
Introduction to
Artificial Intelligence

CS171, Summer 1 Quarter, 2019
Introduction to Artificial Intelligence

Prof. Richard Lathrop

Read Beforehand: All assigned reading so far

Final Exam Review
• Propositional Logic B: R&N Chap 7.1-7.5

• Predicate Logic, Knowledge Representation:

R&N Chap 8.1-8.5, 9.1-9.2

• Probability: R&N Chap 13

• Bayesian Networks: R&N Chap 14.1-14.5

• Intro Machine Learning: R&N Chap 18.1-18.4

Review Propositional Logic
Chapter 7.1-7.5; Optional 7.6-7.8

• Definitions:
– Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives,

Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology)

• Syntactic & Semantic Transformations:
– E.g., (A ⇒ B) ⇔ (¬A ∨ B)
– E.g., (KB |= α) ≡ (|= (KB ⇒ α)

• Truth Tables:
– Negation, Conjunction, Disjunction, Implication, Equivalence

(Biconditional)

• Inference:
– By Resolution (CNF)
– By Backward & Forward Chaining (Horn Clauses)
– By Model Enumeration (Truth Tables)

Review: Schematic for Follows, Entails, and Derives

If KB is true in the real world,
then any sentence α entailed by KB
and any sentence α derived from KB
 by a sound inference procedure
is also true in the real world.

Sentences Sentence
Derives

Inference

Recap propositional logic: Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model

e.g., A∨ B, C

A sentence is unsatisfiable if it is false in all models
e.g., A∧¬A

Satisfiability is connected to inference via the following:

KB ╞ A if and only if (KB ∧¬A) is unsatisfiable
(there is no model for which KB is true and A is false)

Inference Procedures
• KB ├ i A means that sentence A can be derived from KB by procedure i

• Soundness: i is sound if whenever KB ├i α, it is also true that KB╞ α

– (no wrong inferences, but maybe not all inferences)

• Completeness: i is complete if whenever KB╞ α, it is also true that KB ├i α
– (all inferences can be made, but maybe some wrong extra ones as

well)

• Entailment can be used for inference (Model checking)
– enumerate all possible models and check whether α is true.
– For n symbols, time complexity is O(2n)...

• Inference can be done directly on the sentences
– Forward chaining, backward chaining, resolution (see FOPC, later)

Inference by Resolution

• KB is represented in CNF
– KB = AND of all the sentences in KB
– KB sentence = clause = OR of literals
– Literal = propositional symbol or its negation

• Find two clauses in KB, one of which contains a literal and the

other its negation
– Cancel the literal and its negation
– Bundle everything else into a new clause
– Add the new clause to KB
– Repeat

Example: Conversion to CNF
Example: B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔ by replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).

= (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒ by replacing α ⇒ β with ¬α∨ β and simplify.
= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and simplify.
 ¬(α ∨ β) ≡ (¬α ∧ ¬β), ¬(α ∧ β) ≡ (¬α ∨ ¬β)

= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributive law (∧ over ∨) and simplify.
= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

Example: Conversion to CNF
Example: B1,1 ⇔ (P1,2 ∨ P2,1)

From the previous slide we had:

= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

5. KB is the conjunction of all of its sentences (all are true),
 so write each clause (disjunct) as a sentence in KB:

 KB =
 …

(¬B1,1 ∨ P1,2 ∨ P2,1)
(¬P1,2 ∨ B1,1)
(¬P2,1 ∨ B1,1)
…

Often, Won’t Write “∨” or “∧”
(we know they are there)

(¬B1,1 P1,2 P2,1)
(¬P1,2 B1,1)
(¬P2,1 B1,1)

(same)

Resolution = Efficient Implication

(OR A B C D)
(OR ¬A E F G)

(OR B C D E F G)

(NOT (OR B C D)) => A
A => (OR E F G)
--
(NOT (OR B C D)) => (OR E F G)
--
(OR B C D E F G)

->Same ->
->Same ->

Recall that (A => B) = ((NOT A) OR B)
and so:
 (Y OR X) = ((NOT X) => Y)
 ((NOT Y) OR Z) = (Y => Z)
which yields:
 ((Y OR X) AND ((NOT Y) OR Z)) = ((NOT X) => Z) = (X OR Z)

Recall: All clauses in KB are conjoined by an implicit AND (= CNF representation).

Resolution Examples

• Resolution: inference rule for CNF: sound and complete! *
()
()

()

A B C
A

B C

∨ ∨

¬
− − − − − − − − − − − −

∴ ∨

“If A or B or C is true, but not A, then B or C must be true.”

()
()

()

A B C
A D E

B C D E

∨ ∨

¬ ∨ ∨
− − − − − − − − − − −

∴ ∨ ∨ ∨

“If A is false then B or C must be true, or if A is true
then D or E must be true, hence since A is either true or
false, B or C or D or E must be true.”

()
()

()

A B
A B

B B B

∨

¬ ∨
− − − − − − − −

∴ ∨ ≡ Simplification
is done always.

* Resolution is “refutation complete”
in that it can prove the truth of any
entailed sentence by refutation.

“If A or B is true, and
not A or B is true,
then B must be true.”

More Resolution Examples
• (P Q ¬R S) with (P ¬Q W X) yields (P ¬R S W X)

– Order of literals within clauses does not matter.
• (P Q ¬R S) with (¬P) yields (Q ¬R S)
• (¬R) with (R) yields () or FALSE
• (P Q ¬R S) with (P R ¬S W X) yields (P Q ¬R R W X) or (P Q S ¬S W X) or TRUE
• (P ¬Q R ¬S) with (P ¬Q R ¬S) yields None possible
• (P ¬Q ¬S W) with (P R ¬S X) yields None possible
• ((¬ A) (¬ B) (¬ C) (¬ D)) with ((¬ C) D) yields ((¬ A) (¬ B) (¬ C))
• ((¬ A) (¬ B) (¬ C)) with ((¬ A) C) yields ((¬ A) (¬ B))
• ((¬ A) (¬ B)) with (B) yields (¬ A)
• (A C) with (A (¬ C)) yields (A)
• (¬ A) with (A) yields () or FALSE

Only Resolve ONE Literal Pair!
If more than one pair, result always = TRUE.

Useless!! Always simplifies to TRUE!!

No!
(OR A B C D)
(OR ¬A ¬B F G)

(OR C D F G)
No! This is wrong!

Yes! (but = TRUE)
(OR A B C D)
(OR ¬A ¬B F G)

(OR B ¬B C D F G)
Yes! (but = TRUE)

No!
(OR A B C D)
(OR ¬A ¬B ¬C)

(OR D)
No! This is wrong!

Yes! (but = TRUE)
(OR A B C D)
(OR ¬A ¬B ¬C)

(OR A ¬A B ¬B D)
Yes! (but = TRUE)

• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the (negated) query.
• One of two things can happen:

1. We find which is unsatisfiable. I.e. we can entail the query.

2. We find no contradiction: there is a model that satisfies the sentence
 (non-trivial) and hence we cannot entail the query.

Resolution Algorithm

|KB equivalent to
KB unsatisfiable

α
α

=

∧ ¬

P P∧ ¬

KB α∧ ¬

Resolution example
Resulting Knowledge Base stated in CNF

• “Laws of Physics” in the Wumpus World:
 (¬B1,1 P1,2 P2,1)
 (¬P1,2 B1,1)
 (¬P2,1 B1,1)

• Particular facts about a specific instance:
 (¬ B1,1)

• Negated goal or query sentence:
 (P1,2)

Resolution example
A Resolution proof ending in ()

• Knowledge Base at start of proof:
 (¬B1,1 P1,2 P2,1)
 (¬P1,2 B1,1)
 (¬P2,1 B1,1)
 (¬ B1,1)
 (P1,2)

 A resolution proof ending in ():
• Resolve (¬P1,2 B1,1) and (¬ B1,1) to give (¬P1,2)
• Resolve (¬P1,2) and (P1,2) to give ()

• Consequently, the goal or query sentence is entailed by KB.
• Of course, there are many other proofs, which are OK iff correct.

Resolution example

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1

• α = ¬P1,2
KB α∧ ¬

False in
all worlds

True!

¬P2,1

A sentence in KB is not “used up” when it is used in a
resolution step. It is true, remains true, and is still in KB.

Detailed Resolution Proof Example

• In words: If the unicorn is mythical, then it is immortal, but if it is not
mythical, then it is a mortal mammal. If the unicorn is either immortal or a
mammal, then it is horned. The unicorn is magical if it is horned.
 Prove that the unicorn is both magical and horned.
((NOT Y) (NOT R)) (M Y) (R Y) (H (NOT M))
(H R) ((NOT H) G) ((NOT G) (NOT H))

• Fourth, produce a resolution proof ending in ():
• Resolve (¬H ¬G) and (¬H G) to give (¬H)
• Resolve (¬Y ¬R) and (Y M) to give (¬R M)
• Resolve (¬R M) and (R H) to give (M H)
• Resolve (M H) and (¬M H) to give (H)
• Resolve (¬H) and (H) to give ()

• Of course, there are many other proofs, which are OK iff correct.

Propositional Logic --- Summary
• Logical agents apply inference to a knowledge base to derive new

information and make decisions

• Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundness: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences
– valid: sentence is true in every model (a tautology)

• Logical equivalences allow syntactic manipulations

• Propositional logic lacks expressive power

– Can only state specific facts about the world.
– Cannot express general rules about the world
 (use First Order Predicate Logic instead)

Review First-Order Logic
Chapter 8.1-8.5, 9.1-9.2, 9.5.1-9.5.5

• Syntax & Semantics
– Predicate symbols, function symbols, constant symbols, variables, quantifiers.
– Models, symbols, and interpretations

• De Morgan’s rules for quantifiers
• Nested quantifiers

– Difference between “∀ x ∃ y P(x, y)” and “∃ x ∀ y P(x, y)”
• Translate simple English sentences to FOPC and back

– ∀ x ∃ y Likes(x, y) ⇔ “Everyone has someone that they like.”
– ∃ x ∀ y Likes(x, y) ⇔ “There is someone who likes every person.”

• Unification and the Most General Unifier
• Inference in FOL

– By Resolution (CNF)
– By Backward & Forward Chaining (Horn Clauses)

• Knowledge engineering in FOL

Syntax of FOL: Basic elements
• Constants KingJohn, 2, UCI,...

• Predicates Brother, >,...

• Functions Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Quantifiers ∀, ∃

• Connectives ¬, ∧, ∨, ⇒, ⇔ (standard)

• Equality = (but causes difficulties….)

Syntax of FOL: Basic syntax elements are symbols

• Constant Symbols (correspond to English nouns)
– Stand for objects in the world.

• E.g., KingJohn, 2, UCI, ...

• Predicate Symbols (correspond to English verbs)

– Stand for relations (maps a tuple of objects to a truth-value)
• E.g., Brother(Richard, John), greater_than(3,2), ...

– P(x, y) is usually read as “x is P of y.”
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.”

• Function Symbols (correspond to English nouns)

– Stand for functions (maps a tuple of objects to an object)
• E.g., Sqrt(3), LeftLegOf(John), ...

• Model (world) = set of domain objects, relations, functions
• Interpretation maps symbols onto the model (world)

– Very many interpretations are possible for each KB and world!
– The KB is to rule out those inconsistent with our knowledge.

Syntax of FOL: Terms
• Term = logical expression that refers to an object

• There are two kinds of terms:

– Constant Symbols stand for (or name) objects:

• E.g., KingJohn, 2, UCI, Wumpus, ...

– Function Symbols map tuples of objects to an object:
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
• This is nothing but a complicated kind of name

– No “subroutine” call, no “return value”

Syntax of FOL: Atomic Sentences
• Atomic Sentences state facts (logical truth values).

– An atomic sentence is a Predicate symbol, optionally followed by a
parenthesized list of any argument terms

– E.g., Married(Father(Richard), Mother(John))
– An atomic sentence asserts that some relationship (some predicate) holds

among the objects that are its arguments.

• An Atomic Sentence is true in a given model if the relation referred to
by the predicate symbol holds among the objects (terms) referred to
by the arguments.

Syntax of FOL:
Connectives & Complex Sentences

• Complex Sentences are formed in the same way, using
the same logical connectives, as in propositional logic

• The Logical Connectives:

– ⇔ biconditional
– ⇒ implication
– ∧ and
– ∨ or
– ¬ negation

• Semantics for these logical connectives are the same as

we already know from propositional logic.

Syntax of FOL: Variables

• Variables range over objects in the world.

• A variable is like a term because it represents an object.

• A variable may be used wherever a term may be used.
– Variables may be arguments to functions and predicates.

• (A term with NO variables is called a ground term.)

• (A variable not bound by a quantifier is called free.)

– All variables we will use are bound by a quantifier.

Syntax of FOL: Logical Quantifiers
• There are two Logical Quantifiers:

– Universal: ∀ x P(x) means “For all x, P(x).”
• The “upside-down A” reminds you of “ALL.”
• Some texts put a comma after the variable: ∀ x, P(x)

– Existential: ∃ x P(x) means “There exists x such that, P(x).”
• The “backward E” reminds you of “EXISTS.”
• Some texts put a comma after the variable: ∃ x, P(x)

• You can ALWAYS convert one quantifier to the other.

– ∀ x P(x) ≡ ¬∃ x ¬P(x)
– ∃ x P(x) ≡ ¬∀ x ¬P(x)
– RULES: ∀ ≡ ¬∃¬ and ∃ ≡ ¬∀¬

• RULES: To move negation “in” across a quantifier,

Change the quantifier to “the other quantifier”
and negate the predicate on “the other side.”

– ¬∀ x P(x) ≡ ¬ ¬∃ x ¬P(x) ≡ ∃ x ¬P(x)
– ¬∃ x P(x) ≡ ¬ ¬∀ x ¬P(x) ≡ ∀ x ¬P(x)

Universal Quantification ∀
• ∀ x means “for all x it is true that…”

• Allows us to make statements about all objects that have

certain properties

• Can now state general rules:

∀ x King(x) => Person(x) “All kings are persons.”
∀ x Person(x) => HasHead(x) “Every person has a head.”
∀ i Integer(i) => Integer(plus(i,1)) “If i is an integer then i+1 is an integer.”

• Note: ∀ x King(x) ∧ Person(x) is not correct!

This would imply that all objects x are Kings and are People (!)

∀ x King(x) => Person(x) is the correct way to say this

• Note that => (or ⇔) is the natural connective to use with ∀ .

Existential Quantification ∃
• ∃ x means “there exists an x such that….”

– There is in the world at least one such object x

• Allows us to make statements about some object without
naming it, or even knowing what that object is:

∃ x King(x) “Some object is a king.”
∃ x Lives_in(John, Castle(x)) “John lives in somebody’s castle.”
∃ i Integer(i) ∧ Greater(i,0) “Some integer is greater than zero.”

• Note: ∃ i Integer(i) ⇒ Greater(i,0) is not correct!

It is vacuously true if anything in the world were not an integer (!)

∃ i Integer(i) ∧ Greater(i,0) is the correct way to say this

• Note that ∧ is the natural connective to use with ∃ .

Combining Quantifiers --- Order (Scope)
The order of “unlike” quantifiers is important.
 Like nested variable scopes in a programming language.
 Like nested ANDs and ORs in a logical sentence.

∀ x ∃ y Loves(x,y)

– For everyone (“all x”) there is someone (“exists y”) whom they love.
– There might be a different y for each x (y is inside the scope of x)

∃ y ∀ x Loves(x,y)
– There is someone (“exists y”) whom everyone loves (“all x”).
– Every x loves the same y (x is inside the scope of y)

Clearer with parentheses: ∃ y (∀ x Loves(x,y))

The order of “like” quantifiers does not matter.
 Like nested ANDs and ANDs in a logical sentence
 ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y)
 ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y)

De Morgan’s Law for Quantifiers
De Morgan’s Rule Generalized De Morgan’s Rule

AND/OR Rule is simple: if you bring a negation inside a disjunction or a
conjunction, always switch between them (¬ OR AND ¬ ; ¬ AND OR ¬).

QUANTIFIER Rule is similar: if you bring a negation inside a universal or
existential, always switch between them (¬ ∃ ∀ ¬ ; ¬ ∀ ∃ ¬).

P ∧ Q ≡ ¬ (¬ P ∨ ¬ Q) ∀ x P(x) ≡ ¬ ∃ x ¬ P(x)
P ∨ Q ≡ ¬ (¬ P ∧ ¬ Q) ∃ x P(x) ≡ ¬ ∀ x ¬ P(x)

¬ (P ∧ Q) ≡ (¬ P ∨ ¬ Q) ¬ ∀ x P(x) ≡ ∃ x ¬ P(x)
¬ (P ∨ Q) ≡ (¬ P ∧ ¬ Q) ¬ ∃ x P(x) ≡ ∀ x ¬ P(x)

Semantics: Interpretation
• An interpretation of a sentence is an assignment that maps

– Object constants to objects in the worlds,
– n-ary function symbols to n-ary functions in the world,
– n-ary relation symbols to n-ary relations in the world

• Given an interpretation, an atomic sentence has the value
“true” if it denotes a relation that holds for those individuals
denoted in the terms. Otherwise it has the value “false”
– Example: Block world:

• A, B, C, floor, On, Clear
– World:
– On(A,B) is false, Clear(B) is true, On(C,Floor) is true…

• Under an interpretation that maps symbol A to block A,
 symbol B to block B, symbol C to block C, symbol Floor to the
floor

Semantics: Models and Definitions

•An interpretation and possible world satisfies a wff (sentence) if the wff
has the value “true” under that interpretation in that possible world.

•Model: A domain and an interpretation that satisfies a wff is a model of
that wff

•Validity: Any wff that has the value “true” in all possible worlds and
under all interpretations is valid.

•Any wff that does not have a model under any interpretation is
inconsistent or unsatisfiable.

•Any wff that is true in at least one possible world under at least one
interpretation is satisfiable.

•If a wff w has a value true under all the models of a set of sentences KB
then KB logically entails w.

Conversion to CNF
• Everyone who loves all animals is loved by someone:

∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

1. Eliminate biconditionals and implications

∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]

2. Move ¬ inwards:
 ¬∀x p ≡ ∃x ¬p, ¬ ∃x p ≡ ∀x ¬p

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]

Conversion to CNF contd.
3. Standardize variables: each quantifier should use a different one

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the enclosing universally

quantified variables:

 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

5. Drop universal quantifiers:
 [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

Unification
•Recall: Subst(θ, p) = result of substituting θ into sentence p

•Unify algorithm: takes 2 sentences p and q and returns a unifier if one exists

 Unify(p,q) = θ where Subst(θ, p) = Subst(θ, q)

 where θ is a list of variable/substitution pairs
 that will make p and q syntactically identical

•Example:
 p = Knows(John,x)
 q = Knows(John, Jane)

 Unify(p,q) = {x/Jane}

Unification examples
• simple example: query = Knows(John,x), i.e., who does John know?

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) Knows(x,OJ) {fail}

• Last unification fails: only because x can’t take values John and OJ at the same time

– But we know that if John knows x, and everyone (x) knows OJ, we should be able to infer that John
knows OJ

• Problem is due to use of same variable x in both sentences

• Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,OJ)

Unification examples

• UNIFY(Knows(John, x), Knows(John, Jane)) { x / Jane }

• UNIFY(Knows(John, x), Knows(y, Jane)) { x / Jane, y / John }

• UNIFY(Knows(y, x), Knows(John, Jane)) { x / Jane, y / John }

• UNIFY(Knows(John, x), Knows(y, Father (y))) { y / John, x / Father (John) }

• UNIFY(Knows(John, F(x)), Knows(y, F(F(z)))) { y / John, x / F (z) }

• UNIFY(Knows(John, F(x)), Knows(y, G(z))) None

• UNIFY(Knows(John, F(x)), Knows(y, F(G(y)))) { y / John, x / G (John) }

Example knowledge base

• The law says that it is a crime for an American to sell weapons
to hostile nations. The country Nono, an enemy of America,
has some missiles, and all of its missiles were sold to it by
Colonel West, who is American.

• Prove that Col. West is a criminal

Example knowledge base (Horn clauses)
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) ∧ Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

Resolution proof:

¬

*American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)
*Owns(Nono,M1) and Missile(M1)
*Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)
*Missile(x) ⇒ Weapon(x)
*Enemy(x,America) ⇒ Hostile(x)
*American(West)
*Enemy(Nono,America)

Forward chaining proof (Horn clauses)

Backward chaining example (Horn clauses)

Knowledge engineering in FOL
1. Identify the task

2. Assemble the relevant knowledge

3. Decide on a vocabulary of predicates, functions, and constants

4. Encode general knowledge about the domain

5. Encode a description of the specific problem instance

6. Pose queries to the inference procedure and get answers

7. Debug the knowledge base

The electronic circuits domain
One-bit full adder

Possible queries:
 - does the circuit function properly?
 - what gates are connected to the first input terminal?
 - what would happen if one of the gates is broken?
 and so on

The electronic circuits domain
1. Identify the task

– Does the circuit actually add properly?

2. Assemble the relevant knowledge
– Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
–
– Irrelevant: size, shape, color, cost of gates
–

3. Decide on a vocabulary

– Alternatives:
–

Type(X1) = XOR (function)
Type(X1, XOR) (binary predicate)
XOR(X1)
 (unary predicate)

The electronic circuits domain
4. Encode general knowledge of the domain

– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)

– ∀t Signal(t) = 1 ∨ Signal(t) = 0

– 1 ≠ 0

– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)

– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1

– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0

– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠

Signal(In(2,g))

– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))

The electronic circuits domain
5. Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

The electronic circuits domain
6. Pose queries to the inference procedure:

What are the possible sets of values of all the terminals for the adder circuit?

 ∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3

 ∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2

7. Debug the knowledge base

May have omitted assertions like 1 ≠ 0

Review Probability
Chapter 13

• Basic probability notation/definitions:
– Probability model, unconditional/prior and

conditional/posterior probabilities, factored
representation (= variable/value pairs), random variable,
(joint) probability distribution, probability density function
(pdf), marginal probability, (conditional) independence,
normalization, etc.

• Basic probability formulae:
– Probability axioms, sum rule, product rule, Bayes’ rule.

• How to use Bayes’ rule:
– Naïve Bayes model (naïve Bayes classifier)

Syntax

•Basic element: random variable
•Similar to propositional logic: possible worlds defined by assignment of

values to random variables.

•Booleanrandom variables

 e.g., Cavity (= do I have a cavity?)
•Discreterandom variables

 e.g., Weather is one of
<sunny,rainy,cloudy,snow>

•Domain values must be exhaustive and mutually exclusive

•Elementary proposition is an assignment of a value to a random variable:
 e.g., Weather = sunny; Cavity = false(abbreviated as ¬cavity)

•Complex propositions formed from elementary propositions and standard

logical connectives :
 e.g., Weather = sunny ∨ Cavity = false

Probability
• P(a) is the probability of proposition “a”

– e.g., P(it will rain in London tomorrow)
– The proposition a is actually true or false in the real-world

• Probability Axioms:
– 0 ≤ P(a) ≤ 1
– P(NOT(a)) = 1 – P(a) => ΣA P(A) = 1
– P(true) = 1
– P(false) = 0
– P(A OR B) = P(A) + P(B) – P(A AND B)

• Any agent that holds degrees of beliefs that contradict these

axioms will act irrationally in some cases

• Rational agents cannot violate probability theory.
─ Acting otherwise results in irrational behavior.

Conditional Probability
• P(a|b) is the conditional probability of proposition a,

conditioned on knowing that b is true,
– E.g., P(rain in London tomorrow | raining in London today)
– P(a|b) is a “posterior” or conditional probability
– The updated probability that a is true, now that we know b
– P(a|b) = P(a ∧ b) / P(b)
– Syntax: P(a | b) is the probability of a given that b is true

• a and b can be any propositional sentences
• e.g., p(John wins OR Mary wins | Bob wins AND Jack loses)

• P(a|b) obeys the same rules as probabilities,
– E.g., P(a | b) + P(NOT(a) | b) = 1
– All probabilities in effect are conditional probabilities

• E.g., P(a) = P(a | our background knowledge)

Concepts of Probability
• Unconditional Probability

─ P(a), the probability of “a” being true, or P(a=True)
─ Does not depend on anything else to be true (unconditional)
─ Represents the probability prior to further information that may adjust it

(prior)

• Conditional Probability
─ P(a|b), the probability of “a” being true, given that “b” is true
─ Relies on “b” = true (conditional)
─ Represents the prior probability adjusted based upon new information “b”

(posterior)
─ Can be generalized to more than 2 random variables:

 e.g. P(a|b, c, d)

• Joint Probability
─ P(a, b) = P(a ˄ b), the probability of “a” and “b” both being true
─ Can be generalized to more than 2 random variables:

 e.g. P(a, b, c, d)

Basic Probability Relationships
• P(A) + P(¬ A) = 1

– Implies that P(¬ A) = 1 ─ P(A)

• P(A, B) = P(A ˄ B) = P(A) + P(B) ─ P(A ˅ B)
– Implies that P(A ˅ B) = P(A) + P(B) ─ P(A ˄ B)

• P(A | B) = P(A, B) / P(B)
– Conditional probability; “Probability of A given B”

• P(A, B) = P(A | B) P(B)
– Product Rule (Factoring); applies to any number of variables
– P(a, b, c,…z) = P(a | b, c,…z) P(b | c,...z) P(c|...z)...P(z)

• P(A) = ΣB,C P(A, B, C) = Σb∈B,c∈C P(A, b, c)
– Sum Rule (Marginal Probabilities); for any number of variables
– P(A, D) = ΣB ΣC P(A, B, C, D) = Σb∈B Σc∈C P(A, b, c, D)

• P(B | A) = P(A | B) P(B) / P(A)
– Bayes’ Rule; for any number of variables

You need to
know these !

Summary of Probability Rules
• Product Rule:

– P(a, b) = P(a|b) P(b) = P(b|a) P(a)
– Probability of “a” and “b” occurring is the same as probability of “a” occurring

given “b” is true, times the probability of “b” occurring.
 e.g., P(rain, cloudy) = P(rain | cloudy) * P(cloudy)

• Sum Rule: (AKA Law of Total Probability)

– P(a) = Σb P(a, b) = Σb P(a|b) P(b), where B is any random variable
– Probability of “a” occurring is the same as the sum of all joint probabilities

including the event, provided the joint probabilities represent all possible
events.

– Can be used to “marginalize” out other variables from probabilities, resulting
in prior probabilities also being called marginal probabilities.
 e.g., P(rain) = ΣWindspeed P(rain, Windspeed)
 where Windspeed = {0-10mph, 10-20mph, 20-30mph, etc.}

• Bayes’ Rule:

- P(b|a) = P(a|b) P(b) / P(a)
- Acquired from rearranging the product rule.
- Allows conversion between conditionals, from P(a|b) to P(b|a).

 e.g., b = disease, a = symptoms
 More natural to encode knowledge as P(a|b) than as P(b|a).

Full Joint Distribution

• We can fully specify a probability space by
constructing a full joint distribution:
– A full joint distribution contains a probability for

every possible combination of variable values.
– E.g., P(J=f, M=t, A=t, B=t, E=f)

• From a full joint distribution, the product rule,
sum rule, and Bayes’ rule can create any
desired joint and conditional probabilities.

Computing with Probabilities: Law of Total Probability

Law of Total Probability (aka “summing out” or marginalization)
 P(a) = Σb P(a, b)
 = Σb P(a | b) P(b) where B is any random variable

Why is this useful?

 Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any
“marginal” probability (e.g., P(b)) by summing out the other
variables, e.g.,

 P(b) = Σa Σc Σd P(a, b, c, d)

We can compute any conditional probability given a joint distribution, e.g.,

 P(c | b) = Σa Σd P(a, c, d | b)
 = Σa Σd P(a, c, d, b) / P(b)
 where P(b) can be computed as above

Computing with Probabilities:
The Chain Rule or Factoring

We can always write
 P(a, b, c, … z) = P(a | b, c, …. z) P(b, c, … z)
 (by definition of joint probability)

Repeatedly applying this idea, we can write
 P(a, b, c, … z) = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z)

This factorization holds for any ordering of the variables

This is the chain rule for probabilities

Independence
• Formal Definition:

– 2 random variables A and B are independent iff:
 P(a, b) = P(a) P(b), for all values a, b

• Informal Definition:
– 2 random variables A and B are independent iff:
 P(a | b) = P(a) OR P(b | a) = P(b), for all values a, b
– P(a | b) = P(a) tells us that knowing b provides no change in our probability

for a, and thus b contains no information about a.

• Also known as marginal independence, as all other variables have
been marginalized out.

• In practice true independence is very rare:

– “butterfly in China” effect
– Conditional independence is much more common and useful

Conditional Independence
• Formal Definition:

– 2 random variables A and B are conditionally independent given C iff:
 P(a, b|c) = P(a|c) P(b|c), for all values a, b, c

• Informal Definition:
– 2 random variables A and B are conditionally independent given C iff:
 P(a|b, c) = P(a|c) OR P(b|a, c) = P(b|c), for all values a, b, c
– P(a|b, c) = P(a|c) tells us that learning about b, given that we already know c,

provides no change in our probability for a, and thus b contains no
information about a beyond what c provides.

• Naïve Bayes Model:
– Often a single variable can directly influence a number of other variables, all

of which are conditionally independent, given the single variable.
– E.g., k different symptom variables X1, X2, … Xk, and C = disease, reducing to:
 P(X1, X2,…. XK | C) = P(C) Π P(Xi | C)

Examples of Conditional Independence
• H=Heat, S=Smoke, F=Fire

– P(H, S | F) = P(H | F) P(S | F)
– P(S | F, S) = P(S | F)
– If we know there is/is not a fire, observing heat tells us no more

information about smoke

• F=Fever, R=RedSpots, M=Measles
– P(F, R | M) = P(F | M) P(R | M)
– P(R | M, F) = P(R | M)
– If we know we do/don’t have measles, observing fever tells us no

more information about red spots

• C=SharpClaws, F=SharpFangs, S=Species
– P(C, F | S) = P(C | S) P(F | S)
– P(F | S, C) = P(F | S)
– If we know the species, observing sharp claws tells us no more

information about sharp fangs

Review Bayesian Networks
Chapter 14.1-5

• Basic concepts and vocabulary of Bayesian networks.
– Nodes represent random variables.
– Directed arcs represent (informally) direct influences.
– Conditional probability tables, P(Xi | Parents(Xi)).

• Given a Bayesian network:

– Write down the full joint distribution it represents.

• Given a full joint distribution in factored form:
– Draw the Bayesian network that represents it.

• Given a variable ordering and background assertions of conditional

independence among the variables:
– Write down the factored form of the full joint distribution, as simplified by the

conditional independence assertions.
• Use the network to find answers to probability questions about it.

Bayesian Networks
• Represent dependence/independence via a directed graph

– Nodes = random variables
– Edges = direct dependence

• Structure of the graph Conditional independence

• Recall the chain rule of repeated conditioning:

• Requires that graph is acyclic (no directed cycles)
• 2 components to a Bayesian network

– The graph structure (conditional independence assumptions)
– The numerical probabilities (of each variable given its parents)

The full joint distribution The graph-structured approximation

• A Bayesian network specifies a joint distribution in a structured form:

• Dependence/independence represented via a directed graph:

− Node = random variable
− Directed Edge = conditional dependence
− Absence of Edge = conditional independence

•Allows concise view of joint distribution relationships:

− Graph nodes and edges show conditional relationships between variables.
− Tables provide probability data.

Bayesian Network

A B

C

p(A,B,C) = p(C|A,B)p(A|B)p(B)
 = p(C|A,B)p(A)p(B)

Full factorization

After applying
conditional
independence
from the graph

Examples of 3-way Bayesian Networks

A B

C

Independent Causes:
p(A,B,C) = p(C|A,B)p(A)p(B)

“Explaining away” effect:
Given C, observing A makes B less likely
e.g., earthquake/burglary/alarm example

A and B are (marginally) independent
but become dependent once C is known

You heard alarm, and observe Earthquake
…. It explains away burglary

Nodes: Random Variables
 A, B, C
Edges: P(Xi | Parents) Directed edge from parent nodes to Xi
 A C
 B C

Independent Causes
A Earthquake
B Burglary
C Alarm

Examples of 3-way Bayesian Networks

A C B Marginal Independence:
p(A,B,C) = p(A) p(B) p(C)

Nodes: Random Variables
 A, B, C
Edges: P(Xi | Parents) Directed edge from parent nodes to Xi
 No Edge!

Extended example of 3-way Bayesian Networks

A

C B

Conditionally independent effects:
p(A,B,C) = p(B|A)p(C|A)p(A)

B and C are conditionally independent
Given A

“Where there’s Smoke, there’s Fire.”

If we see Smoke, we can infer Fire.

If we see Smoke, observing Heat tells
us very little additional information.

Common Cause
A : Fire
B: Heat
C: Smoke

Examples of 3-way Bayesian Networks

A C B

Markov dependence:
p(A,B,C) = p(C|B) p(B|A)p(A)

A affects B and B affects C
Given B, A and C are independent

e.g.
If it rains today, it will rain tomorrow with 90%

On Wed morning…
If you know it rained yesterday,
it doesn’t matter whether it rained on Mon

Nodes: Random Variables
 A, B, C
Edges: P(Xi | Parents) Directed edge from parent nodes to Xi
 A B
 B C

Markov Dependence
A Rain on Mon
B Ran on Tue
C Rain on Wed

Naïve Bayes Model (section 20.2.2 R&N

3rd ed.)

X1 X2 X3

C

Xn

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about
computing the probability of a class from input attributes of an example.

Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally
equivalent expression that involves only P(C) and P(X1,…Xn | C).
Then assume that feature values are conditionally independent given class,
which allows us to turn P(X1,…Xn | C) into Πi P(Xi | C).

We estimate P(C) easily from the frequency with which each class appears
within our training data, and we estimate P(Xi | C) easily from the frequency
with which each Xi appears in each class C within our training data.

Naïve Bayes Model (section 20.2.2 R&N

3rd ed.)

X1 X2 X3

C

Xn

Bayes Rule: P(C | X1,…Xn) is proportional to P (C) Πi P(Xi | C)
[note: denominator P(X1,…Xn) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C

• choose the class value ci with the highest P(ci | x1,…, xn)
• simple to implement, often works very well
• e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(Xi | C) can easily be estimated from labeled date

• Problem: Need to avoid zeroes, e.g., from limited training data
• Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Naïve Bayes Model (2)
 P(C | X1,…Xn) = α P (C) Π i P(Xi | C)

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

P(C = cj) ≈ #(Examples with class label C = cj) / #(Examples)

P(Xi = xik | C = cj)
 ≈ #(Examples with attribute value Xi = xik and class label C = cj)
 / #(Examples with class label C = cj)

Usually easiest to work with logs
 log [P(C | X1,…Xn)]
 = log α + log P (C) + Σ log P(Xi | C)

DANGER: What if ZERO examples with value Xi = xik and class label C = cj ?
An unseen example with value Xi = xik will NEVER predict class label C = cj !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Bigger Example
• Consider the following 5 binary variables:

– B = a burglary occurs at your house
– E = an earthquake occurs at your house
– A = the alarm goes off
– J = John calls to report the alarm
– M = Mary calls to report the alarm

• Sample Query: What is P(B|M, J) ?
• Using full joint distribution to answer this question requires

– 25 - 1= 31 parameters

• Can we use prior domain knowledge to come up with a
Bayesian network that requires fewer probabilities?

Constructing a Bayesian Network: Step 1
• Order the variables in terms of influence (may be a partial order)

 e.g., {E, B} -> {A} -> {J, M}

• Now, apply the chain rule, and simplify based on assumptions

• P(J, M, A, E, B) = P(J, M | A, E, B) P(A| E, B) P(E, B)

 ≈ P(J, M | A) P(A| E, B) P(E) P(B)

 ≈ P(J | A) P(M | A) P(A| E, B) P(E) P(B)

 These conditional independence assumptions are reflected in the graph

structure of the Bayesian network

Generally, order variables to reflect the assumed causal relationships.

Constructing this Bayesian Network: Step 2

• P(J, M, A, E, B) =
 P(J | A) P(M | A) P(A | E, B) P(E) P(B)

• There are 3 conditional probability tables (CPDs) to be determined:
 P(J | A), P(M | A), P(A | E, B)
– Requiring 2 + 2 + 4 = 8 probabilities

• And 2 marginal probabilities P(E), P(B) -> 2 more probabilities

• Where do these probabilities come from?

– Expert knowledge
– From data (relative frequency estimates)
– Or a combination of both - see discussion in Section 20.1 and 20.2

(optional)

Parents in the graph ⇔
conditioning variables
(RHS)

The Resulting Bayesian Network

The Bayesian Network From a
Different Variable Ordering

P(J, M, A, E, B) = P(E | A, B) P(B | A) P(A | M, J) P(J | M) P(M)
Generally, order variables so that resulting graph reflects assumed causal relationships.

Parents in the graph ⇔
conditioning variables
(RHS)

Example of Answering a Simple Query

• What is P(¬j, m, a, ¬e, b) = P(J = false ∧ M=true ∧ A=true ∧ E=false ∧ B=true)

P(J, M, A, E, B) ≈ P(J | A) P(M | A) P(A| E, B) P(E) P(B) ; by conditional independence

P(¬j, m, a, ¬e, b) ≈ P(¬j | a) P(m | a) P(a| ¬e, b) P(¬e) P(b)
 = 0.10 x 0.70 x 0.94 x 0.998 x 0.001 ≈ .0000657

Earthquake Burglary

Alarm

John Mary

B E P(A|B,E)

1 1 0.95

1 0 0.94

0 1 0.29

0 0 0.001

P(B)

0.001

P(E)

0.002

A P(J|A)

1 0.90

0 0.05
A P(M|A)

1 0.70

0 0.01

Inference in Bayesian Networks

• X = { X1, X2, …, Xk } = query variables of interest
• E = { E1, …, El } = evidence variables that are observed
• Y = { Y1, …, Ym } = hidden variables (nonevidence, nonquery)

• What is the posterior distribution of X, given E?
– P(X | e) = α Σ y P(X, y, e)

• What is the most likely assignment of values to X, given E?
– argmax x P(x | e) = argmax x Σ y P(x, y, e)

Normalizing constant α = Σx Σ y P(X, y, e)

Given a graph, can we “read off”
conditional independencies?

The “Markov Blanket” of X
(the gray area in the figure)

X is conditionally independent of
everything else, GIVEN the
values of:
 * X’s parents
 * X’s children
 * X’s children’s parents

X is conditionally independent of
its non-descendants, GIVEN the
values of its parents.

D-Separation
• Prove sets X,Y independent given Z?
• Check all undirected paths from X to Y
• A path is “inactive” if it passes through:

(1) A “chain” with an observed variable

(2) A “split” with an observed variable

(3) A “vee” with only unobserved
 variables below it

• If all paths are inactive, conditionally independent!

X
Y V

X Y V

X Y
V

Summary

• Bayesian networks represent a joint distribution using a graph

• The graph encodes a set of conditional independence assumptions

• Answering queries (or inference or reasoning) in a Bayesian network
amounts to computation of appropriate conditional probabilities

• Probabilistic inference is intractable in the general case
– Can be done in linear time for certain classes of Bayesian networks (polytrees:

at most one directed path between any two nodes)
– Usually faster and easier than manipulating the full joint distribution

Review Intro Machine Learning
Chapter 18.1-18.4

• Understand Attributes, Target Variable, Error (loss) function,
Classification & Regression, Hypothesis (Predictor) function

• What is Supervised Learning?
• Decision Tree Algorithm
• Entropy & Information Gain
• Tradeoff between train and test with model complexity
• Cross validation

• Use supervised learning – training data is given
with correct output

• We write program to reproduce this output with
new test data

• Eg : face detection
• Classification : face detection, spam email
• Regression : Netflix guesses how much you will

rate the movie

Supervised Learning

Classification Graph Regression Graph

Terminology

• Attributes
– Also known as features, variables, independent

variables, covariates

• Target Variable
– Also known as goal predicate, dependent variable, …

• Classification
– Also known as discrimination, supervised

classification, …

• Error function
– Also known as objective function, loss function, …

Inductive or Supervised learning
• Let x = input vector of attributes (feature vectors)

• Let f(x) = target label

– The implicit mapping from x to f(x) is unknown to us
– We only have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f(x)

• Our hypothesis function is h(x, θ)
• h(x, θ) ≈ f(x) for all training data points x
• θ are the parameters of our predictor function h

• Examples:

– h(x, θ) = sign(θ1x1 + θ 2x2+ θ 3) (perceptron)
– h(x, θ) = θ0 + θ1x1 + θ2x2 (regression)
– ℎ𝑘(𝑥) = (𝑥1 ∧ 𝑥2) ∨ (𝑥3 ∧ ¬𝑥4)

Empirical Error Functions
• E(h) = Σx distance[h(x, θ) , f(x)]
Sum is over all training pairs in the training data D

Examples:
distance = squared error if h and f are real-valued

(regression)
distance = delta-function if h and f are categorical

(classification)

In learning, we get to choose

 1. what class of functions h(..) we want to learn
 – potentially a huge space! (“hypothesis space”)

 2. what error function/distance we want to use
 - should be chosen to reflect real “loss” in problem
 - but often chosen for mathematical/algorithmic
 convenience

Decision Tree Representations
•Decision trees are fully expressive

–Can represent any Boolean function (in DNF)
–Every path in the tree could represent 1 row in the truth table
–Might yield an exponentially large tree

•Truth table is of size 2d, where d is the number of attributes

A xor B = (¬ A ∧ B) ∨ (A ∧ ¬ B) in
DNF

Decision Tree Representations

• Decision trees are DNF representations

– often used in practice often result in compact approximate
representations for complex functions

– E.g., consider a truth table where most of the variables are irrelevant to the
function

– Simple DNF formulae can be easily represented

• E.g., 𝑓 = (𝐴 ∧ 𝐵) ∨ (¬𝐴 ∧ 𝐷)
• DNF = disjunction of conjunctions

• Trees can be very inefficient for certain types of functions

– Parity function: 1 only if an even number of 1’s in the input vector
•Trees are very inefficient at representing such functions

– Majority function: 1 if more than ½ the inputs are 1’s
•Also inefficient

Pseudocode for Decision tree learning

Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

• Patrons? is a better choice

– How can we quantify this?
– One approach would be to use the classification error E directly (greedily)

• Empirically it is found that this works poorly
– Much better is to use information gain (next slides)
– Other metrics are also used, e.g., Gini impurity, variance reduction

– Often very similar results to information gain in practice

Entropy and Information
• “Entropy” is a measure of randomness
 = amount of disorder

https://www.youtube.com/watch?v=ZsY4WcQOrfk

Low
Entropy

High
Entropy

Entropy, H(p), with only 2 outcomes

Consider 2 class problem:
 p = probability of class #1,
 1 – p = probability of class #2

In binary case:
 H(p) = − p log p − (1−p) log (1−p)

H(p)

0.5 1 0

1

p

high entropy,
high disorder,
high
uncertainty

Low entropy, low disorder, low
uncertainty

Entropy and Information

• Entropy H(X) = E[log 1/P(X)] = ∑ x∈X P(x) log 1/P(x)
 = −∑ x∈X P(x) log P(x)

– Log base two, units of entropy are “bits”
– If only two outcomes: H(p) = − p log(p) − (1−p) log(1−p)

• Examples:

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 +
 .25 log 4 + .25 log 4
 = log 4 = 2 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4
 = 0.8133 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1
 = 0 bits

Max entropy for 4 outcomes Min entropy

Information Gain

• H(P) = current entropy of class distribution P
at a particular node,

 before further partitioning the data

• H(P | A) = conditional entropy given attribute
A

 = weighted average entropy of conditional
class distribution,
 after partitioning the data according to
the values in A

Choosing an attribute

IG(Patrons) = 0.541 bits IG(Type) = 0 bits

Example of Test Performance

Restaurant problem
 - simulate 100 data sets of different sizes
 - train on this data, and assess performance on an independent test set
 - learning curve = plotting accuracy as a function of training set size
 - typical “diminishing returns” effect (some nice theory to explain this)

Overfitting and Underfitting

X

Y

A Complex Model

X

Y

Y = high-order polynomial in X

A Much Simpler Model

X

Y

Y = a X + b + noise

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

Overfitting Underfitting

Too-Simple Models Too-Complex Models

Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each
model on the
“training data”

and then test
each model’s
accuracy on
the validation data

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

Validation
Data

1st partition 2nd partition

3rd partition 4th partition 5th partition

 The k-fold Cross-Validation Method

• Why just choose one particular 90/10 “split” of the data?
– In principle we could do this multiple times

• “k-fold Cross-Validation” (e.g., k=10)
– randomly partition our full data set into k disjoint subsets (each

roughly of size n/k, n = total number of training data points)
•for i = 1:10 (here k = 10)

–train on 90% of data,
–Acc(i) = accuracy on other 10%

•end

•Cross-Validation-Accuracy = 1/k Σi Acc(i)
– choose the method with the highest cross-validation accuracy
– common values for k are 5 and 10
– Can also do “leave-one-out” where k = n

You will be expected to know

 Understand Attributes, Error function, Classification,
 Regression, Hypothesis (Predictor function)

 What is Supervised Learning?

 Decision Tree Algorithm

 Entropy

 Information Gain

 Tradeoff between train and test with model complexity

 Cross validation

Final Exam Review
• Propositional Logic B: R&N Chap 7.1-7.5

• Predicate Logic, Knowledge Representation:

R&N Chap 8.1-8.5, 9.1-9.2

• Probability: R&N Chap 13

• Bayesian Networks: R&N Chap 14.1-14.5

• Intro Machine Learning: R&N Chap 18.1-18.4

	Introduction to �Artificial Intelligence
	Final Exam Review
	Review Propositional Logic�Chapter 7.1-7.5; Optional 7.6-7.8
	Review: Schematic for Follows, Entails, and Derives
	Recap propositional logic: Validity and satisfiability
	Inference Procedures
	Inference by Resolution
	Example: Conversion to CNF
	Example: Conversion to CNF
	Resolution = Efficient Implication
	Resolution Examples
	More Resolution Examples
	Only Resolve ONE Literal Pair!�If more than one pair, result always = TRUE.�Useless!! Always simplifies to TRUE!!
	Resolution Algorithm
	Resolution example�Resulting Knowledge Base stated in CNF
	Resolution example�A Resolution proof ending in ()
	Resolution example
	Detailed Resolution Proof Example
	Propositional Logic --- Summary
	Review First-Order Logic�Chapter 8.1-8.5, 9.1-9.2, 9.5.1-9.5.5
	Syntax of FOL: Basic elements
	Syntax of FOL: Basic syntax elements are symbols
	Syntax of FOL: Terms
	Syntax of FOL: Atomic Sentences
	Syntax of FOL:�Connectives & Complex Sentences
	Syntax of FOL: Variables
	Syntax of FOL: Logical Quantifiers
	Universal Quantification
	Existential Quantification
	Combining Quantifiers --- Order (Scope)
	De Morgan’s Law for Quantifiers
	Slide Number 34
	Semantics: Interpretation
	Semantics: Models and Definitions
	Conversion to CNF
	Conversion to CNF contd.
	Unification
	Unification examples
	Unification examples
	Example knowledge base
	Example knowledge base (Horn clauses)
	Resolution proof:
	Forward chaining proof (Horn clauses)
	Backward chaining example (Horn clauses)
	Knowledge engineering in FOL
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	Review Probability�Chapter 13
	Syntax
	Probability
	Conditional Probability
	Concepts of Probability
	Basic Probability Relationships
	Summary of Probability Rules
	Full Joint Distribution
	Computing with Probabilities: Law of Total Probability
	Computing with Probabilities:�The Chain Rule or Factoring
	Independence
	Conditional Independence
	Examples of Conditional Independence
	Review Bayesian Networks�Chapter 14.1-5
	Bayesian Networks
	Bayesian Network
	Examples of 3-way Bayesian Networks
	Examples of 3-way Bayesian Networks
	Extended example of 3-way Bayesian Networks
	Examples of 3-way Bayesian Networks
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (2)
	Bigger Example
	Constructing a Bayesian Network: Step 1
	Constructing this Bayesian Network: Step 2
	The Resulting Bayesian Network
	The Bayesian Network From a Different Variable Ordering
	Example of Answering a Simple Query
	Inference in Bayesian Networks
	Given a graph, can we “read off” conditional independencies?
	D-Separation
	Summary
	Review Intro Machine Learning�Chapter 18.1-18.4
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Decision Tree Representations
	Slide Number 97
	Pseudocode for Decision tree learning
	Slide Number 99
	Entropy and Information
	Slide Number 101
	Entropy and Information
	Information Gain
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Final Exam Review

