
Introduction to
Artificial Intelligence

CS171, Summer 1 Quarter, 2019
Introduction to Artificial Intelligence

Prof. Richard Lathrop

Read Beforehand: All assigned reading so far

CS-171 Final Review
• Machine Learning Classifiers

• (R&N Ch. 18.5-18.12; 20.2)
• Intro to Machine Learning

• (R&N Ch. 18.1-18.4)
• Game (Adversarial) Search

• (R&N Ch. 5.1-5.4)
• Local Search

• (R&N Ch. 4.1-4.2)
• State Space Search

• (R&N Ch. 3.1-3.7)
• Questions on any topic
• Please review your quizzes & old tests

Review Machine Learning Classifiers
Chapters 18.5-18.12; 20.2.2

• Decision Regions and Decision Boundaries

• Classifiers:
• Decision trees
• K-nearest neighbors
• Perceptrons
• Support vector Machines (SVMs), Neural

Networks
• Naïve Bayes

A Different View on Data
Representation

• Data pairs can be plotted in
“feature space”

• Each axis represents one
feature.
– This is a d dimensional space,

where d is the number of
features.

• Each data case corresponds
to one point in the space.
– In this figure we use color to

represent their class label.

Decision Boundaries
Can we find a boundary that separates the two classes?

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Decision
Boundary Decision

Region 1

Decision
Region 2

Classification in Euclidean Space

• A classifier is a partition of the feature space into disjoint
decision regions
– Each region has a label attached
– Regions with the same label need not be contiguous
– For a new test point, find what decision region it is in, and predict

the corresponding label

• Decision boundaries = boundaries between decision regions
– The “dual representation” of decision regions

• We can characterize a classifier by the equations for its
decision boundaries

• Learning a classifier  searching for the decision boundaries
that optimize our objective function

Decision Tree Example

t1t3

t2

Income

Debt
Income > t1

Debt > t2

Income > t3
Note: tree boundaries are
linear and axis-parallel

A Simple Classifier: Minimum Distance Classifier

• Training
– Separate training vectors by class
– Compute the mean for each class, µk, k = 1,… m

• Prediction
– Compute the closest mean to a test vector x’ (using Euclidean

distance)
– Predict the corresponding class

• In the 2-class case, the decision boundary is defined by the
locus of the hyperplane that is halfway between the 2 means
and is orthogonal to the line connecting them

• This is a very simple-minded classifier – easy to think of cases
where it will not work very well

Minimum Distance Classifier

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Another Example: Nearest Neighbor Classifier

• The nearest-neighbor classifier
– Given a test point x’, compute the distance between x’ and each

input data point
– Find the closest neighbor in the training data
– Assign x’ the class label of this neighbor
– (sort of generalizes minimum distance classifier to exemplars)

• The nearest neighbor classifier results in piecewise linear
decision boundaries

Image Courtesy: http://scott.fortmann-roe.com/docs/BiasVariance.html

Overall Boundary = Piecewise Linear

1

1

1

2

2

2

Feature 1

Feature 2

?

Decision Region
for Class 1

Decision Region
for Class 2

Larger K ⟹ Smoother boundary

Linear Classifiers

• Linear classifiers classification decision based on the
value of a linear combination of the characteristics.
– Linear decision boundary (single boundary for 2-class case)

• We can always represent a linear decision boundary by a
linear equation:

• The wi are weights; the xi are feature values

Linear Classifiers

• This equation defines a hyperplane in d dimensions

– A hyperplane is a subspace whose dimension is one less than that of its
ambient space.

– If a space is 3-dimensional, its hyperplanes are the 2-dimensional planes;
– if a space is 2-dimensional, its hyperplanes are the 1-dimensional lines.

Linear Classifiers

• For prediction we simply see if
for new data x.

– If so, predict x to be positive
– If not, predict x to be negative

• Learning consists of searching in the d-dimensional
weight space for the set of weights (the linear boundary)
that minimizes an error measure

• A threshold can be introduced by a “dummy” feature
– The feature value is always 1.0
– Its weight corresponds to (the negative of) the threshold

• Note that a minimum distance classifier is a special case
of a linear classifier

The Perceptron Classifier
(pages 729-731 in text)

Input
Attributes
(Features)

Weights
For Input
Attributes

Bias or
Threshold

Transfer
Function

Output

Θ

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-
neural-networks-d7834f67a4f6

Two different types of perceptron output

o(f)

f

x-axis below is f(x) = f = weighted sum of inputs
y-axis is the perceptron output

σ(f)

Thresholded output,
takes values +1 or -1

Sigmoid output, takes
real values between -1 and +1

The sigmoid is in effect an approximation
to the threshold function above, but
has a gradient that we can use for learning

f

Sigmoid function is defined as
σ[f] = [2 / (1 + exp[- f])] - 1

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

• What if we took K perceptrons and trained them in parallel and
then took a weighted sum of their sigmoidal outputs?
– This is a multi-layer neural network with a single “hidden” layer (the

outputs of the first set of perceptrons)
– If we train them jointly in parallel, then intuitively different

perceptrons could learn different parts of the solution
• They define different local decision boundaries in the input space

• What if we hooked them up into a general Directed Acyclic Graph?
– Can create simple “neural circuits” (but no feedback; not fully general)
– Often called neural networks with hidden units

• How would we train such a model?
– Backpropagation algorithm = clever way to do gradient descent
– Bad news: many local minima and many parameters

• training is hard and slow
– Good news: can learn general non-linear decision boundaries
– Generated much excitement in AI in the late 1980’s and 1990’s
– New current excitement with very large “deep learning” networks

Which decision boundary is “better”?

• Both have zero training error (perfect training accuracy).
• But one seems intuitively better, more robust to error

Support Vector Machines (SVM): “Modern perceptrons”
(section 18.9, R&N)

• A modern linear separator classifier
– Essentially, a perceptron with a few extra wrinkles

• Constructs a “maximum margin separator”
– A linear decision boundary with the largest possible distance from the

decision boundary to the example points it separates
– “Margin” = Distance from decision boundary to closest example
– The “maximum margin” helps SVMs to generalize well

• Can embed the data in a non-linear higher dimension space
– Constructs a linear separating hyperplane in that space

• This can be a non-linear boundary in the original space
– Algorithmic advantages and simplicity of linear classifiers
– Representational advantages of non-linear decision boundaries

• Currently most popular “off-the shelf” supervised classifier.

Constructs a “maximum margin separator”

Can embed the data in a non-linear higher
dimension space

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about
computing the probability of a class from input attributes of an example.

Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally
equivalent expression that involves only P(C) and P(X1,…Xn | C).
Then assume that feature values are conditionally independent given class,
which allows us to turn P(X1,…Xn | C) into Πi P(Xi | C).

P(C | X1,…Xn) = P(C) P(X1,…Xn | C) / P(X1,…Xn) ∝ P(C) Πi P(Xi | C)

We estimate P(C) easily from the frequency with which each class appears
within our training data, and we estimate P(Xi | C) easily from the frequency
with which each Xi appears in each class C within our training data.

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

By Bayes Rule: P(C | X1,…Xn) is proportional to P (C) Πi P(Xi | C)
[note: denominator P(X1,…Xn) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C
• choose the class value ci with the highest P(ci | x1,…, xn)
• simple to implement, often works very well
• e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(Xi | C) can easily be estimated from labeled date
• Problem: Need to avoid zeroes, e.g., from limited training data
• Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Naïve Bayes Model (2)

P(C | X1,…Xn) = α Π P(Xi | C) P (C)

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

P(C = cj) ≈ #(Examples with class label cj) / #(Examples)

P(Xi = xik | C = cj)
≈ #(Examples with Xi value xik and class label cj)

/ #(Examples with class label cj)

Usually easiest to work with logs
log [P(C | X1,…Xn)]

= log α + Σ [log P(Xi | C) + log P (C)]

DANGER: Suppose ZERO examples with Xi value xik and class label cj ?
An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

CS-171 Final Review
• Machine Learning Classifiers

• (R&N Ch. 18.5-18.12; 20.2)

• Intro to Machine Learning
• (R&N Ch. 18.1-18.4)

• Game (Adversarial) Search
• (R&N Ch. 5.1-5.4)

• Local Search
• (R&N Ch. 4.1-4.2)

• State Space Search
• (R&N Ch. 3.1-3.7)

• Questions on any topic
• Please review your quizzes & old tests

Introduction to Machine Learning

CS171, Fall 2017
Introduction to Artificial Intelligence

TA Edwin Solares

Automated Learning
• Why learn?

– Key to intelligence
– Take real data  get feedback  improve performance  reiterate
– USC Autonomous Flying Vehicle Project

• Types of learning
– Supervised learning: learn mapping: attributes  “target”

– Classification: learn discreet target variable (e.g., spam email)
– Regression: learn real valued target variable (e.g., stock market)

– Unsupervised learning: no target variable; “understand” hidden data structure
– Clustering: grouping data into K groups (e.g. K-means)
– Latent space embedding: learn simple representation of the data (e.g. PCA, SVD)

– Other types of learning
• Reinforcement learning: e.g., game-playing agent
• Learning to rank, e.g., document ranking in Web search
• And many others….

Minimization of Cost Function
Gradient Decent

Courtesy of Nvidia
Website

Minimization of Cost Function
Gradient Decent

Entertaining and informative way to learn about Neural Nets and Deep Learning
https://www.youtube.com/watch?v=p69khggr1Jo

Local Minima

Global Minima

Local Minima

Local Minima

Supervised Learning Terminology

• Attributes
– Also known as features, variables, independent variables,

covariates

• Target Variable
– Also known as goal predicate, dependent variable, f(x), y …

• Classification
– Also known as discrimination, supervised classification, …

• Error function
– Objective function, loss function, …

Supervised learning

• Let x = input vector of attributes (feature vectors)

• Let f(x) = target label
– The implicit mapping from x to f(x) is unknown to us
– We only have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f(x)
• Our hypothesis function is h(x, θ)
• h(x, θ) ≈ f(x) for all training data points x
• θ are the parameters of our predictor function h

• Examples:
– h(x, θ) = sign(θ1x1 + θ 2x2+ θ 3) (perceptron)
– h(x, θ) = θ0 + θ1x1 + θ2x2 (regression)

– ℎ𝑘𝑘(𝑥𝑥) = (𝑥𝑥1 ∧ 𝑥𝑥2) ∨ (𝑥𝑥3 ∧ ¬𝑥𝑥4)

Inductive Learning as Optimization or Search

• Empirical error function:
E(h) = Σx distance[h(x, θ) , f(x)]

• Empirical learning = finding h(x), or h(x, θ) that minimizes E(h)
– In simple problems there may be a closed form solution

• E.g., “normal equations” when h is a linear function of x, E = squared error

– If E(h) is differentiable  continuous optimization problem using gradient descent, etc
• E.g., multi-layer neural networks

– If E(h) is non-differentiable (e.g., classification  systematic search problem through the
space of functions h

• E.g., decision tree classifiers

• Once we decide on what the functional form of h is, and what the error function E
is, then machine learning typically reduces to a large search or optimization
problem

• Additional aspect: we really want to learn a function h that will generalize well to
new data, not just memorize training data – will return to this later

Decision Tree Representations
•Decision trees are fully expressive

–can represent any Boolean function
–Every path in the tree could represent 1 row in the truth table
–Yields an exponentially large tree

•Truth table with 𝟐𝟐𝒅𝒅 rows, where 𝒅𝒅 is the number of attributes

Decision Tree Representations

• Decision trees are DNF representations
– often used in practice  result in compact approximate representations for

complex functions
– E.g., consider a truth table where most of the variables are irrelevant to the

function

– Simple DNF formulae can be easily represented
• E.g., 𝑓𝑓 = (𝐴𝐴 ∧ 𝐵𝐵) ∨ (¬𝐴𝐴 ∧ 𝐷𝐷)
• DNF = disjunction of conjunctions

• Trees can be very inefficient for certain types of functions
– Parity function: 1 only if an even number of 1’s in the input vector

• Trees are very inefficient at representing such functions
– Majority function: 1 if more than ½ the inputs are 1’s

• Also inefficient

Pseudocode for Decision tree learning

Decision Tree: Book Example

Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

• Patrons? is a better choice
– How can we quantify this?
– One approach would be to use the classification error E directly (greedily)

• Empirically it is found that this works poorly
– Much better is to use information gain (next slides)

Entropy and Information
• “Entropy” is a measure of randomness

• In chemistry:

https://www.youtube.com/watch?v=ZsY4WcQOrfk

Entropy with only 2 outcomes

In binary case (2 outcomes)

For multiple outcomes we have

𝐻𝐻 𝒙𝒙 = −�
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃 𝑥𝑥𝑖𝑖

= −𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝 − (1 − 𝑝𝑝)𝑙𝑙𝑙𝑙𝑙𝑙2(1 − 𝑝𝑝)

𝐻𝐻 𝑝𝑝 = −𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝 − (1 − 𝑝𝑝)𝑙𝑙𝑙𝑙𝑙𝑙2(1 − 𝑝𝑝)

0.5 10

1

𝐻𝐻 𝑝𝑝

𝑝𝑝

max𝐻𝐻 𝑝𝑝 = − log2
1
𝑛𝑛 = log2(𝑛𝑛)

High DIsorder

High Order

Order as a function of p

Information Gain

• H(p) = entropy of class distribution at a particular node

• H(p | A) = conditional entropy
• Weighted average entropy of conditional class distribution
• Partitioned the data according to the values in A
• The sum of each partition given the group/class

• Gain(A) = H(p) – H(p | A)

• Simple rule in decision tree learning
– At each internal node, split on the node with the largest

information gain (or equivalently, with smallest H(p|A))

• Note that by definition, conditional entropy can’t be greater
than the entropy

9 Square
2 Circles

1 Square
9 Circles

10 Squares
11 Circles

Entropy Example

Class = color and shape
grn = green; blu = blue; sq = square

• 𝐻𝐻 𝑝𝑝𝑠𝑠𝑠𝑠 = −10
21

log2
10
21
− 11

21
log2

11
21

• 𝐻𝐻 𝑝𝑝𝑠𝑠𝑠𝑠 = 0.998
• 𝐻𝐻 𝑝𝑝𝑠𝑠𝑠𝑠|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻(𝑝𝑝𝑠𝑠𝑠𝑠)𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝐻𝐻(𝑝𝑝𝑠𝑠𝑠𝑠)𝑔𝑔𝑔𝑔𝑔𝑔
• 𝐻𝐻(𝑝𝑝𝑠𝑠𝑠𝑠)𝑏𝑏𝑏𝑏𝑏𝑏 = − 9

11
log2

9
11
− 2

11
log2

2
11

• 𝐻𝐻(𝑝𝑝𝑠𝑠𝑠𝑠)𝑏𝑏𝑏𝑏𝑏𝑏 = 0.684
• 𝐻𝐻(𝑝𝑝𝑠𝑠𝑠𝑠)𝑔𝑔𝑔𝑔𝑔𝑔 = 0.469
• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻 𝑝𝑝𝑠𝑠𝑠𝑠 + 𝐻𝐻 𝑝𝑝𝑠𝑠𝑠𝑠|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• 𝐻𝐻 𝑝𝑝𝑠𝑠𝑠𝑠|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 10
21
∗ 0.469 + 11

21
∗ 0.684

• 𝐻𝐻 𝑝𝑝𝑠𝑠𝑠𝑠|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.582
• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.998 − 0.582
• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.416

Weighted average 

-

Formulas

• Entropy
• 𝐻𝐻 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝑝𝑝 𝑠𝑠𝑠𝑠 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝 𝑠𝑠𝑠𝑠 − (1 − 𝑝𝑝(𝑠𝑠𝑠𝑠)𝑙𝑙𝑙𝑙𝑙𝑙2(1 − 𝑝𝑝(𝑠𝑠𝑠𝑠))

• Conditional entropy
• 𝐻𝐻 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑝𝑝(𝑔𝑔𝑔𝑔)𝐻𝐻(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑔𝑔𝑔𝑔) + 𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏) ∗ 𝐻𝐻(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑏𝑏𝑏𝑏𝑏𝑏)
• 𝐻𝐻 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑝𝑝 𝑔𝑔𝑔𝑔 𝐻𝐻 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔 + 𝑝𝑝(¬𝑔𝑔𝑔𝑔)𝐻𝐻 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ¬𝑔𝑔𝑔𝑔

• Information Gain
• IG(shape) = H(shape) – H(shape | color)

Minimize Entropy
Maximize Information Gain
We want a low value for conditional entropy  high order

Root Node Example

For the training set, 6 positives, 6 negatives, H(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type:

Conclude:
Patrons has the highest IG of all attributes and so is chosen by the learning

algorithm as the root

Information gain is then repeatedly applied at internal nodes until all leaves contain
only examples from one class or the other

positive (p) negative (1-p)
The picture can't be displayed.

Decision Tree Learned

LearnedAuthors Created

Assessing Performance: Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each
model on the
“training data”

and then test
each model’s
accuracy on
the validation data

Training data performance is typically optimistic
• e.g., error rate on training data

With large data sets we can partition our data into 2 subsets, train and
test
• build a model on the training data
• assess performance on the test data

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

OverfittingUnderfitting

Simple Models

Complex Models

The k-fold Cross-Validation Method

• Why stop at a 90/10 “split” of the data?
– In principle we could do this multiple times

• “k-fold Cross-Validation” (e.g., k=10)
– randomly partition our full data set into k disjoint subsets (each

roughly of size n/k, n = total number of training data points)
• for i = 1:k (where k = 10)

– train on 90% of the ith data subset
– Accuracy[i] = accuracy on 10% of the ith data subset

• end

• Cross-Validation-Accuracy = 1/k Σi Accuracy[i]
– choose the method with the highest cross-validation accuracy
– common values for k are 5 and 10
– Can also do “leave-one-out” where k = n

Disjoint Validation Data Sets for k = 5

Full Data Set

Training Data

Validation Data (aka Test Data)

1st partition

Disjoint Validation Data Sets for k = 5

Full Data Set

Training Data

Validation Data (aka Test Data)

1st partition 2nd partition

Disjoint Validation Data Sets for k = 5

Full Data Set

Training Data

Validation Data (aka Test Data)

Validation
Data

1st partition 2nd partition

3rd partition 4th partition 5th partition

You will be expected to know

 Understand Attributes, Error function, Classification,
Regression, Hypothesis (Predictor function)

 What is Supervised and Unsupervised Learning?

 Decision Tree Algorithm

 Entropy

 Information Gain

 Tradeoff between train and test with model complexity

 Cross validation

CS-171 Final Review
• Machine Learning Classifiers

• (R&N Ch. 18.5-18.12; 20.2)
• Intro to Machine Learning

• (R&N Ch. 18.1-18.4)

• Game (Adversarial) Search
• (R&N Ch. 5.1-5.4)

• Local Search
• (R&N Ch. 4.1-4.2)

• State Space Search
• (R&N Ch. 3.1-3.7)

• Questions on any topic
• Please review your quizzes & old tests

Review Adversarial (Game) Search
Chapter 5.1-5.4

• Minimax Search with Perfect Decisions (5.2)
– Impractical in most cases, but theoretical basis for analysis

• Minimax Search with Cut-off (5.4)
– Replace terminal leaf utility by heuristic evaluation

function
• Alpha-Beta Pruning (5.3)

– The fact of the adversary leads to an advantage in search!
• Practical Considerations (5.4)

– Redundant path elimination, look-up tables, etc.

Games as Search
• Two players: MAX and MIN
• MAX moves first and they take turns until the game is over

– Winner gets reward, loser gets penalty.
– “Zero sum” means the sum of the reward and the penalty is a constant.

• Formal definition as a search problem:
– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess.
– Player(s): Defines which player has the move in a state.
– Actions(s): Returns the set of legal moves in a state.
– Result(s,a): Transition model defines the result of a move.
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.)
– Terminal-Test(s): Is the game finished? True if finished, false otherwise.
– Utility function(s,p): Gives numerical value of terminal state s for player p.

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe.
• E.g., win (+1), lose (0), and draw (1/2) in chess.

• MAX uses search tree to determine “best” next move.

An optimal procedure:
The Min-Max method

Will find the optimal strategy and best next move for Max:

• 1. Generate the whole game tree, down to the leaves.

• 2. Apply utility (payoff) function to each leaf.

• 3. Back-up values from leaves through branch nodes:
– a Max node computes the Max of its child values
– a Min node computes the Min of its child values

• 4. At root: choose move leading to the child of highest value.

Two-ply Game Tree

MIN

MAX

3 12 8 2 4 6 14 5 2

3 2 2

3The minimax decision

Minimax maximizes the utility of the worst-case outcome for MAX

Pseudocode for Minimax
Algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a))

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ← +∞
for a in ACTIONS(state) do

v ← MIN(v,MAX-VALUE(Result(state,a)))
return v

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ← −∞
for a in ACTIONS(state) do

v ← MAX(v,MIN-VALUE(Result(state,a)))
return v

Properties of minimax
• Complete?

– Yes (if tree is finite).

• Optimal?
– Yes (against an optimal opponent).
– Can it be beaten by an opponent playing sub-optimally?

• No. (Why not?)

• Time complexity?
– O(bm)

• Space complexity?
– O(bm) (depth-first search, generate all actions at once)
– O(m) (backtracking search, generate actions one at a time)

Static (Heuristic) Evaluation Functions

• An Evaluation Function:
– Estimates how good the current board configuration is for a player.
– Typically, evaluate how good it is for the player, how good it is for

the opponent, then subtract the opponent’s score from the
player’s.

– Othello: Number of white pieces - Number of black pieces
– Chess: Value of all white pieces - Value of all black pieces

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

• If the board evaluation is X for a player, it’s -X for the opponent
– “Zero-sum game”

General alpha-beta pruning
• Consider a node n in the tree ---

• If player has a better choice at:
– Parent node of n
– Or any choice point further

up

• Then n will never be reached in
play.

• Hence, when that much is
known about n, it can be
pruned.

Alpha-beta Algorithm
• Depth first search

– only considers nodes along a single path from root at any time

α = highest-value choice found at any choice point of path for MAX
(initially, α = −infinity)

β = lowest-value choice found at any choice point of path for MIN
(initially, β = +infinity)

• Pass current values of α and β down to child nodes during search.
• Update values of α and β during search:

– MAX updates α at MAX nodes
– MIN updates β at MIN nodes

• Prune remaining branches at a node when α ≥ β

Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game
v←MAX-VALUE(state, - ∞ , +∞)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state,α , β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ← - ∞
for a in ACTIONS(state) do

v ← MAX(v, MIN-VALUE(Result(s,a), α , β))
if v ≥ β then return v
α ← MAX(α ,v)

return v

(MIN-VALUE is defined analogously)

When to Prune?

• Prune whenever α ≥ β.
– Prune below a Max node whose alpha value becomes greater than or

equal to the beta value of its ancestors.
• Max nodes update alpha based on children’s returned values.

– Prune below a Min node whose beta value becomes less than or equal
to the alpha value of its ancestors.

• Min nodes update beta based on children’s returned values.

α/β Pruning vs. Returned Node Value

• Some students are confused about the use of
α/β pruning vs. the returned value of a node

• α/β are used ONLY FOR PRUNING
– α/β have no effect on anything other than pruning
– IF (α >= β) THEN prune & return current node value

• Returned node value = “best” child seen so far
– Maximum child value seen so far for MAX nodes
– Minimum child value seen so far for MIN nodes
– If you prune, return to parent “best” child so far

• Returned node value is received by parent

Alpha-Beta Example Revisited

α, β, initial values
Do DF-search until first leaf

α=−∞
β =+∞

α=−∞
β =+∞

α, β, passed to kids

Review Detailed Example of Alpha-Beta
Pruning in lecture slides.

Alpha-Beta Example (continued)

MIN updates β, based on kids

α=−∞
β =+∞

α=−∞
β =3

Alpha-Beta Example (continued)

α=−∞
β =3

MIN updates β, based on kids.
No change.

α=−∞
β =+∞

Alpha-Beta Example (continued)

MAX updates α, based on kids.
α=3
β =+∞

3 is returned
as node value.

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =2

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =2

α ≥ β,
so prune.

α=3
β =+∞

Alpha-Beta Example (continued)

2 is returned
as node value.

MAX updates α, based on kids.
No change. α=3

β =+∞

Alpha-Beta Example (continued)

,
α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

,

α=3
β =14

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

,

α=3
β =5

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =+∞ 2 is returned

as node value.

2

Alpha-Beta Example (continued)

Max calculates the same
node value, and makes the
same move!

2

Review Detailed Example of Alpha-Beta
Pruning in lecture slides.

CS-171 Final Review
• Machine Learning Classifiers

• (R&N Ch. 18.5-18.12; 20.2)
• Intro to Machine Learning

• (R&N Ch. 18.1-18.4)
• Game (Adversarial) Search

• (R&N Ch. 5.1-5.4)

• Local Search
• (R&N Ch. 4.1-4.2)

• State Space Search
• (R&N Ch. 3.1-3.7)

• Questions on any topic
• Please review your quizzes & old tests

Review Local Search
Chapter 4.1-4.2, 4.6; Optional 4.3-4.5

• Problem Formulation (4.1)
• Hill-climbing Search (4.1.1)
• Simulated annealing search (4.1.2)
• Local beam search (4.1.3)
• Genetic algorithms (4.1.4)

Local search algorithms
• In many optimization problems, the path to the goal is

irrelevant; the goal state itself is the solution
– Local search: widely used for very big problems
– Returns good but not optimal solutions
– Usually very slow, but can yield good solutions if you wait

• State space = set of "complete" configurations
• Find a complete configuration satisfying constraints

– Examples: n-Queens, VLSI layout, airline flight schedules

• Local search algorithms
– Keep a single "current" state, or small set of states
– Iteratively try to improve it / them
– Very memory efficient

• keeps only one or a few states
• You control how much memory you use

Random restart wrapper

• We’ll use stochastic local search methods
– Return different solution for each trial & initial state

• Almost every trial hits difficulties (see sequel)
– Most trials will not yield a good result (sad!)

• Using many random restarts improves your chances
– Many “shots at goal” may finally get a good one

• Restart a random initial state, many times
– Report the best result found across many trials

Random restart wrapper
best_found ← RandomState() // initialize to something

// now do repeated local search
loop do

if (tired of doing it)
then return best_found

else
result ← LocalSearch(RandomState())
if (Cost(result) < Cost(best_found))

// keep best result found so far
then best_found ← result

Typically, “tired of doing it” means that some resource limit has been
exceeded, e.g., number of iterations, wall clock time, CPU time, etc.
It may also mean that result improvements are small and infrequent,
e.g., less than 0.1% result improvement in the last week of run time.

You, as
algorithm
designer, write
the functions
named in red.

Tabu search wrapper

• Add recently visited states to a tabu-list
– Temporarily excluded from being visited again
– Forces solver away from explored regions
– Less likely to get stuck in local minima (hope, in principle)

• Implemented as a hash table + FIFO queue
– Unit time cost per step; constant memory cost
– You control how much memory is used

• RandomRestart(TabuSearch (LocalSearch()))

Tabu search wrapper (inside random restart!)

best_found ← current_state ← RandomState() // initialize
loop do // now do local search

if (tired of doing it) then return best_found else
neighbor ← MakeNeighbor(current_state)
if (neighbor is in hash_table) then discard neighbor
else push neighbor onto fifo, pop oldest_state

remove oldest_state from hash_table, insert neighbor
current_state ← neighbor;

if (Cost(current_state) < Cost(best_found))
then best_found ← current_state

FIFO QUEUE Oldest
State

New
State

HASH TABLE
State

Present?

Local search algorithms

• Hill-climbing search
– Gradient descent in continuous state spaces
– Can use, e.g., Newton’s method to find roots

• Simulated annealing search
• Local beam search
• Genetic algorithms
• Linear Programming (for specialized problems)

Local Search Difficulties

• Problems: depending on state, can get stuck in local maxima
– Many other problems also endanger your success!!

These difficulties apply to ALL local search algorithms, and become MUCH
more difficult as the search space increases to high dimensionality.

Local Search Difficulties

• Ridge problem: Every neighbor appears to be downhill
– But the search space has an uphill!! (worse in high dimensions)

Ridge:
Fold a piece of
paper and hold
it tilted up at an
unfavorable
angle to every
possible search
space step.
Every step
leads downhill;
but the ridge
leads uphill.

These difficulties apply to ALL local search algorithms, and become MUCH
more difficult as the search space increases to high dimensionality.

Hill-climbing search

“…like trying to find the top of Mount Everest in a thick fog while
suffering from amnesia”

Equivalently: “if COST[neighbor] ≥ COST[current] then …”

Equivalently:
“…a lowest-cost successor…”

You must shift effortlessly between maximizing value and minimizing cost

Simulated annealing (Physics!)

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

•

Improvement: Track the
BestResultFoundSoFar.
Here, this slide follows
Fig. 4.5 of the textbook,
which is simplified.

Probability(accept worse successor)
•Decreases as temperature T decreases
•Increases as |Δ E| decreases
•Sometimes, step size also decreases with T

Tem
perature

e ∆E / T
Temperature T

High Low

|∆E |
High Medium Low

Low High Medium

(accept very bad moves early on; later, mainly accept “not very much worse”)

Your “random restart
wrapper” starts here.

A
Value=42

B
Value=41

C
Value=45

D
Value=44

E
Value=48

F
Value=47

G
Value=51

Va
lu

e

You want to get
here. HOW??

This is an illustrative cartoon…

Arbitrary (Fictitious) Search Space Coordinate

Goal: “ratchet up” a bumpy slope
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)

C
Value=45

∆E(CB)=-4
∆E(CD)=-1

P(CB) ≈.018
P(CD)≈.37

B
Value=41
∆E(BA)=1
∆E(BC)=4
P(BA)=1
P(BC)=1

A
Value=42

∆E(AB)=-1
P(AB) ≈.37

D
Value=44
∆E(DC)=1
∆E(DE)=4
P(DC)=1
P(DE)=1

E
Value=48

∆E(ED)=-4
∆E(EF)=-1

P(ED) ≈.018
P(EF)≈.37

F
Value=47
∆E(FE)=1
∆E(FG)=4
P(FE)=1
P(FG)=1

G
Value=51

∆E(GF)=-4
P(GF) ≈.018

x -1 -4

ex ≈.37 ≈.018

From A you will accept a move to B with P(AB) ≈.37.
From B you are equally likely to go to A or to C.
From C you are ≈20X more likely to go to D than to B.
From D you are equally likely to go to C or to E.
From E you are ≈20X more likely to go to F than to D.
From F you are equally likely to go to E or to G.
Remember best point you ever found (G or neighbor?).This is an illustrative cartoon…

Your “random
restart wrapper”
starts here.

Goal: “ratchet up” a jagged slope

Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states are
generated

• If any one is a goal state, stop; else select the k best
successors from the complete list and repeat.

• Concentrates search effort in areas believed to be fruitful
– May lose diversity as search progresses, resulting in wasted effort

a1 b1 k1… Create k random initial states

… Generate their children

a2 b2 k2… Select the k best children

… Repeat indefinitely…

Is it better than simply running k searches?
Maybe…??

Local beam search

Genetic algorithms (Darwin!!)
• A state = a string over a finite alphabet (an individual)

– A successor state is generated by combining two parent states

• Start with k randomly generated states (a population)

• Fitness function (= our heuristic objective function).
– Higher fitness values for better states.

• Select individuals for next generation based on fitness
– P(individual in next gen.) = individual fitness/total population fitness

• Crossover fit parents to yield next generation (offspring)

• Mutate the offspring randomly with some low probability

Genetic algorithms

• Fitness function (value): number of non-attacking pairs of
queens (min = 0, max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%
• 23/(24+23+20+11) = 29%; etc.

• Fitness function: #non-attacking queen pairs
– min = 0, max = 8 × 7/2 = 28

• Σ_i fitness_i = 24+23+20+11 = 78
• P(child_1 in next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31%
• P(child_2 in next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc

fitness =
#non-attacking
queens

probability of being
in next generation =
fitness/(Σ_i fitness_i)

How to convert a
fitness value into a
probability of being in
the next generation.

CS-171 Final Review
• Machine Learning Classifiers

• (R&N Ch. 18.5-18.12; 20.2)
• Intro to Machine Learning

• (R&N Ch. 18.1-18.4)
• Game (Adversarial) Search

• (R&N Ch. 5.1-5.4)
• Local Search

• (R&N Ch. 4.1-4.2)

• State Space Search
• (R&N Ch. 3.1-3.7)

• Questions on any topic
• Please review your quizzes & old tests

Review State Space Search
Chapter 3

• Problem Formulation (3.1, 3.3)
• Blind (Uninformed) Search (3.4)

• Depth-First, Breadth-First, Iterative Deepening,
Uniform-Cost, Bidirectional (if applicable)

• Time? Space? Complete? Optimal?

• Heuristic Search (3.5)
• A*, Greedy-Best-First

State-Space Problem Formulation
A problem is defined by five items:

(1) initial state e.g., "at Arad“

(2) actions Actions(s) = set of actions avail. in state s

(3) transition model Results(s,a) = state that results from action a in state s
Alt: successor function S(x) = set of action–state pairs
– e.g., S(Arad) = {<Arad  Zerind, Zerind>, … }

(4) goal test, (or goal state)
e.g., x = "at Bucharest”, Checkmate(x)

(5) path cost (additive)
– e.g., sum of distances, number of actions executed, etc.
– c(x,a,y) is the step cost, assumed to be ≥ 0 (and often, assumed to be ≥ ε > 0)

A solution is a sequence of actions leading from the initial state to a goal state

86

98

142

92

87

90

85
101

211

138

146

97

12075

70
111

118

140

151

71

75

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Sibiu Fagaras

Rimnicu Vilcea

Pitesti

Cralova

Bucharest

Giurgiu

Urziceni

Neamt

Iasi

Vaslui

Hirsova

Eforie

99

80

118

Vacuum world state space graph

• states? discrete: dirt and robot locations
• initial state? any
• actions? Left, Right, Suck
• transition model? as shown on graph
• goal test? no dirt at all locations
• path cost? 1 per action

119

Implementation: states vs. nodes
• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree
• A node contains info such as:

– state, parent node, action, path cost g(x), depth, etc.

• The Expand function creates new nodes, filling in the various
fields using the Actions(S) and Result(S,A)functions
associated with the problem.

120

Tree search vs. Graph search
Review Fig. 3.7, p. 77

• Failure to detect repeated states can turn a
linear problem into an exponential one!

• Test is often implemented as a hash table.

121

Tree search vs. Graph search
Review Fig. 3.7, p. 77

• What R&N call Tree Search vs. Graph Search
– (And we follow R&N exactly in this class)
– Has NOTHING to do with searching trees vs. graphs

• Tree Search = do NOT remember visited nodes
– Exponentially slower search, but memory efficient

• Graph Search = DO remember visited nodes
– Exponentially faster search, but memory blow-up

• CLASSIC Comp Sci TIME-SPACE TRADE-OFF

Solutions to Repeated States

• Graph search
– never generate a state generated before

• must keep track of all possible states (uses a lot of memory)
• e.g., 8-puzzle problem, we have 9! = 362,880 states
• approximation for DFS/DLS: only avoid states in its (limited) memory:

avoid infinite loops by checking path back to root.

– “visited?” test usually implemented as a hash table
122

S

B

C

S

B C

SC B S

State Space
Example of a Search Tree

faster, but memory inefficient

Checking for identical nodes (1)
Check if a node is already in fringe-frontier

• It is “easy” to check if a node is already in the
fringe/frontier (recall fringe = frontier = open = queue)
– Keep a hash table holding all fringe/frontier nodes

• Hash size is same O(.) as priority queue, so hash does not increase overall
space O(.)

• Hash time is O(1), so hash does not increase overall time O(.)

– When a node is expanded, remove it from hash table (it is
no longer in the fringe/frontier)

– For each resulting child of the expanded node:
• If child is not in hash table, add it to queue (fringe) and hash table
• Else if an old lower- or equal-cost node is in hash, discard the new

higher- or equal-cost child
• Else remove and discard the old higher-cost node from queue and

hash, and add the new lower-cost child to queue and hash

Always do this for tree or graph search in BFS, UCS, GBFS, and A*

Checking for identical nodes (2)
Check if a node is in explored/expanded

• It is memory-intensive [O(bd) or O(bm)]to check if a
node is in explored/expanded (recall explored =
expanded = closed)
– Keep a hash table holding all explored/expanded nodes

(hash table may be HUGE!!)
• When a node is expanded, add it to hash (explored)
• For each resulting child of the expanded node:

– If child is not in hash table or in fringe/frontier, then add it
to the queue (fringe/frontier) and process normally (BFS
normal processing differs from UCS normal processing, but
the ideas behind checking a node for being in
explored/expanded are the same).

– Else discard any redundant node.
Always do this for graph search

function BRE ADT H-FIRST-SEARCH(problem) returns a solution, or failure
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0 if
problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node) frontier ←
a FIFO queue with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the shallowest node in frontier */
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

if problem .GOAL -TEST(child .STAT E) then return SOL UT ION(child)
frontier ← INSE RT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

Breadth-first graph search (R&N Fig. 3.11)

Goal test before push

These three statements change tree search to graph search.

Avoid
redundant
frontier nodes

Properties of breadth-first search

• Complete? Yes, it always reaches a goal (if b is finite)
• Time? 1 + b + b2 + b3 + … + bd = O(bd)

(this is the number of nodes we generate)
• Space? O(bd)

(keeps every node in memory, either in frontier or on a path to frontier).
• Optimal? No, for general cost functions.

Yes, if cost is a non-decreasing function only of depth.
– With f(d) ≥ f(d-1), e.g., step-cost = constant:

• All optimal goal nodes occur on the same level
• Optimal goals are always shallower than non-optimal goals
• An optimal goal will be found before any non-optimal goal

• Usually Space is the bigger problem (more than time)

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0
frontier ← a priority queue ordered by PAT H-COST, with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the lowest-cost node in frontier */
 if problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node)
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

frontier ← INSE RT(child , frontier)
else if child .STAT E is in frontier with higher PAT H-COST then

replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an
extra check in case a shorter path to a frontier state is discovered. The data structure for frontier
needs to support efficient membership testing, so it should combine the capabilities of a priority
queue and a hash table.

Uniform cost search (R&N Fig. 3.14)
[A* is identical except queue sort = f(n)]

Goal test after pop

Avoid
redundant
frontier nodes

These three statements change tree search to graph search.

Avoid
higher-cost
frontier nodes

Uniform-cost search
Implementation: Frontier = queue ordered by path cost.
Equivalent to breadth-first if all step costs all equal.

•Complete? Yes, if b is finite and step cost ≥ ε > 0.
(otherwise it can get stuck in infinite regression)

•Time? # of nodes with path cost ≤ cost of optimal solution.
O(b1+C*/ε) ≈ O(bd+1)

•Space? # of nodes with path cost ≤ cost of optimal solution.
O(b1+C*/ε) ≈ O(bd+1).

•Optimal? Yes, for step cost ≥ ε > 0.

Depth-limited search & IDS (R&N Fig. 3.17-18)

Goal test in
recursive call,
one-at-a-time

At depth = 0, IDS only goal-tests
the start node. The start node is
is not expanded at depth = 0.

Properties of iterative deepening search

• Complete? Yes

• Time? O(bd)

• Space? O(bd)

• Optimal? No, for general cost functions.
Yes, if cost is a non-decreasing function only of

depth.

Generally the preferred uninformed search strategy.

Depth-First Search (R&N Section 3.4.3)

• Your textbook is ambiguous about DFS.
– The second paragraph of R&N 3.4.3 states that DFS is an

instance of Fig. 3.7 using a LIFO queue. Search behavior
may differ depending on how the LIFO queue is
implemented (as separate pushes, or one concatenation).

– The third paragraph of R&N 3.4.3 says that an alternative
implementation of DFS is a recursive algorithm that calls
itself on each of its children, as in the Depth-Limited
Search of Fig. 3.17 (above).

• For quizzes and exams, we will follow Fig. 3.17.
– Generally, for tests DFS will be used only as an example.

Properties of depth-first search

• Complete? No: fails in loops/infinite-depth spaces
– Can modify to avoid loops/repeated states along path

• check if current nodes occurred before on path to root
– Can use graph search (remember all nodes ever seen)

• problem with graph search: space is exponential, not linear
– Still fails in infinite-depth spaces (may miss goal entirely)

• Time? O(bm) with m =maximum depth of space
– Terrible if m is much larger than d
– If solutions are dense, may be much faster than BFS

• Space? O(bm), i.e., linear space!
– Remember a single path + expanded unexplored nodes

• Optimal? No: It may find a non-optimal goal first

A

B C

Bidirectional Search
• Idea

– simultaneously search forward from S and backwards from G
– stop when both “meet in the middle”

– need to keep track of the intersection of 2 open sets of nodes

• What does searching backwards from G mean
– need a way to specify the predecessors of G

• this can be difficult,
• e.g., predecessors of checkmate in chess?

– what if there are multiple goal states?
– what if there is only a goal test, no explicit list?

• Complexity
– time complexity is best: O(2 b(d/2)) = O(b (d/2))
– memory complexity is the same as time complexity

Bi-Directional Search

Blind Search Strategies (3.4)

• Depth-first: Add successors to front of queue
• Breadth-first: Add successors to back of queue
• Uniform-cost: Sort queue by path cost g(n)
• Depth-limited: Depth-first, cut off at limit l
• Iterated-deepening: Depth-limited, increasing l
• Bidirectional: Breadth-first from goal, too.

• Review “Example hand-simulated search”
– Lecture on “Uninformed Search”

Search strategy evaluation
• A search strategy is defined by the order of node

expansion

• Strategies are evaluated along the following dimensions:
– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
– (UCS: C*: true cost to optimal goal; ε > 0: minimum step cost)

Summary of algorithms
Fig. 3.21, p. 91

Generally the preferred
uninformed search strategy

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deepening
DLS

Bidirectional
(if applicable)

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d]

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d]

There are a number of footnotes, caveats, and assumptions.
See Fig. 3.21, p. 91.
[a] complete if b is finite
[b] complete if step costs ≥ ε > 0
[c] optimal if step costs are all identical

(also if path cost non-decreasing function of depth only)
[d] if both directions use breadth-first search

(also if both directions use uniform-cost search with step costs ≥ ε > 0)

Summary
• Generate the search space by applying actions to the

initial state and all further resulting states.

• Problem: initial state, actions, transition model, goal
test, step/path cost

• Solution: sequence of actions to goal

• Tree-search (don’t remember visited nodes) vs.
Graph-search (do remember them)

• Search strategy evaluation: b, d, m (UCS: C*, ε)
– Complete? Time? Space? Optimal?

Heuristic function (3.5)
 Heuristic:
 Definition: a commonsense rule (or set of rules) intended to

increase the probability of solving some problem
 “using rules of thumb to find answers”

 Heuristic function h(n)
 Estimate of (optimal) cost from n to goal
 Defined using only the state of node n
 h(n) = 0 if n is a goal node
 Example: straight line distance from n to Bucharest
Note that this is not the true state-space distance
 It is an estimate – actual state-space distance can be higher

 Provides problem-specific knowledge to the search algorithm

Relationship of search algorithms
• Notation:

– g(n) = known cost so far to reach n
– h(n) = estimated optimal cost from n to goal
– h*(n) = true optimal cost from n to goal (unknown to agent)
– f(n) = g(n)+h(n) = estimated optimal total cost through n

• Uniform cost search: sort frontier by g(n)
• Greedy best-first search: sort frontier by h(n)
• A* search: sort frontier by f(n) = g(n) + h(n)

– Optimal for admissible / consistent heuristics
– Generally the preferred heuristic search framework
– Memory-efficient versions of A* are available: RBFS, SMA*

Greedy best-first search
• h(n) = estimate of cost from n to goal

– e.g., h(n) = straight-line distance from n to
Bucharest

• Greedy best-first search expands the node
that appears to be closest to goal.
– Sort queue by h(n)

• Not an optimal search strategy
– May perform well in practice

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Optimal Path

Properties of greedy best-first search

• Complete?
– Tree version can get stuck in loops.
– Graph version is complete in finite spaces.

• Time? O(bm)
– A good heuristic can give dramatic improvement

• Space? O(bm)
– Graph search keeps all nodes in memory
– A good heuristic can give dramatic improvement

• Optimal? No
– E.g., Arad  Sibiu  Rimnicu Vilcea Pitesti  Bucharest

is shorter!

A* search

• Idea: avoid paths that are already expensive
– Generally the preferred simple heuristic search
– Optimal if heuristic is:

admissible (tree search)/consistent (graph search)

• Evaluation function f(n) = g(n) + h(n)
– g(n) = known path cost so far to node n.
– h(n) = estimate of (optimal) cost to goal from node n.
– f(n) = g(n)+h(n)

= estimate of total cost to goal through node n.

• Priority queue sort function = f(n)

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next:
• Children:
• Expanded:
• Frontier: Arad/366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

• Next: Arad/366=0+366
• Children: Sibiu/393=140+253, Timisoara/447=118+329,

Zerind/449=75+374
• Expanded: Arad/366=0+366
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
366=0+366

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: Sibiu/393=140+253
• Children: Arad/646=280+366, Fagaras/415=239+176,

Oradea/671=291+380, RimnicuVilcea/413=220+193
• Expanded: Arad/366=0+366, Sibiu/393=140+253
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374, Arad/646=280+366,
Fagaras/415=239+176, Oradea/671=291+380,
RimnicuVilcea/413=220+193

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: RimnicuVilcea/413=220+193
• Children: Craiova/526=366+160, Pitesti/417=317+100,

Sibiu/553=300+253
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example
Note: The
search below
did not “back
track.” Rather,
both arms are
being pursued
in parallel on
the queue.

A* tree search example:
Simulated queue. City/f=g+h

• Next: Fagaras/415=239+176
• Children: Bucharest/450=450+0, Sibiu/591=338+253
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0, Sibiu/591=338+253

Delete higher-cost
redundant nodes.

A* tree search example
Note: The
search below
did not “back
track.” Rather,
both arms are
being pursued
in parallel on
the queue.

A* tree search example:
Simulated queue. City/f=g+h

• Next: Pitesti/417=317+100
• Children: Bucharest/418=418+0, Craiova/615=455+160,

RimnicuVilcea/607=414+193
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176,
Pitesti/417=317+100

• Frontier: Arad/366=0+366, Sibiu/393=140+253,
Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0,
Sibiu/591=338+253, Bucharest/418=418+0,
Craiova/615=455+160, RimnicuVilcea/607=414+193

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: Bucharest/418=418+0
• Children: None; goal test succeeds.
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176,
Pitesti/417=317+100, Bucharest/418=418+0

• Frontier: Arad/366=0+366, Sibiu/393=140+253,
Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0,
Sibiu/591=338+253, Bucharest/418=418+0,
Craiova/615=455+160, RimnicuVilcea/607=414+193

Note that
the short
expensive
path stays
on the
queue.
The long
cheap
path is
found and
returned.

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Bucharest/
418=418+0

…
…

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Bucharest/
418=418+0…

…

Arad/
366=0+366

Properties of A*

• Complete? Yes
(unless there are infinitely many nodes with f ≤ f(G);
can’t happen if step-cost ≥ ε > 0)

• Time/Space? Exponential O(bd)
except if:

• Optimal? Yes
(with: Tree-Search, admissible heuristic;
Graph-Search, consistent heuristic)

• Optimally Efficient? Yes
(no optimal algorithm with same heuristic is guaranteed to expand
fewer nodes)

* *| () () | (log ())h n h n O h n− ≤

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,
h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal
state from n.

• An admissible heuristic never overestimates the cost to
reach the goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road
distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is
optimal

Consistent heuristics
(consistent => admissible)

• A heuristic is consistent if for every node n, every successor n' of n
generated by any action a,

h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n’) = g(n’) + h(n’) (by def.)
= g(n) + c(n,a,n') + h(n’) (g(n’)=g(n)+c(n.a.n’))
≥ g(n) + h(n) = f(n) (consistency)

f(n’) ≥ f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem:
If h(n) is consistent, A* using GRAPH-SEARCH is optimal

It’s the triangle
inequality !

keeps all checked nodes in
memory to avoid repeated states

Optimality of A* (proof)
Tree Search, where h(n) is admissible

• Suppose some suboptimal goal G2 has been generated and is in the
frontier. Let n be an unexpanded node in the frontier such that n is on a
shortest path to an optimal goal G.

• f(G2) = g(G2) since h(G2) = 0
• f(G) = g(G) since h(G) = 0
• g(G2) > g(G) since G2 is suboptimal

• f(G2) > f(G) from above, with h=0
• h(n) ≤ h*(n) since h is admissible (under-estimate)
• g(n) + h(n) ≤ g(n) + h*(n) from above
• f(n) ≤ f(G) since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G)
• f(n) < f(G2) from above

We want to prove:
f(n) < f(G2)

(then A* will expand n before G2)

R&N pp. 95-98 proves the optimality of A*
graph search with a consistent heuristic

Dominance

• IF h2(n) ≥ h1(n) for all n
THEN h2 dominates h1
– h2 is almost always better for search than h1
– h2 guarantees to expand no more nodes than does h1
– h2 almost always expands fewer nodes than does h1
– Not useful unless both h1 & h2 are admissible/consistent

• Typical 8-puzzle search costs
(average number of nodes expanded):
– d=12 IDS = 3,644,035 nodes

A*(h1) = 227 nodes
A*(h2) = 73 nodes

– d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

CS-171 Final Review
• Machine Learning Classifiers

• (R&N Ch. 18.5-18.12; 20.2)
• Intro to Machine Learning

• (R&N Ch. 18.1-18.4)
• Game (Adversarial) Search

• (R&N Ch. 5.1-5.4)
• Local Search

• (R&N Ch. 4.1-4.2)
• State Space Search

• (R&N Ch. 3.1-3.7)
• Questions on any topic
• Please review your quizzes & old tests

	Introduction to �Artificial Intelligence
	CS-171 Final Review
	Review Machine Learning Classifiers�Chapters 18.5-18.12; 20.2.2
	A Different View on Data Representation
	Decision Boundaries�Can we find a boundary that separates the two classes?
	Classification in Euclidean Space
	Decision Tree Example
	A Simple Classifier: Minimum Distance Classifier
	Minimum Distance Classifier
	Another Example: Nearest Neighbor Classifier
	Overall Boundary = Piecewise Linear
	Slide Number 12
	Slide Number 14
	Linear Classifiers
	Linear Classifiers
	Linear Classifiers
	The Perceptron Classifier�(pages 729-731 in text)
	Two different types of perceptron output
	Multi-Layer Perceptrons (Artificial Neural Networks) (sections 18.7.3-18.7.4 in textbook)
	Multi-Layer Perceptrons (Artificial Neural Networks) (sections 18.7.3-18.7.4 in textbook)
	Which decision boundary is “better”?
	Support Vector Machines (SVM): “Modern perceptrons”�(section 18.9, R&N)
	Constructs a “maximum margin separator”
	Can embed the data in a non-linear higher dimension space
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (2)
	CS-171 Final Review
	Introduction to Machine Learning
	Automated Learning
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Decision Tree Representations
	Slide Number 47
	Slide Number 48
	Decision Tree: Book Example
	Slide Number 50
	Entropy and Information
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	CS-171 Final Review
	Review Adversarial (Game) Search�Chapter 5.1-5.4
	Games as Search
	An optimal procedure:�The Min-Max method
	Two-ply Game Tree
	Pseudocode for Minimax Algorithm
	Properties of minimax
	Slide Number 74
	Static (Heuristic) Evaluation Functions
	Slide Number 76
	General alpha-beta pruning
	Alpha-beta Algorithm
	Pseudocode for Alpha-Beta Algorithm
	When to Prune?
	α/β Pruning vs. Returned Node Value
	Alpha-Beta Example Revisited
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	CS-171 Final Review
	Review Local Search�Chapter 4.1-4.2, 4.6; Optional 4.3-4.5
	Local search algorithms
	Random restart wrapper
	Random restart wrapper
	Tabu search wrapper
	Tabu search wrapper (inside random restart!)
	Local search algorithms
	Local Search Difficulties
	Local Search Difficulties
	Hill-climbing search
	Simulated annealing (Physics!)
	Probability(accept worse successor)
	Goal: “ratchet up” a bumpy slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Slide Number 109
	Local beam search
	Local beam search
	Genetic algorithms (Darwin!!)
	Genetic algorithms
	Slide Number 114
	CS-171 Final Review
	Review State Space Search�Chapter 3
	State-Space Problem Formulation
	Vacuum world state space graph
	Implementation: states vs. nodes
	Tree search vs. Graph search�Review Fig. 3.7, p. 77
	Tree search vs. Graph search�Review Fig. 3.7, p. 77
	Solutions to Repeated States
	Checking for identical nodes (1)�Check if a node is already in fringe-frontier
	Checking for identical nodes (2)�Check if a node is in explored/expanded
	Breadth-first graph search (R&N Fig. 3.11)
	Properties of breadth-first search
	Uniform cost search (R&N Fig. 3.14)�[A* is identical except queue sort = f(n)]
	Uniform-cost search
	Depth-limited search & IDS (R&N Fig. 3.17-18)
	Properties of iterative deepening search
	Depth-First Search (R&N Section 3.4.3)
	Properties of depth-first search
	Bidirectional Search
	Bi-Directional Search
	Blind Search Strategies (3.4)
	Search strategy evaluation
	Summary of algorithms�Fig. 3.21, p. 91
	Summary
	Heuristic function (3.5)
	Relationship of search algorithms
	Greedy best-first search
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Optimal Path
	Properties of greedy best-first search
	A* search
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	Properties of A*
	Admissible heuristics
	Consistent heuristics�(consistent => admissible)
	Optimality of A* (proof)�Tree Search, where h(n) is admissible
	Dominance
	CS-171 Final Review

