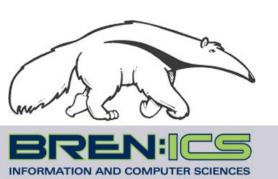
Games and Adversarial Search A: Mini-max, Cutting Off Search

CS171, Fall Quarter, 2019 Introduction to Artificial Intelligence Prof. Richard Lathrop



Outline

- Computer programs that play 2-player games
 - game-playing as search with the complication of an opponent
- General principles of game-playing and search
 - game tree
 - minimax principle; impractical, but theoretical basis for analysis
 - evaluation functions; cutting off search; static heuristic functions
 - alpha-beta-pruning
 - heuristic techniques
 - games with chance
 - Monte-Carlo ree search

• Status of Game-Playing Systems

 in chess, checkers, backgammon, Othello, Go, etc., computers routinely defeat leading world players.

Types of games

	Deterministic:	Chance:
Perfect Information:	chess, checkers, go, othello	backgammon, monopoly
Imperfect Information:	battleship, Kriegspiel	Bridge, poker, scrabble,

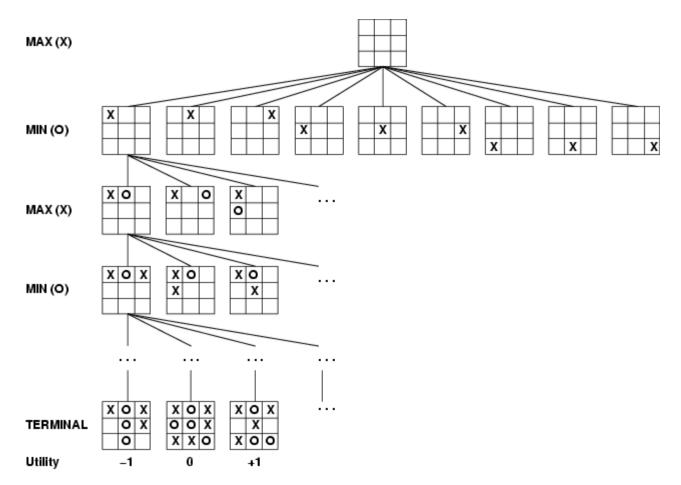
- Start with deterministic, perfect information games (easiest)
- Not considered:
 - Physical games like tennis, ice hockey, etc.
 - But, see "robot soccer," <u>http://www.robocup.org/</u>

Typical assumptions

- Two agents, whose actions alternate
- Utility values for each agent are the opposite of the other
 - "Zero-sum" game; this creates adversarial situation
- Fully observable environments
- In game theory terms:
 - Deterministic, turn-taking, zero-sum, perfect information
- Generalizes: stochastic, multiplayer, non zero-sum, etc.
- Compare to e.g., Prisoner's Dilemma" (R&N pp. 666-668)
 - Non-turn-taking, Non-zero-sum, Imperfect information

Game Tree (tic-tac-toe)

All possible moves at each step



• How do we search this tree to find the optimal move?

Search versus Games

- Search: no adversary
 - Solution is a path from start to goal, or a series of actions from start to goal
 - Search, Heuristics, and constraint techniques can find optimal solution
 - Evaluation function: estimate cost from start to goal through a given node
 - Actions have costs (sum of step costs = path cost)
 - Examples: path planning, scheduling activities, ...
- Games: adversary
 - Solution is a strategy
 - Specifies move for every possible opponent reply
 - Time limits force an approximate solution
 - Evaluation function: evaluate "goodness" of game position
 - Examples: chess, checkers, Othello, backgammon, Go

Games as search

- Two players, "MAX" and "MIN"
- MAX moves first, and they take turns until game is over
 - Winner gets reward, loser gets penalty
 - "Zero sum": sum of reward and penalty is constant
- Formal definition as a search problem:
 - Initial state: set-up defined by rules, e.g., initial board for chess
 - Player(s): which player has the move in state s
 - Actions(s): set of legal moves in a state
 - Result(s,a): transition model defines result of a move
 - Terminal-Test(s): true if the game is finished; false otherwise
 - Utility(s,p): the numerical value of terminal state s for player p
 - E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe
 - E.g., win (+1), lose (0), and draw (1/2) in chess
- MAX uses search tree to determine "best" next move

Min-Max: an optimal procedure

- Finds the optimal strategy or next best move for MAX:
 - Optimal strategy is a solution tree

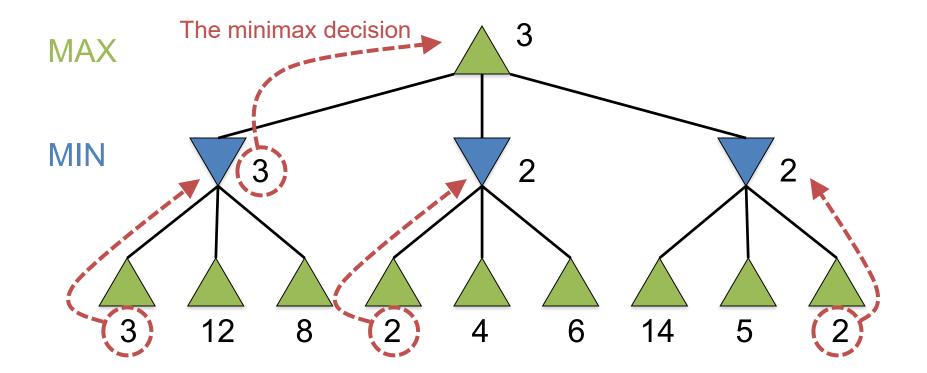
Brute Force:

- 1. Generate the whole game tree to leaves
- 2. Apply utility (payoff) function to leaves
- 3. Back-up values from leaves toward the root:
 - a Max node computes the max of its child values
 - a Min node computes the min of its child values
- 4. At root: choose move leading to the child of highest value

Minimax:

Search the game tree using DFS to find the value (= best move) at the root

Two-ply Game Tree



Minimax maximizes the utility of the worst-case outcome for MAX

Recursive min-max search

```
minMaxSearch(state)
```

return argmax([minValue(apply(state,a)) for each action a])

```
maxValue(state)
if (terminal(state)) return utility(state);
v = -infty
for each action a:
v = max(v, minValue(apply(state,a)))
return v
```

```
minValue(state)
if (terminal(state)) return utility(state);
v = infty
for each action a:
v = min(v, maxValue(apply(state,a)))
return v
```

If recursion limit reached, eval position

Otherwise, find our best child:

Simple stub to call recursion f' ns

If recursion limit reached, eval position

Otherwise, find the worst child:

Properties of minimax

- Complete? Yes (if tree is finite)
- Optimal?
 - Yes (against an optimal opponent)
 - Can it be beaten by a suboptimal opponent? (No why?)
- Time? O(b^m)
- Space?
 - O(bm) (depth-first search, generate all actions at once)
 - O(m) (backtracking search, generate actions one at a time)

Game tree size

- Tic-tac-toe
 - B ≈ 5 legal actions per state on average; total 9 plies in game
 - "ply" = one action by one player; "move" = two plies
 - $-5^9 = 1,953,125$
 - 9! = 362,880 (computer goes first)
 - 8! = 40,320 (computer goes second)
 - Exact solution is quite reasonable
- Chess
 - b ≈ 35 (approximate average branching factor)
 - d ≈ 100 (depth of game tree for "typical" game)
 - b^d = 35¹⁰⁰ ≈ 10¹⁵⁴ nodes!!!
 - Exact solution completely infeasible

It is usually impossible to develop the whole search tree.

Cutting off search

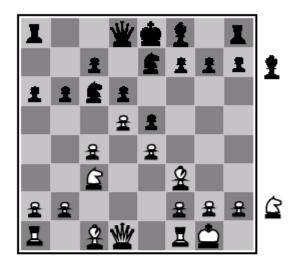
- One solution: cut off tree before game ends
- Replace
 - Terminal(s) with Cutoff(s) e.g., stop at some max depth
 - Utility(s,p) with Eval(s,p) estimate position quality

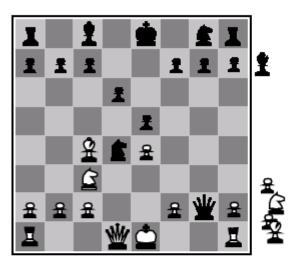
- Does it work in practice?
 - $-b^{m} \approx 10^{6}, b \approx 35 \rightarrow m \approx 4$
 - 4-ply look-ahead is a poor chess player
 - 4-ply \approx human novice
 - 8-ply \approx typical PC, human master
 - 12-ply ≈ Deep Blue, human grand champion Kasparov
 - $-35^{12} \approx 10^{18}$ (Yikes! but possible, with other clever methods)

Static (Heuristic) Evaluation Functions

- An Evaluation Function:
 - Estimate how good the current board configuration is for a player.
 - Typically, evaluate how good it is for the player, and how good it is for the opponent, and subtract the opponent's score from the player's.
 - Often called "static" because it is called on a static board position
 - Ex: Othello: Number of white pieces Number of black pieces
 - Ex: Chess: Value of all white pieces Value of all black pieces
- Typical value ranges:
 - [-1,1] (loss/win) or [-1,+1] or [0,1]
- Board evaluation: X for one player => -X for opponent
 - Zero-sum game: scores sum to a constant

Evaluation functions





Black to move

White slightly better

White to move

Black winning

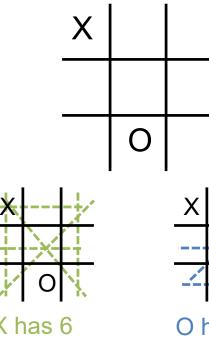
For chess, typically *linear* weighted sum of features

 $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$

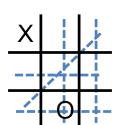
e.g., $w_1 = 9$ with $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Applying minimax to tic-tac-toe

- The static heuristic evaluation function:
 - Count the number of possible win lines

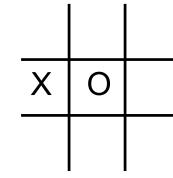


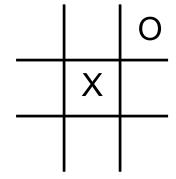
E(s) = 6 - 5 = 1



X has 6 possible win paths

O has 5 possible win paths





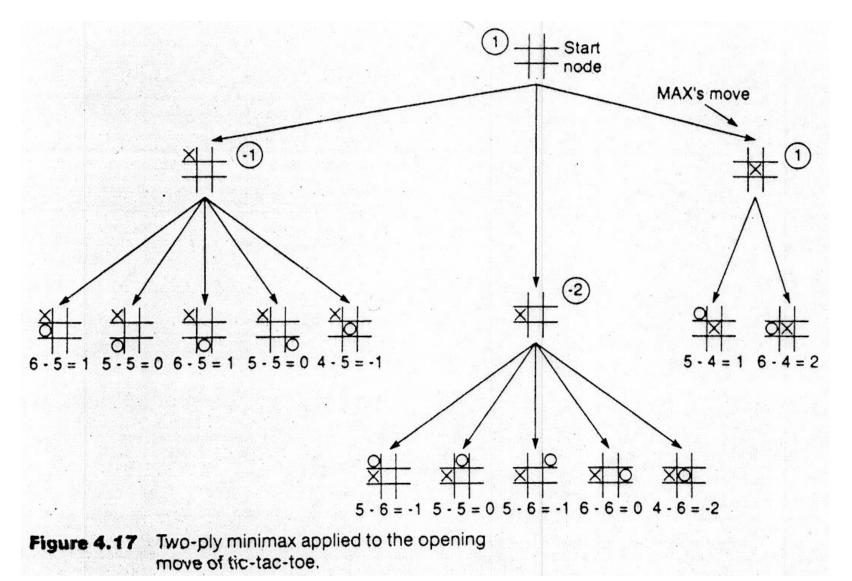
X has 4 possible wins O has 6 possible wins

E(n) = 4 - 6 = -2

X has 5 possible wins O has 4 possible wins

$$E(n) = 5 - 4 = 1$$

Minimax values (two ply)



Minimax values (two ply)

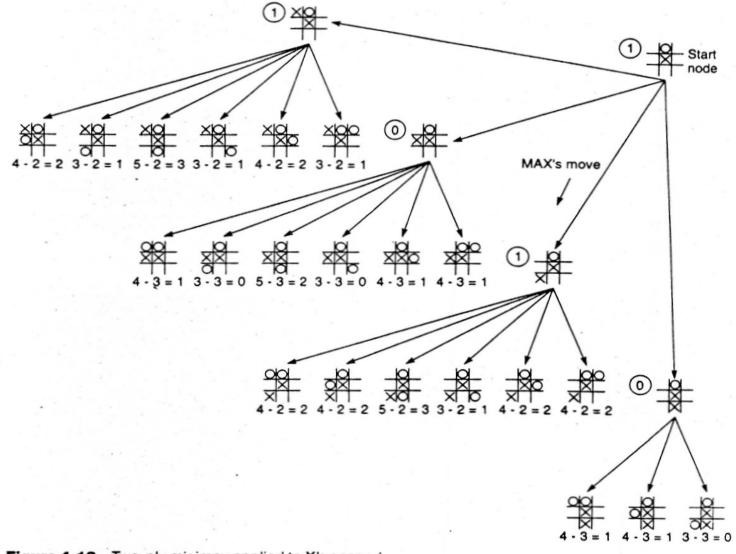
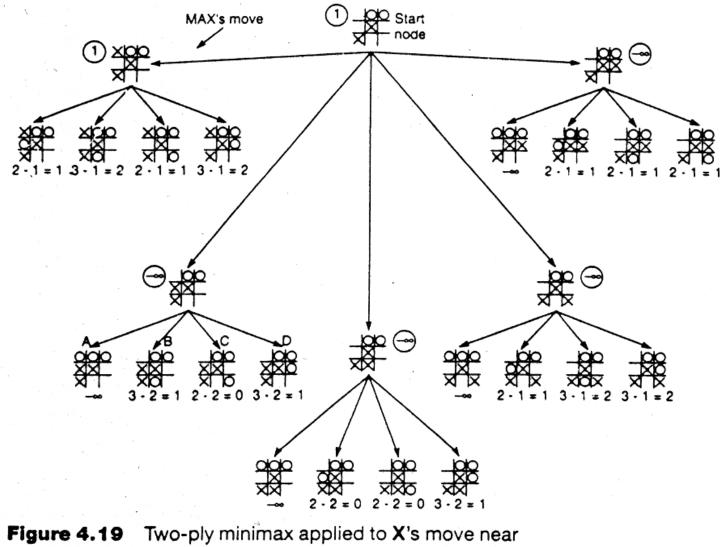
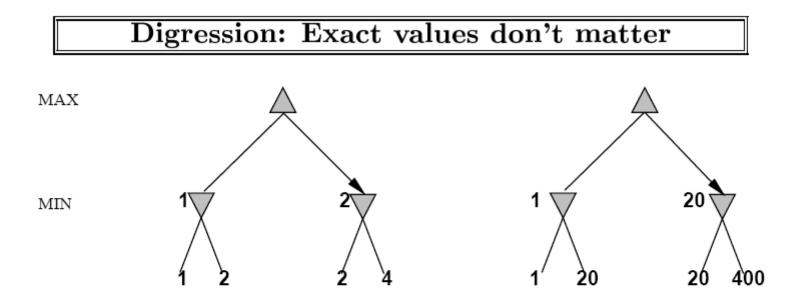


Figure 4.18 Two-ply minimax applied to X's second move of tic-tac-toe.

Minimax values (two ply)



end game.



Behaviour is preserved under any *monotonic* transformation of EVAL

Only the order matters:

payoff in deterministic games acts as an ordinal utility function

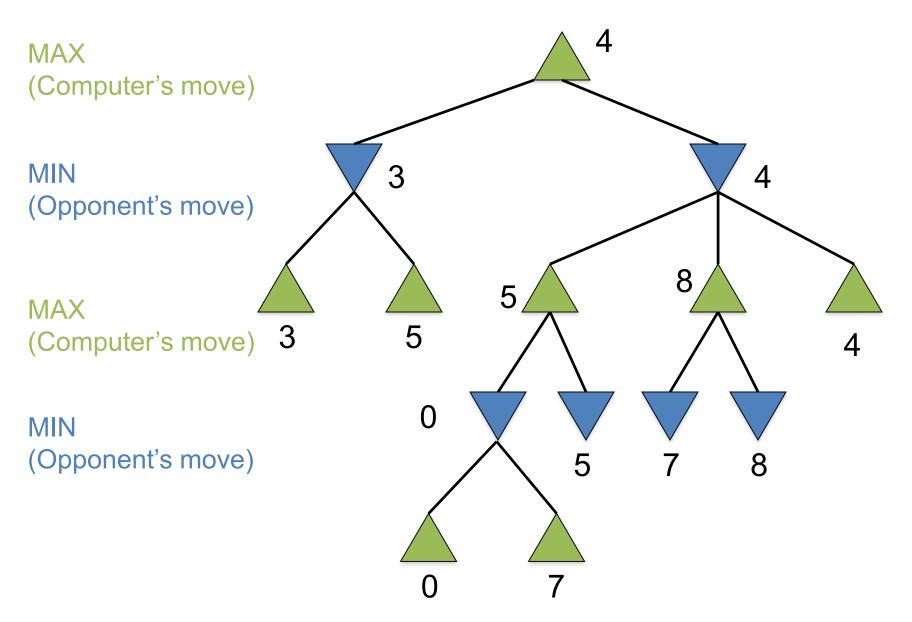
Iterative deepening

- In real games, there is usually a time limit T to make a move
- How do we take this into account?
- Minimax cannot use "partial" results with any confidence, unless the full tree has been searched
 - Conservative: set small depth limit to guarantee finding a move in time < T
 - But, we may finish early could do more search!
- In practice, iterative deepening search (IDS) is used
 - IDS: depth-first search with increasing depth limit
 - When time runs out, use the solution from previous depth
 - With alpha-beta pruning (next), we can sort the nodes based on values from the previous depth limit in order to maximize pruning during the next depth limit => search deeper!

Limited horizon effects

- The Horizon Effect
 - Sometimes there's a major "effect" (such as a piece being captured) which is just "below" the depth to which the tree has been expanded.
 - The computer cannot see that this major event could happen because it has a "limited horizon".
 - There are heuristics to try to follow certain branches more deeply to detect such important events
 - This helps to avoid catastrophic losses due to "short-sightedness"
- Heuristics for Tree Exploration
 - Often better to explore some branches more deeply in the allotted time
 - Various heuristics exist to identify "promising" branches
 - Stop at "quiescent" positions all battles are over, things are quiet
 - Continue when things are in violent flux the middle of a battle

Selectively deeper game trees



Eliminate redundant nodes

- On average, each board position appears in the search tree approximately $10^{150} / 10^{40} \approx 10^{100}$ times
 - Vastly redundant search effort
- Can't remember all nodes (too many)
 - Can't eliminate all redundant nodes
- Some short move sequences provably lead to a redundant position
 - These can be deleted dynamically with no memory cost
- Example:
 - 1. P-QR4 P-QR4; 2. P-KR4 P-KR4 leads to the same position as
 - 1. P-QR4 P-KR4; 2. P-KR4 P-QR4

Summary

- Game playing as a search problem
- Game trees represent alternate computer / opponent moves
- Minimax: choose moves by assuming the opponent will always choose the move that is best for them
 - Avoids all worst-case outcomes for Max, to find the best
 - If opponent makes an error, Minimax will take optimal advantage (after) & make the best possible play that exploits the error
- Cutting off search
 - In general, it's infeasible to search the entire game tree
 - In practice, Cutoff-Test decides when to stop searching
 - Prefer to stop at quiescent positions
 - Prefer to keep searching in positions that are still in flux
- Static heuristic evaluation function
 - Estimate the quality of a given board configuration for MAX player
 - Called when search is cut off, to determine value of position found