.1-18.4

- Understand Attributes, Target Variable, Error (loss) function, Classification \& Regression, Hypothesis (Predictor) function
- What is Supervised Learning?
- Decision Tree Algorithm
- Entropy \& Information Gain
- Tradeoff between train and test with model complexity
- Cross validation

Supervised Learning

- Use supervised learning - training data is given with correct output
- We write program to reproduce this output with new test data
- Eg : face detection
- Classification : face detection, spam email
- Regression : Netflix guesses how much you will rate the movie

Classification Graph

Regression Graph

Terminology

- Attributes
- Also known as features, variables, independent variables, covariates
- Target Variable
- Also known as goal predicate, dependent variable, ...
- Classification
- Also known as discrimination, supervised classification, ...
- Error function
- Also known as objective function, loss function, ...

Inductive or Supervised learning

- Let $\mathrm{x}=$ input vector of attributes (feature vectors)
- Let $\mathrm{f}(\mathrm{x})=$ target label
- The implicit mapping from x to $f(x)$ is unknown to us
- We only have training data pairs, $D=\{\mathbf{x}, \mathbf{f}(\mathbf{x})\}$ available
- We want to learn a mapping from x to $f(x)$
- Our hypothesis function is $h(x, \theta)$
- $h(x, \theta) \approx f(x)$ for all training data points x
- θ are the parameters of our predictor function h
- Examples:
- $h(x, \theta)=\operatorname{sign}\left(\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3}\right)$ (perceptron)
$-\mathrm{h}(\mathrm{x}, \theta)=\theta_{0}+\theta_{1} \mathrm{x}_{1}+\theta_{2} \mathrm{x}_{2}$ (regression)
$-h_{k}(x)=\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge \neg x_{4}\right)$

Empirical Error Functions

- $E(h)=\Sigma_{x}$ distance[h(x, $\left.\left.\theta\right), f(x)\right]$

Sum is over all training pairs in the training data D
Examples:
distance $=$ squared error if h and f are real-valued (regression)
distance $=$ delta-function if h and f are categorical (classification)

In learning, we get to choose

1. what class of functions $\mathrm{h}(.$.$) we want to learn$

- potentially a huge space! ("hypothesis space")

2. what error function/distance we want to use

- should be chosen to reflect real "loss" in problem
- but often chosen for mathematical/algorithmic convenience

Decision Tree Representations

-Decision trees are fully expressive
-Can represent any Boolean function (in DNF)
-Every path in the tree could represent 1 row in the truth table
-Might yield an exponentially large tree
-Truth table is of size $2^{\text {d }}$, where d is the number of attributes

Decision Tree Representations

- Decision trees are DNF representations
- often used in practice \rightarrow often result in compact approximate representations for complex functions
- E.g., consider a truth table where most of the variables are irrelevant to the function
- Simple DNF formulae can be easily represented
- E.g., $f=(A \wedge B) \vee(\neg A \wedge D)$
- DNF $=$ disjunction of conjunctions
- Trees can be very inefficient for certain types of functions
- Parity function: 1 only if an even number of 1's in the input vector
- Trees are very inefficient at representing such functions
- Majority function: 1 if more than $1 / 2$ the inputs are 1 's
-Also inefficient

Pseudocode for Decision tree learning

```
function DTL(examples, attributes, default) returns a decision tree
    if examples is empty then return default
    else if all examples have the same classification then return the classification
    else if attributes is empty then return MODE(examples)
    else
        best }\leftarrow\mathrm{ CHOOSE-ATTRIBUTE(attributes, examples)
        tree}\leftarrow\mathrm{ a new decision tree with root test best
        for each value }\mp@subsup{v}{i}{}\mathrm{ of best do
            examples
    subtree \leftarrow DTL(examplesi, attributes - best, MODE(examples))
    add a branch to tree with label vi and subtree subtree
    return tree
```


Choosing an attribute

- Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

- Patrons? is a better choice
- How can we quantify this?
- One approach would be to use the classification error E directly (greedily)
- Empirically it is found that this works poorly
- Much better is to use information gain (next slides)
- Other metrics are also used, e.g., Gini impurity, variance reduction
- Often very similar results to information gain in practice

Entropy and Information

- "Entropy" is a measure of randomness

https://www.youtube.com/watch?v=ZsY4WcQOrfk

Entropy, H(p), with only 2 outcomes

Consider 2 class problem:

$$
\begin{aligned}
& p=\text { probability of class \#1, } \\
& 1-p=\text { probability of class \#2 }
\end{aligned}
$$

In binary case:

$$
H(p)=-p \log p-(1-p) \log (1-p)
$$

Low entropy, low disorder, low uncertainty

Entropy and Information

- Entropy $H(X)=E[\log 1 / P(X)]=\sum_{x \in X} P(x) \log 1 / P(x)$

$$
=-\sum_{x \in X} P(x) \log P(x)
$$

- Log base two, units of entropy are "bits"
- If only two outcomes: $H(p)=-p \log (p)-(1-p) \log (1-p)$

$$
\begin{aligned}
H(x) & =.25 \log 4+.25 \log 4+ \\
& .25 \log 4+.25 \log 4 \\
& =\log 4=2 \text { bits }
\end{aligned}
$$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}) & =.75 \log 4 / 3+.25 \log 4 & \mathbf{H}(\mathrm{x}) & =1 \log 1 \\
& =0.8133 \text { bits } & & =0 \text { bits }
\end{array}
$$

Information Gain

- $H(P)=$ current entropy of class distribution P at a particular node,

before further partitioning the data

- $H(P \mid A)=$ conditional entropy given attribute A
= weighted average entropy of conditional class distribution,
after partitioning the data according to
the values in A

Choosing an attribute

IG (Patrons) $=0.541 \mathrm{bits}$

$\mathrm{IG}($ Type $)=0$ bits

Example of Test Performance

Restaurant problem

- simulate 100 data sets of different sizes
- train on this data, and assess performance on an independent test set
- learning curve = plotting accuracy as a function of training set size
- typical "diminishing returns" effect (some nice theory to explain this)

Overfitting and Underfitting

A Complex Model

A Much Simpler Model

How Overfitting affects Prediction

Training and Validation Data

Full Data Set

Training Data | Idea: train each |
| :--- |
| model on the |
| "training data" |

Disjoint Validation Data Sets

The k-fold Cross-Validation Method

- Why just choose one particular 90/10 "split" of the data?
- In principle we could do this multiple times
- "k-fold Cross-Validation" (e.g., k=10)
- randomly partition our full data set into k disjoint subsets (each roughly of size $n / k, n=$ total number of training data points)

$$
\begin{aligned}
& \text {-for } \mathrm{i}=1: 10 \text { (here } \mathrm{k}=10 \text {) } \\
& \quad \text {-train on } 90 \% \text { of data, } \\
& \quad-\operatorname{Acc}(\mathrm{i})=\text { accuracy on other } 10 \%
\end{aligned}
$$

-end

- Cross-Validation-Accuracy $=1 / k \quad \sum_{\mathrm{i}} \operatorname{Acc}(\mathrm{i})$
- choose the method with the highest cross-validation accuracy
- common values for k are 5 and 10
- Can also do "leave-one-out" where $k=n$

You will be expected to know

- Understand Attributes, Error function, Classification, Regression, Hypothesis (Predictor function)
- What is Supervised Learning?
- Decision Tree Algorithm
- Entropy
- Information Gain
- Tradeoff between train and test with model complexity
- Cross validation

Review Machine Learning Classifiers

 Chapters 18.5-18.12; 20.2.2- Decision Regions and Decision Boundaries
- Classifiers:
- Decision trees
- K-nearest neighbors
- Perceptrons
- Support vector Machines (SVMs), Neural Networks
- Naïve Bayes

A Different View on Data Representation

- Data pairs can be plotted in "feature space"
- Each axis represents one feature.
- This is a d dimensional space, where d is the number of features.
- Each data case corresponds to one point in the space.
- In this figure we use color to
Feature B

Decision Boundaries

Can we find a boundary that separates the two classes?

Classification in Euclidean Space

- A classifier is a partition of the feature space into disjoint decision regions
- Each region has a label attached
- Regions with the same label need not be contiguous
- For a new test point, find what decision region it is in, and predict the corresponding label
- Decision boundaries = boundaries between decision regions
- The "dual representation" of decision regions
- Learning a classifier \Leftrightarrow searching for the decision boundaries that optimize our objective function

Decision Tree Example

A Simple Classifier: Minimum Distance Classifier

- Training
- Separate training vectors by class
- Compute the mean for each class, $\underline{\mu}_{k}, k=1, \ldots m$
- Prediction
- Compute the closest mean to a test vector \underline{x}^{\prime} (using Euclidean distance)
- Predict the corresponding class
- In the 2-class case, the decision boundary is defined by the locus of the hyperplane that is halfway between the 2 means and is orthogonal to the line connecting them
- This is a very simple-minded classifier - easy to think of cases where it will not work very well

Minimum Distance Classifier

Another Example: Nearest Neighbor Classifier

- The nearest-neighbor classifier
- Given a test point \underline{x}^{\prime}, compute the distance between \underline{x}^{\prime} and each input data point
- Find the closest neighbor in the training data
- The I piect
- As
- (sc
ext

Overall Boundary = Piecewise

Feature 1

kNN Decision Boundary

- piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
- Majority voting means less emphasis on individual points

$$
K=1
$$

$$
K=3
$$

kNN Decision Boundary

- piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
- Majority voting means less emphasis on individual points

$$
K=25
$$

- True ("best") decision boundary
- In this case is linear
- Compared to kNN: not bad!

Larger $\mathrm{K} \Rightarrow$ Smoother boundary

Linear Classifiers

- Linear classifiers classification decision based on the value of a linear combination of the characteristics.
- Linear decision boundary (single boundary for 2-class case)
- We can always represent a linear decision boundary by a linear equation:

$$
w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d}=\sum_{j} w_{j} x_{j}=w^{T} x=0
$$

- The w_{i} are weights; the x_{i} are feature values

Linear Classifiers

$$
w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d}=\sum_{j} w_{j} x_{j}=w^{T} x=0
$$

- This equation defines a hyperplane in d dimensions
- A hyperplane is a subspace whose dimension is one less than that of its ambient space.
- If a space is 3-dimensional, its hyperplanes are the 2-dimensional planes;
- if a space is 2 -dimensional, its hyperplanes are the 1 -dimensional lines.

Linear Classifiers

- For prediction we simply see if $\sum_{j} w_{j} x_{j}>0$ for new data x.
- If so, predict x to be positive
- If not, predict x to be negative
- Learning consists of searching in the d-dimensional weight space for the set of weights (the linear boundary) that minimizes an error measure
- A threshold can be introduced by a "dummy" feature
- The feature value is always 1.0
- Its weight corresponds to (the negative of) the threshold
- Note that a minimum distance classifier is a special case of a linear classifier

The Perceptron Classifier (pages 729-731 in text)

Two different types of perceptron output

x-axis below is $f(\underline{x})=f=$ weighted sum of inputs
y-axis is the perceptron output

Sigmoid output, takes
real values between -1 and +1

The sigmoid is in effect an approximation to the threshold function above, but
has a gradient that we can use for learning
Sigmoid function is defined as

$$
\sigma[f]=[2 /(1+\exp [-f])]-1
$$

Multi-Layer Perceptrons (Artificial Neural Networks)

(sections 18.7.3-18.7.4 in textbook)

Multi-Layer Perceptrons (Artificial Neural Networks)

(sections 18.7.3-18.7.4 in textbook)

- What if we took K perceptrons and trained them in parallel and then took a weighted sum of their sigmoidal outputs?
- This is a multi-layer neural network with a single "hidden" layer (the outputs of the first set of perceptrons) What if we hooked them up into a general Directed Acyclic Graph?
- Can create simple "neural circuits" (but no feedback; not fully general)
- Often called neural networks with hidden units
- How would we train such a model?
- Backpropagation algorithm = clever way to do gradient descent
- Bad news: many local minima and many parameters
- training is hard and slow
- Good news: can learn general non-linear decision boundaries
- Generated much excitement in AI in the late 1980's and 1990's
- New current excitement with very large "deep learning" networks

Which decision boundary is "better"?

- Both have zero training error (perfect training accuracy).
- But one seems intuitively better, more robust to error

Feature 1, X_{1}

Feature 1, x_{1}

Support Vector Machines (SVM): "Modern perceptrons" (section 18.9, R\&N)

- A modern linear separator classifier
- Essentially, a perceptron with a few extra wrinkles
- Constructs a "maximum margin separator"
- A linear decision boundary with the largest possible distance from the decision boundary to the example points it separates
- "Margin" = Distance from decision boundary to closest example
- The "maximum margin" helps SVMs to generalize well
- Can embed the data in a non-linear higher dimension space
- Constructs a linear separating hyperplane in that space
- This can be a non-linear boundary in the original space
- Algorithmic advantages and simplicity of linear classifiers
- Representational advantages of non-linear decision boundaries
- Currently most popular "off-the shelf" supervised classifier.

Constructs a "maximum margin separator"

Can embed the data in a non-linear higher dimension space

Figure 18.31 FILES: . (a) A two-dimensional training set with positive examples as black circles and negative examples as white circles. The true decision boundary, $x_{1}^{2}+x_{2}^{2} \leq 1$, is also shown. (b) The same data after mapping into a three-dimensional input space $\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)$. The circular decision boundary in (a) becomes a linear decision boundary in three dimensions. Figure 18.29(b) gives a closeup of the separator in (b).

Naïve Bayes Model

20.2.2 R\&N $3^{\text {rd }}$ ed.)

Basic Idea: We want to estimate $P\left(C \mid X_{1}, \ldots X_{n}\right)$, but it's hard to think about computing the probability of a class from input attributes of an example.

Solution: Use Bayes' Rule to turn $\mathrm{P}\left(\mathrm{C} \mid \mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right)$ into a proportionally equivalent expression that involves only $\mathrm{P}(\mathrm{C})$ and $\mathrm{P}\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}} \mid \mathrm{C}\right)$.
Then assume that feature values are conditionally independent given class, which allows us to turn $P\left(X_{1}, \ldots X_{n} \mid C\right)$ into $\Pi_{i} P\left(X_{i} \mid C\right)$.

$$
P\left(C \mid X_{1}, \ldots X_{n}\right)=P(C) P\left(X_{1}, \ldots X_{n} \mid C\right) / P\left(X_{1}, \ldots X_{n} \propto P(C) \Pi_{i} P\left(X_{i} \mid C\right)\right.
$$

We estimate $P(C)$ easily from the frequency with which each class appears within our training data, and we estimate $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{C}\right)$ easily from the frequency with which each X_{i} appears in each class C within our training data.

Naïve Bayes Model

By Bayes Rule: $P\left(C \mid X_{1}, \ldots X_{n}\right)$ is proportional to $P(C) \Pi_{i} P\left(X_{i} \mid C\right)$ [note: denominator $\mathrm{P}\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{n}\right)$ is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C

- choose the class value c_{i} with the highest $\mathrm{P}\left(\mathrm{c}_{\mathrm{i}} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
- simple to implement, often works very well
- e.g., spam email classification: X's = counts of words in emails

Conditional probabilities $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{C}\right)$ can easily be estimated from labeled date

- Problem: Need to avoid zeroes, e.g., from limited training data
- Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Naïve Bayes Model (2)
 $P\left(C \mid X_{1}, \ldots X_{n}\right) \approx \alpha \Pi P\left(X_{i} \mid C\right) P(C)$

Probabilities $\mathrm{P}(\mathrm{C})$ and $\mathrm{P}\left(\mathrm{Xi}_{\mathrm{i}} \mid \mathrm{C}\right)$ can easily be estimated from labeled data
$\mathrm{P}(\mathrm{C}=\mathrm{cj}) \approx \#($ Examples with class label cj) / \#(Examples)
$\mathrm{P}(\mathrm{Xi}=\mathrm{xik} \mid \mathrm{C}=\mathrm{cj})$
\approx \#(Examples with Xi value xik and class label cj)
/ \#(Examples with class label cj)
Usually easiest to work with logs

$$
\begin{aligned}
& \log \left[P\left(C \mid X_{1}, \ldots X_{n}\right)\right] \\
& \quad=\log \alpha+\Sigma\left[\log P\left(X_{i} \mid C\right)+\log P(C)\right]
\end{aligned}
$$

DANGER: Suppose ZERO examples with Xi value xik and class label cj? An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every \#() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Final Review

- First-Order Logic: R\&N Chap 8.1-8.5, 9.1-9.5
- Probability: R\&N Chap 13
- Bayesian Networks: R\&N Chap 14.1-14.5
- Machine Learning: R\&N Chap 18.1-18.12, 20.2

