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 Read Beforehand: All assigned reading so far 



Midterm Review 

• Agents: R&N Chap 2.1-2.3 
• State Space Search: R&N Chap 3.1-3.7 
• Local Search: R&N Chap 4.1-4.2 
• Adversarial (Game) Search: R&N Chap 5.1-5.4 
• Constraint Satisfaction: R&N Chap 6.1-6.4 

(except 6.3.3) 
• Propositional Logic A: R&N Chap 7.1-7.5 

 
 
 



Review Agents 
Chapter 2.1-2.3 

• Agent definition (2.1) 
 

• Rational Agent definition (2.2) 
– Performance measure 

 

• Task evironment definition (2.3) 
– PEAS acronym 
– Properties of task environments 



Agents 
• An agent is anything that can be viewed as 

perceiving its environment through sensors and 
acting upon that environment through actuators 

 
• Human agent:  

– Sensors: eyes, ears, …  
– Actuators: hands, legs, mouth… 

 
• Robotic agent 

– Sensors: cameras, range finders, … 
– Actuators: motors 



Agents and environments 

• Percept: agent’s perceptual inputs at an 
instant 

• The agent function maps from percept 
sequences to actions: [f: P*  A] 

• The agent program runs on the physical 
architecture to produce f 

• agent = architecture + program 



• Rational Agent: For each possible percept sequence, a 
rational agent should select an action that is expected to 
maximize its performance measure, based on the 
evidence provided by the percept sequence and 
whatever built-in knowledge the agent has. 

 
• Performance measure: An objective criterion for success 

of an agent's behavior    (“cost”, “reward”, “utility”) 
 

• E.g., performance measure of a vacuum-cleaner agent 
could be amount of dirt cleaned up, amount of time 
taken, amount of electricity consumed, amount of noise 
generated, etc. 

Rational agents 



Task Environment 

• Before we design an intelligent agent, we 
must specify its “task environment”: 

   
   PEAS: 
 
   Performance measure 
   Environment 
   Actuators 
   Sensors 
 



Environment types 
• Fully observable (vs. partially observable): An agent's 

sensors give it access to the complete state of the 
environment at each point in time. 
 

• Deterministic (vs. stochastic): The next state of the 
environment is completely determined by the current state 
and the action executed by the agent. (If the environment 
is deterministic except for the actions of other agents, then 
the environment is strategic) 
 

• Episodic (vs. sequential): An agent’s action is divided into 
atomic episodes. Decisions do not depend on previous 
decisions/actions. 
 

• Known (vs. unknown):  An environment is considered to 
be "known" if the agent understands the laws that govern 
the environment's behavior. 



Environment types 
• Static (vs. dynamic): The environment is unchanged while 

an agent is deliberating. (The environment is semidynamic 
if the environment itself does not change with the passage 
of time but the agent's performance score does) 
 

• Discrete (vs. continuous): A limited number of distinct, 
clearly defined percepts and actions. 
– How do we represent or abstract or model the world? 

 
• Single agent (vs. multi-agent): An agent operating by itself 

in an environment. Does the other agent interfere with my 
performance measure? 



Review State Space Search 
Chapter 3 

• Problem Formulation (3.1, 3.3) 
• Blind (Uninformed) Search (3.4) 

• Depth-First, Breadth-First, Iterative Deepening 
• Uniform-Cost, Bidirectional (if applicable) 
• Time? Space? Complete? Optimal? 

• Heuristic Search (3.5) 
• A*, Greedy-Best-First 



State-Space Problem Formulation 
A problem is defined by five items: 
 
   (1) initial state e.g., "at Arad“ 
 
   (2) actions Actions(s) = set of actions avail. in state s 
 
   (3) transition model Results(s,a) = state that results from action a in state s  
   Alt: successor function S(x) = set of action–state pairs  

– e.g., S(Arad) = {<Arad  Zerind, Zerind>, … } 
 

    (4) goal test, (or goal state) 
    e.g., x = "at Bucharest”, Checkmate(x) 

 
    (5) path cost (additive) 

– e.g., sum of distances, number of actions executed, etc. 
– c(x,a,y) is the step cost, assumed to be ≥ 0 (and often, assumed to be ≥ ε > 0) 

 
    A solution is a sequence of actions leading from the initial state to a goal state 
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Vacuum world state space graph 

• states? discrete: dirt and robot locations  
• initial state? any 
• actions? Left, Right, Suck 
• transition model? as shown on graph 
• goal test? no dirt at all locations 
• path cost? 1 per action 
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Implementation: states vs. nodes 
• A state is a (representation of) a physical configuration 

 
• A node is a data structure constituting part of a search tree 
• A node contains info such as: 

– state, parent node, action, path cost g(x), depth, etc. 
 
 
 
 
 
 
 

• The Expand function creates new nodes, filling in the various 
fields using the Actions(S) and Result(S,A)functions 
associated with the problem. 
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Tree search vs. Graph search 
Review Fig. 3.7, p. 77 

• Failure to detect repeated states can turn a 
linear problem into an exponential one! 

• Test is often implemented as a hash table. 



15 

Tree search vs. Graph search 
Review Fig. 3.7, p. 77 

• What R&N call Tree Search vs. Graph Search 
– (And we follow R&N exactly in this class) 
– Has NOTHING to do with searching trees vs. graphs 

• Tree Search = do NOT remember visited nodes 
– Exponentially slower search, but memory efficient 

• Graph Search = DO remember visited nodes 
– Exponentially faster search, but memory blow-up 

• CLASSIC Comp Sci TIME-SPACE TRADE-OFF 



Solutions to Repeated States 

• Graph search 
– never generate a state generated before 

• must keep track of all possible states (uses a lot of memory) 
• e.g., 8-puzzle problem, we have 9! = 362,880 states 
• approximation for DFS/DLS: only avoid states in its (limited) memory: 

avoid infinite loops by checking path back to root. 

– “visited?” test usually implemented as a hash table 
16 
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Example of a Search Tree 

faster, but memory inefficient 



Checking for identical nodes (1) 
Check if a node is already in fringe-frontier 

• It is “easy” to check if a node is already in the 
fringe/frontier (recall fringe = frontier = open = queue) 
– Keep a hash table holding all fringe/frontier nodes 

• Hash size is same O(.) as priority queue, so hash does not increase overall 
space O(.) 

• Hash time is O(1), so hash does not increase overall time O(.) 

– When a node is expanded, remove it from hash table (it is 
no longer in the fringe/frontier) 

– For each resulting child of the expanded node: 
• If child is not in hash table, add it to queue (fringe) and hash table 
• Else if an old lower- or equal-cost node is in hash, discard the new 

higher- or equal-cost child 
• Else remove and discard the old higher-cost node from queue and 

hash, and add the new lower-cost child to queue and hash 
 

 
Always do this for tree or graph search in BFS, UCS, GBFS, and A* 



Checking for identical nodes (2) 
Check if a node is in explored/expanded 

• It is memory-intensive [ O(bd) or O(bm) ]to  check if a 
node is in explored/expanded (recall explored = 
expanded = closed) 
– Keep a hash table holding all explored/expanded nodes 

(hash table may be HUGE!!) 
• When a node is expanded, add it to hash (explored) 
• For each resulting child of the expanded node: 

– If child is not in hash table or in fringe/frontier, then add it 
to the queue (fringe/frontier) and process normally (BFS 
normal processing differs from UCS normal processing, but 
the ideas behind checking a node for being in 
explored/expanded are the same). 

– Else discard any redundant node. 
 Always do this for graph search 



function BRE ADT H-FIRST-SEARCH( problem ) returns a solution, or failure 
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0 if 
problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node ) frontier ← 
a FIFO queue with node as the only element 
explored ← an empty set 
loop do 

if EMPTY?( frontier ) then return failure 
node ← POP( frontier )  /* chooses the shallowest node in frontier */ 
add node .STAT E to explored 
for each action in problem .ACT IONS(node .STAT E) do 

child ← CHILD-NODE( problem , node , action ) 
if child .STAT E is not in explored or frontier then 

if problem .GOAL -TEST(child .STAT E) then return SOL UT ION(child ) 
frontier ← INSE RT(child , frontier ) 

 
Figure 3.11     Breadth-first search on a graph. 

Breadth-first graph search (R&N Fig. 3.11) 

Goal test before push 

These three statements change tree search to graph search. 

Avoid 
redundant 
frontier nodes 



Properties of breadth-first search 

• Complete? Yes, it always reaches a goal (if b is finite) 
• Time?   1 + b + b2 + b3 + … + bd = O(bd) 
             (this is the number of nodes we generate) 
• Space?  O(bd)  
  (keeps every node in memory, either in frontier or on a path to frontier). 
• Optimal?  No, for general cost functions. 
   Yes, if cost is a non-decreasing function only of depth. 

– With f(d) ≥ f(d-1), e.g., step-cost = constant: 
• All optimal goal nodes occur on the same level 
• Optimal goals are always shallower than non-optimal goals 
• An optimal goal will be found before any non-optimal goal 

 
• Usually Space is the bigger problem (more than time) 



function UNIFORM-COST-SEARCH( problem ) returns a solution, or failure 
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0  
frontier ← a priority queue ordered by PAT H-COST, with node as the only element 
explored ← an empty set 
loop do 

if EMPTY?( frontier ) then return failure 
node ← POP( frontier )  /* chooses the lowest-cost node in frontier */ 
 if problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node )  
add node .STAT E to explored 
for each action in problem .ACT IONS(node .STAT E) do 

child ← CHILD-NODE( problem , node , action ) 
if child .STAT E is not in explored or frontier then 

frontier ← INSE RT(child , frontier ) 
else if child .STAT E is in frontier with higher PAT H-COST then 

replace that frontier node with child 
 

Figure 3.14     Uniform-cost search on a graph.  The algorithm is identical to the general 
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an 
extra check in case a shorter path to a frontier state is discovered. The data structure for frontier 
needs to support efficient membership testing, so it should combine the capabilities of a priority 
queue and a hash table. 

Uniform cost search (R&N Fig. 3.14) 
[A* is identical except queue sort = f(n)] 

Goal test after pop 

Avoid 
redundant 
frontier nodes 

These three statements change tree search to graph search. 

Avoid 
higher-cost 
frontier nodes 



Uniform-cost search 
Implementation: Frontier = queue ordered by path cost. 
Equivalent to breadth-first if all step costs all equal. 
 
•Complete? Yes, if b is finite and step cost ≥ ε > 0. 
                     (otherwise it can get stuck in infinite regression) 

 

•Time? # of nodes with path cost ≤ cost of optimal solution.  
  O(b1+C*/ε) ≈ O(bd+1) 

 

•Space? # of nodes with path cost ≤ cost of optimal solution.    
  O(b1+C*/ε) ≈ O(bd+1). 

 

•Optimal? Yes, for step cost ≥ ε > 0. 



Depth-limited search & IDS (R&N Fig. 3.17-18) 

Goal test in 
recursive call, 
one-at-a-time 

At depth = 0, IDS only goal-tests 
the start node. The start node is 
is not expanded at depth = 0. 



Properties of iterative deepening search 

• Complete?  Yes 
 

• Time?  O(bd) 
 

• Space? O(bd) 
 

• Optimal?  No, for general cost functions. 
  Yes, if cost is a non-decreasing function only of 

depth. 
 
Generally the preferred uninformed search strategy. 

 



Depth-First Search (R&N Section 3.4.3) 

• Your textbook is ambiguous about DFS. 
– The second paragraph of R&N 3.4.3 states that DFS is an 

instance of Fig. 3.7 using a LIFO queue. Search behavior 
may differ depending on how the LIFO queue is 
implemented (as separate pushes, or one concatenation). 

– The third paragraph of R&N 3.4.3 says that an alternative 
implementation of DFS is a recursive algorithm that calls 
itself on each of its children, as in the Depth-Limited 
Search of Fig. 3.17 (above). 

• For quizzes and exams, we will follow Fig. 3.17. 
 



Properties of depth-first search 

• Complete? No: fails in loops/infinite-depth spaces 
– Can modify to avoid loops/repeated states along path 

• check if current nodes occurred before on path to root  
– Can use graph search (remember all nodes ever seen) 

• problem with graph search: space is exponential, not linear 
– Still fails in infinite-depth spaces (may miss goal entirely) 

 

• Time? O(bm) with m =maximum depth of space 
– Terrible if m is much larger than d 
–  If solutions are dense, may be much faster than BFS 

 

• Space? O(bm), i.e., linear space! 
– Remember a single path + expanded unexplored nodes 

 
• Optimal?  No: It may find a non-optimal goal first 

A 

B C 



Bidirectional Search 
• Idea 

– simultaneously search forward from S and backwards from G 
– stop when both “meet in the middle” 
– need to keep track of the intersection of 2 open sets of nodes 

 
• What does searching backwards from G mean 

– need a way to specify the predecessors of G 
• this can be difficult,  
• e.g., predecessors of checkmate in chess? 

– what if there are multiple goal states? 
– what if there is only a goal test, no explicit list? 

 
• Complexity 

– time complexity is best: O(2 b(d/2)) = O(b (d/2)) 
–  memory complexity is the same as time complexity 



Bi-Directional Search 



Blind Search Strategies (3.4) 

• Depth-first: Add successors to front of queue 
• Breadth-first: Add successors to back of queue 
• Uniform-cost: Sort queue by path cost g(n) 
• Depth-limited: Depth-first, cut off at limit l 
• Iterated-deepening: Depth-limited, increasing l 
• Bidirectional: Breadth-first from goal, too. 

 

• Review “Example hand-simulated search” 
– Lecture on “Uninformed Search” 



Search strategy evaluation 
• A search strategy is defined by the order of node 

expansion 
 

• Strategies are evaluated along the following dimensions: 
– completeness: does it always find a solution if one exists? 
– time complexity: number of nodes generated 
– space complexity: maximum number of nodes in memory 
– optimality: does it always find a least-cost solution? 

 

• Time and space complexity are measured in terms of  
– b: maximum branching factor of the search tree 
– d: depth of the least-cost solution 
– m: maximum depth of the state space (may be ∞) 
– (UCS: C*: true cost to optimal goal; ε > 0: minimum step cost) 



Summary of algorithms 
Fig. 3.21, p. 91 

Generally the preferred  
uninformed search strategy 

Criterion Breadth-
First 

Uniform-
Cost 

Depth-
First 

Depth-
Limited 

Iterative 
Deepening 
DLS 

Bidirectional 
(if applicable) 

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d] 

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2) 

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2) 

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d] 

There are a number of footnotes, caveats, and assumptions. 
See Fig. 3.21, p. 91. 
[a] complete if b is finite 
[b] complete if step costs ≥ ε > 0 
[c] optimal if step costs are all identical 
     (also if path cost non-decreasing function of depth only) 
[d] if both directions use breadth-first search 
     (also if both directions use uniform-cost search with step costs ≥ ε > 0) 



Summary 
• Generate the search space by applying actions to the 

initial state and all further resulting states. 

• Problem: initial state, actions, transition model, goal 
test, step/path cost 

• Solution: sequence of actions to goal 

• Tree-search (don’t remember visited nodes) vs. 
     Graph-search (do remember them) 

• Search strategy evaluation: b, d, m (UCS: C*, ε) 
– Complete? Time? Space? Optimal? 



Heuristic function (3.5) 
 Heuristic: 
 Definition: a commonsense rule (or set of rules) intended to 

increase the probability of solving some problem 
 “using rules of thumb to find answers” 

 
 Heuristic function h(n) 
 Estimate of (optimal) cost from n to goal 
 Defined using only the state of node n 
 h(n) = 0 if n is a goal node 
 Example: straight line distance from n to Bucharest 
Note that this is not the true state-space distance 
 It is an estimate – actual state-space distance can be higher 

 
 Provides problem-specific knowledge to the search algorithm 

 
 



Relationship of search algorithms 
• Notation: 

– g(n) = known cost so far to reach n 
– h(n) = estimated optimal cost from n to goal 
– h*(n) = true optimal cost from n to goal (unknown to agent) 
– f(n) = g(n)+h(n) = estimated optimal total cost through n 

 

• Uniform cost search: sort frontier by g(n) 
• Greedy best-first search: sort frontier by h(n) 
• A* search: sort frontier by f(n) = g(n) + h(n) 

– Optimal for admissible / consistent heuristics 
– Generally the preferred heuristic search framework 
– Memory-efficient versions of A* are available: RBFS, SMA* 



Greedy best-first search 
• h(n) = estimate of cost from n to goal 

– e.g., h(n) = straight-line distance from n to 
Bucharest 

 

• Greedy best-first search expands the node 
that appears to be closest to goal. 
– Sort queue by h(n) 

 

• Not an optimal search strategy 
– May perform well in practice 



Greedy best-first search example 



Greedy best-first search example 



Greedy best-first search example 



Greedy best-first search example 



Optimal Path 



Properties of greedy best-first search 

• Complete?  
– Tree version can get stuck in loops. 
– Graph version is complete in finite spaces. 

• Time? O(bm) 
– A good heuristic can give dramatic improvement 

• Space? O(bm) 
– Graph search keeps all nodes in memory 
– A good heuristic can give dramatic improvement 

• Optimal? No 
– E.g., Arad  Sibiu  Rimnicu Vilcea  Pitesti  Bucharest 

is shorter! 



A* search 

• Idea: avoid paths that are already expensive 
– Generally the preferred simple heuristic search 
– Optimal if heuristic is: 
 admissible (tree search)/consistent (graph search) 

• Evaluation function f(n) = g(n) + h(n) 
– g(n) = known path cost so far to node n. 
– h(n) = estimate of (optimal) cost to goal from node n. 
– f(n) = g(n)+h(n) 
      = estimate of total cost to goal through node n. 

• Priority queue sort function = f(n) 



A* tree search example 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next:  
• Children:  
• Expanded:  
• Frontier: Arad/366=0+366 

 



A* tree search example: 
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A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Arad/366=0+366 
• Children: Sibiu/393=140+253, Timisoara/447=118+329, 

Zerind/449=75+374 
• Expanded: Arad/366=0+366 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374 
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A* tree search example: 
Simulated queue.  City/f=g+h 

Sibiu/ 
393=140+253 

Timisoara/ 
447=118+329 

Zerind/ 
449=75+374 
 

Arad/ 
366=0+366 



A* tree search example 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Sibiu/393=140+253 
• Children: Arad/646=280+366, Fagaras/415=239+176, 

Oradea/671=291+380, RimnicuVilcea/413=220+193 
• Expanded: Arad/366=0+366, Sibiu/393=140+253 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374, Arad/646=280+366, 
Fagaras/415=239+176, Oradea/671=291+380, 
RimnicuVilcea/413=220+193 
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A* tree search example: 
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A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: RimnicuVilcea/413=220+193 
• Children: Craiova/526=366+160, Pitesti/417=317+100, 

Sibiu/553=300+253 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253 
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A* search example: 
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A* tree search example 
Note: The 
search below 
did not “back 
track.” Rather, 
both arms are 
being pursued 
in parallel on 
the queue. 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Fagaras/415=239+176  
• Children: Bucharest/450=450+0, Sibiu/591=338+253 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193, Fagaras/415=239+176 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253, Bucharest/450=450+0, Sibiu/591=338+253 
 
 
 
 
 



A* tree search example 
Note: The 
search below 
did not “back 
track.” Rather, 
both arms are 
being pursued 
in parallel on 
the queue. 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Pitesti/417=317+100  
• Children: Bucharest/418=418+0, Craiova/615=455+160, 

RimnicuVilcea/607=414+193 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193, Fagaras/415=239+176, 
Pitesti/417=317+100 

• Frontier: Arad/366=0+366, Sibiu/393=140+253, 
Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253, Bucharest/450=450+0, 
Sibiu/591=338+253, Bucharest/418=418+0, 
Craiova/615=455+160, RimnicuVilcea/607=414+193 
 
 
 
 
 
 



A* tree search example 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Bucharest/418=418+0  
• Children: None; goal test succeeds. 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193, Fagaras/415=239+176, 
Pitesti/417=317+100, Bucharest/418=418+0 

• Frontier: Arad/366=0+366, Sibiu/393=140+253, 
Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253, Bucharest/450=450+0, 
Sibiu/591=338+253, Bucharest/418=418+0, 
Craiova/615=455+160, RimnicuVilcea/607=414+193 
 
 
 
 
 
 

Note that 
the short 
expensive 
path stays 
on the 
queue. 
The long 
cheap 
path is 
found and 
returned. 



A* tree search example: 
Simulated queue.  City/f=g+h 

Sibiu/ 
393=140+253 

Timisoara/ 
447=118+329 

Zerind/ 
449=75+374 
 

Arad/ 
646=280+366 

Fagaras/ 
415=239+176 

Oradea/ 
671=291+380 

Craiova/ 
526=366+160 

Pitesti/ 
417=317+100 

Sibiu/ 
553=300+253 

RimnicuVilcea/ 
413=220+193 

Bucharest/ 
418=418+0 

… 
… 

Arad/ 
366=0+366 



A* tree search example: 
Simulated queue.  City/f=g+h 

Sibiu/ 
393=140+253 

Timisoara/ 
447=118+329 

Zerind/ 
449=75+374 
 

Arad/ 
646=280+366 

Fagaras/ 
415=239+176 

Oradea/ 
671=291+380 

Craiova/ 
526=366+160 

Pitesti/ 
417=317+100 

Sibiu/ 
553=300+253 

RimnicuVilcea/ 
413=220+193 

Bucharest/ 
418=418+0 … 

… 

Arad/ 
366=0+366 



Properties of A* 

• Complete? Yes 
 (unless there are infinitely many nodes with f ≤ f(G); 
 can’t happen if step-cost ≥ ε > 0) 
• Time/Space? Exponential O(bd) 
           except if:   
• Optimal? Yes 
 (with: Tree-Search, admissible heuristic; 
 Graph-Search, consistent heuristic) 
• Optimally Efficient? Yes 
 (no optimal algorithm with same heuristic is guaranteed to expand 

fewer nodes) 

* *| ( ) ( ) | (log ( ))h n h n O h n− ≤



Admissible heuristics 

• A heuristic h(n) is admissible if for every node n, 
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal 

state from n. 
• An admissible heuristic never overestimates the cost to 

reach the goal, i.e., it is optimistic 
• Example: hSLD(n) (never overestimates the actual road 

distance) 
• Theorem: If h(n) is admissible, A* using TREE-SEARCH is 

optimal 



Consistent heuristics 
(consistent => admissible) 

• A heuristic is consistent if for every node n, every successor n' of n 
generated by any action a,    
 

      h(n) ≤ c(n,a,n') + h(n') 
 

• If h is consistent, we have 
 

f(n’) = g(n’) + h(n’)                   (by def.) 
       = g(n) + c(n,a,n') + h(n’)    (g(n’)=g(n)+c(n.a.n’))  
       ≥ g(n) + h(n) = f(n)            (consistency) 
f(n’)   ≥ f(n) 
 
• i.e., f(n) is non-decreasing along any path. 

 
• Theorem:  
     If h(n) is consistent, A* using GRAPH-SEARCH is optimal 

It’s the triangle 
inequality ! 

keeps all checked nodes in 
memory to avoid repeated states 



Optimality of A* (proof) 
Tree Search, where h(n) is admissible 

• Suppose some suboptimal goal G2 has been generated and is in the 
frontier. Let n be an unexpanded node in the frontier such that n is on a 
shortest path to an optimal goal G. 
 
 
 

• f(G2)  = g(G2) since h(G2) = 0  
• f(G)   = g(G) since h(G) = 0  
• g(G2) > g(G)  since G2 is suboptimal  

• f(G2)  > f(G) from above, with h=0  
• h(n) ≤ h*(n)  since h is admissible (under-estimate) 
• g(n) + h(n) ≤ g(n) + h*(n)  from above 
• f(n)  ≤ f(G)  since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G) 
• f(n)  < f(G2) from above 

 

We want to prove: 
 f(n) < f(G2) 
(then A* will expand n before G2) 

R&N pp. 95-98 proves the optimality of A* 
graph search with a consistent heuristic 



Dominance 

• IF h2(n) ≥ h1(n) for all n 
 THEN h2 dominates h1  

– h2 is almost always better for search than h1 
– h2 guarantees to expand no more nodes than does h1 
– h2 almost always expands fewer nodes than does h1 
– Not useful unless both h1 & h2 are admissible/consistent 

 
• Typical 8-puzzle search costs 
 (average number of nodes expanded): 

– d=12 IDS = 3,644,035 nodes 
  A*(h1) = 227 nodes  
  A*(h2) = 73 nodes  

– d=24  IDS = too many nodes 
  A*(h1) = 39,135 nodes  
  A*(h2) = 1,641 nodes  



Review Local Search 
Chapter 4.1-4.2, 4.6; Optional 4.3-4.5 

• Problem Formulation (4.1) 
• Hill-climbing Search (4.1.1) 
• Simulated annealing search (4.1.2) 
• Local beam search (4.1.3) 
• Genetic algorithms  (4.1.4) 



Local search algorithms 
• In many optimization problems, the path to the goal is 

irrelevant; the goal state itself is the solution 
– Local  search: widely used for very big problems 
– Returns good but not optimal solutions 
– Usually very slow, but can yield good solutions if you  wait 

 

• State space = set of "complete" configurations 
• Find a complete configuration satisfying constraints 

– Examples: n-Queens, VLSI layout, airline flight schedules 
 

• Local search algorithms 
– Keep a single "current" state, or small set of states 
– Iteratively try to improve it / them 
– Very memory efficient 

• keeps only one or a few states 
• You control how much memory you use 



Random restart wrapper 

• We’ll use stochastic local search methods 
– Return different solution for each trial & initial state 

 

• Almost every trial hits difficulties (see sequel) 
– Most trials will not yield a good result (sad!) 

 

• Using many random restarts improves your chances 
– Many “shots at goal” may finally get a good one 

 

• Restart a random initial state, many times 
– Report the best result found across many trials 



Random restart wrapper 
best_found ← RandomState()   // initialize to something 
 
// now do repeated local search 
loop do 
    if (tired of doing it) 
        then return best_found 
    else 
        result ← LocalSearch( RandomState() ) 
        if ( Cost(result) < Cost(best_found) ) 
           // keep best result found so far 

            then best_found ← result 

Typically, “tired of doing it” means that some resource limit has been 
exceeded, e.g., number of iterations, wall clock time, CPU time, etc. 
It may also mean that result improvements are small and infrequent, 
e.g., less than 0.1% result improvement in the last week of run time. 

You, as 
algorithm 
designer, write 
the functions 
named in red. 



Tabu search wrapper 

• Add recently visited states to a tabu-list 
– Temporarily excluded from being visited again 
– Forces solver away from explored regions 
– Less likely to get stuck in local minima (hope, in principle) 

 
• Implemented as a hash table + FIFO queue 

– Unit time cost per step; constant memory cost 
– You control how much memory is used 

 
• RandomRestart( TabuSearch ( LocalSearch() ) ) 



Tabu search wrapper (inside random restart! ) 

best_found ← current_state ← RandomState()   // initialize 
loop do // now do local search 
    if (tired of doing it) then return best_found else 
        neighbor ← MakeNeighbor( current_state ) 
        if ( neighbor is in hash_table ) then discard neighbor 

  else push neighbor onto fifo, pop oldest_state 
                remove oldest_state from hash_table, insert neighbor 

  current_state ← neighbor; 
           if ( Cost(current_state ) < Cost(best_found) ) 
               then best_found ← current_state  
 

 FIFO QUEUE Oldest 
State 

New 
State 

 HASH TABLE 
State 

Present? 



Local search algorithms 

• Hill-climbing search 
– Gradient descent in continuous state spaces 
– Can use, e.g., Newton’s method to find roots 

• Simulated annealing search 
• Local beam search 
• Genetic algorithms 
• Linear Programming (for specialized problems) 



Local Search Difficulties 

• Problems: depending on state, can get stuck in local maxima 
– Many other problems also endanger your success!! 

 

These difficulties apply to ALL local search algorithms, and become MUCH 
more difficult as the search space increases to high dimensionality. 



Local Search Difficulties 

• Ridge problem: Every neighbor appears to be downhill 
– But the search space has an uphill!! (worse in high dimensions) 

Ridge: 
Fold a piece of 
paper and hold 
it tilted up at an 
unfavorable 
angle to every 
possible search 
space step. 
Every step 
leads downhill; 
but the ridge 
leads uphill. 

These difficulties apply to ALL local search algorithms, and become MUCH 
more difficult as the search space increases to high dimensionality. 



Hill-climbing search 

“…like trying to find the top of Mount Everest in a thick fog while 
suffering from amnesia”  
 

Equivalently: “if COST[neighbor] ≥ COST[current] then …” 

Equivalently:  
“…a lowest-cost successor…” 

You must shift effortlessly between maximizing value and minimizing cost 



Simulated annealing (Physics!) 

• Idea: escape local maxima by allowing some "bad" 
moves but gradually decrease their frequency 

•  
 

Improvement: Track the 
BestResultFoundSoFar. 
Here, this slide follows 
Fig. 4.5 of the textbook, 
which is simplified. 



Probability( accept worse successor ) 
•Decreases as temperature T decreases 
•Increases as |Δ E| decreases 
•Sometimes, step size also decreases with T 

 

Tem
perature 

e ∆E / T 
Temperature T 

High Low 

|∆E | 
High Medium Low 

Low High Medium 

(accept very bad moves early on; later, mainly accept “not very much worse”) 



Your “random restart 
wrapper” starts here. 

A 
Value=42 

B 
Value=41 

C 
Value=45 

D 
Value=44 

E 
Value=48 

F 
Value=47 

G  
Value=51 

Va
lu

e 

You want to get 
here.  HOW?? 

This is an illustrative cartoon… 

Arbitrary (Fictitious) Search Space Coordinate 

Goal: “ratchet up” a bumpy slope 
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale) 



C 
Value=45 
∆E(CB)=-4 
∆E(CD)=-1 

P(CB) ≈.018 
P(CD)≈.37 

B 
Value=41 
∆E(BA)=1 
∆E(BC)=4 
P(BA)=1 
P(BC)=1 

A 
Value=42 
∆E(AB)=-1 
P(AB) ≈.37 

D 
Value=44 
∆E(DC)=1 
∆E(DE)=4 
P(DC)=1 
P(DE)=1 

E 
Value=48 
∆E(ED)=-4 
∆E(EF)=-1 

P(ED) ≈.018 
P(EF)≈.37 

F 
Value=47 
∆E(FE)=1 
∆E(FG)=4 
P(FE)=1 
P(FG)=1 

G 
Value=51 
∆E(GF)=-4 

P(GF) ≈.018 

x -1 -4 

ex ≈.37 ≈.018 

From A you will accept a move to B with P(AB) ≈.37. 
From B you are equally likely to go to A or to C. 
From C you are ≈20X more likely to go to D than to B. 
From D you are equally likely to go to C or to E. 
From E you are ≈20X more likely to go to F than to D. 
From F you are equally likely to go to E or to G. 
Remember best point you ever found (G or neighbor?). This is an illustrative cartoon… 

Your “random 
restart wrapper” 
starts here. 

Goal: “ratchet up” a jagged slope 



Local beam search 

• Keep track of k states rather than just one 
 

• Start with k randomly generated states 
 

• At each iteration, all the successors of all k states are 
generated 

 

• If any one is a goal state, stop; else select the k best 
successors from the complete list and repeat. 

 

• Concentrates search effort in areas believed to be fruitful 
– May lose diversity as search progresses, resulting in wasted effort 



a1 b1 k1 … Create k random initial states 

… Generate their children 

a2 b2 k2 … Select the k best children 

… Repeat indefinitely… 

Is it better than simply running k searches?  
Maybe…?? 

Local beam search 



Genetic algorithms (Darwin!!) 
• A state = a string over a finite alphabet (an individual) 

– A successor state is generated by combining two parent states 
 

• Start with k randomly generated states (a population) 
 
• Fitness function (= our heuristic objective function). 

– Higher fitness values for better states. 
 

• Select individuals for next generation based on fitness 
– P(individual in next gen.) = individual fitness/total population fitness 

 
• Crossover fit parents to yield next generation (offspring) 

 
• Mutate the offspring randomly with some low probability 



Genetic algorithms 

 
 
 
 
 

 
• Fitness function (value): number of non-attacking pairs of 

queens (min = 0, max = 8 × 7/2 = 28) 
• 24/(24+23+20+11) = 31% 
• 23/(24+23+20+11) = 29%; etc. 



 
 
 
 

 
• Fitness function: #non-attacking queen pairs 

– min = 0, max = 8 × 7/2 = 28 

• Σ_i fitness_i = 24+23+20+11 = 78 
• P(child_1 in next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31% 
• P(child_2 in next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc 

fitness =  
#non-attacking 
queens 

probability of being  
in next generation = 
fitness/(Σ_i fitness_i) 

How to convert a 
fitness value into a 
probability of being in 
the next generation. 



Review Adversarial (Game) Search 
Chapter 5.1-5.4 

• Minimax Search with Perfect Decisions (5.2) 
– Impractical in most cases, but theoretical basis for analysis 

• Minimax Search with Cut-off (5.4) 
– Replace terminal leaf utility by heuristic evaluation 

function 
• Alpha-Beta Pruning (5.3) 

– The fact of the adversary leads to an advantage in search! 
• Practical Considerations (5.4) 

– Redundant path elimination, look-up tables, etc. 



Games as Search 
• Two players: MAX and MIN 
• MAX moves first and they take turns until the game is over 

– Winner gets reward, loser gets penalty. 
– “Zero sum” means the sum of the reward and the penalty is a constant. 

 
• Formal definition as a search problem: 

– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess. 
– Player(s): Defines which player has the move in a state. 
– Actions(s): Returns the set of legal moves in a state. 
– Result(s,a): Transition model defines the result of a move. 
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.) 
– Terminal-Test(s): Is the game finished?  True if finished, false otherwise. 
– Utility function(s,p): Gives numerical value of terminal state s for player p. 

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe. 
• E.g., win (+1), lose (0), and draw (1/2) in  chess. 

 

• MAX uses  search tree to determine “best” next move. 

 



An optimal procedure: 
The Min-Max method 

Will find the optimal strategy and best next move for Max: 
 
• 1. Generate the whole game tree, down to the leaves. 

 
• 2. Apply utility (payoff) function to each leaf. 

 
• 3.  Back-up values from leaves through branch nodes: 

– a Max node computes the Max of its child values 
– a Min node computes the Min of its child values 

 
• 4. At root: choose move leading to the child of highest value. 

 



Two-ply Game Tree 

MIN 

MAX 

3 12 8 2 4 6 14 5 2 

3 2 2 

3 The minimax decision 

Minimax maximizes the utility of the worst-case outcome for MAX 



Pseudocode for Minimax 
Algorithm 

function MINIMAX-DECISION(state) returns an action 
   inputs: state, current state in game 
return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a)) 

function MIN-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← +∞ 
   for a  in ACTIONS(state) do 
      v ← MIN(v,MAX-VALUE(Result(state,a))) 
   return v 

function MAX-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← −∞ 
   for a  in ACTIONS(state) do 
      v ← MAX(v,MIN-VALUE(Result(state,a))) 
   return v 



Properties of minimax 
• Complete?    

– Yes (if tree is finite). 
 

• Optimal?  
– Yes (against an optimal opponent). 
– Can it be beaten by an opponent playing sub-optimally? 

• No.  (Why not?) 
 

• Time complexity? 
– O(bm) 

 
• Space complexity? 

– O(bm)   (depth-first search, generate all actions at once) 
– O(m)   (backtracking search, generate actions one at a time) 

 





Static (Heuristic) Evaluation Functions 

• An Evaluation Function: 
– Estimates how good the current board configuration is for a player. 
– Typically, evaluate how good it is for the player, how good it is for 

the opponent, then subtract the opponent’s score from the 
player’s. 

– Othello: Number of white pieces - Number of black pieces 
– Chess:  Value of all white pieces - Value of all black pieces 
 

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1]. 
 
• If the board evaluation  is X for a player, it’s -X for the opponent 

– “Zero-sum game” 





General alpha-beta pruning 
• Consider a node n in the tree --- 

 
• If player has a better choice at: 

– Parent node of n 
– Or any choice point further 

up 
 

• Then n will never be reached in 
play. 
 

• Hence, when that much is 
known about n, it can be 
pruned. 



Alpha-beta Algorithm 
• Depth first search 

– only considers nodes along a single path from root at any time 
 

 α =  highest-value choice found at any choice point of path for MAX 
  (initially, α =  −infinity) 
 β = lowest-value choice found at any choice point of path for MIN 
   (initially, β =  +infinity) 
 
•  Pass current values of α and β down to child nodes during search. 
• Update values of α and β during search: 

– MAX updates α at MAX nodes 
– MIN updates β at MIN nodes 

•  Prune remaining branches at a node when α ≥ β 



Pseudocode for Alpha-Beta Algorithm 

function ALPHA-BETA-SEARCH(state) returns an action 
   inputs: state, current state in game 
   v←MAX-VALUE(state, - ∞ , +∞) 
   return the action in ACTIONS(state) with value v 

function MAX-VALUE(state,α , β) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← - ∞ 
   for a in ACTIONS(state) do 
      v ← MAX(v, MIN-VALUE(Result(s,a), α , β)) 
     if v ≥ β then return v 
     α ← MAX(α ,v) 
   return v 

(MIN-VALUE is defined analogously) 



When to Prune?  

• Prune whenever α ≥ β. 
 

– Prune below a Max node whose alpha value becomes greater than or 
equal to the beta value of its ancestors. 

• Max nodes update alpha based on children’s returned values. 
 

– Prune below a Min node whose beta value becomes less than or equal 
to the alpha value of its ancestors. 

• Min nodes update beta based on children’s returned values. 



α/β Pruning vs. Returned Node Value 

• Some students are confused about the use of 
α/β pruning vs. the returned value of a node 

• α/β are used ONLY FOR PRUNING 
– α/β have no effect on anything other than pruning 
– IF (α >= β) THEN prune & return current node value 

• Returned node value = “best” child seen so far 
– Maximum child value seen so far for MAX nodes 
– Minimum child value seen so far for MIN nodes 
– If you prune, return to parent “best” child so far 

• Returned node value is received by parent 



Alpha-Beta Example Revisited 

α, β, initial values 
Do DF-search until first leaf 

α=−∞ 
β =+∞ 

α=−∞ 
β =+∞ 

α, β, passed to kids 

Review Detailed Example of Alpha-Beta 
Pruning in lecture slides. 



Alpha-Beta Example (continued) 

MIN updates β, based on kids 

α=−∞ 
β =+∞ 

α=−∞ 
β =3 



Alpha-Beta Example (continued) 

α=−∞ 
β =3 

MIN updates β, based on kids. 
No change. 

α=−∞ 
β =+∞ 



Alpha-Beta Example (continued) 

MAX updates α, based on kids. 
α=3 
β =+∞ 

3 is returned 
as node value. 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 

α=3 
β =+∞ 

α, β, passed to kids 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 

α=3 
β =2 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

α=3 
β =2 

α ≥ β, 
so prune. 

α=3 
β =+∞ 



Alpha-Beta Example (continued) 

2 is returned 
as node value. 

MAX updates α, based on kids. 
No change. α=3 

β =+∞ 



Alpha-Beta Example (continued) 

, 
α=3 
β =+∞ 

α=3 
β =+∞ 

α, β, passed to kids 



Alpha-Beta Example (continued) 

, 

α=3 
β =14 

α=3 
β =+∞ 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

, 

α=3 
β =5 

α=3 
β =+∞ 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 2 is returned 

as node value. 

2 



Alpha-Beta Example (continued) 

Max calculates the same 
node value, and makes the 
same move! 

2 

Review Detailed Example of Alpha-Beta 
Pruning in lecture slides. 



Review Constraint Satisfaction 
R&N 6.1-6.4 (except 6.3.3) 

• What is a CSP? 
 

• Backtracking search for CSPs 
• Choose a variable, then choose an order for values 
• Minimum Remaining Values (MRV), Degree 

Heuristic (DH), Least Constraining Value (LCV) 
 

• Constraint propagation 
• Forward Checking (FC), Arc Consistency (AC-3) 

 
• Local search for CSPs 

• Min-conflicts heuristic 



Constraint Satisfaction Problems 
• What is a CSP? 

– Finite set of variables, X1, X2, …, Xn  
– Nonempty domain of possible values for each: D1, ..., Dn  
– Finite set of constraints, C1, ..., Cm 

• Each constraint Ci limits the values that variables can take, e.g., X1 ≠ X2 

– Each constraint Ci is a pair:  Ci = (scope, relation) 
• Scope = tuple of variables that participate in the constraint 
• Relation = list of allowed combinations of variables 
 May be an explicit list of allowed combinations 
 May be an abstract relation allowing membership testing & listing 

 

• CSP benefits 
– Standard representation pattern 
– Generic goal and successor functions 
– Generic heuristics (no domain-specific expertise required) 

 



CSPs --- what is a solution? 
 

• A state is an assignment of values to some variables. 
– Complete assignment 

• = every variable has a value.  
– Partial assignment 

• = some variables have no values. 
– Consistent assignment 

• = assignment does not violate any constraints 

 
• A solution  is a complete and consistent assignment. 
 



CSP example: map coloring 

• Variables: WA, NT, Q, NSW, V, SA, T 
• Domains: Di={red,green,blue} 
• Constraints: Adjacent regions must have 

different colors, e.g., WA ≠ NT.   

(WA) 

(NT) 

(SA) 

(Q) 

(NSW) 
(V) 
(T) 



Example: Map coloring solution 
All variables assigned, all constraints satisfied. 

(WA) 

(NT) 

(SA) 

(Q) 

(NSW) 

(V) 

(T) 



Example: Map Coloring 
• Constraint graph 

– Vertices: variables 
– Edges: constraints 
 (connect involved variables) 

 
 

• Graphical model 
– Abstracts the problem to a canonical form 
– Can reason about problem through graph connectivity 
– Ex: Tasmania can be solved independently (more later) 

 

• Binary CSP 
– Constraints involve at most two variables 
– Sometimes called “pairwise” 

 



Backtracking search 
• Similar to depth-first search 

– At each level, pick a single variable to expand 
– Iterate over the domain values of that variable 

 

• Generate children one at a time, 
– One child per value 
– Backtrack when no legal values left 

 
• Uninformed algorithm 

– Poor general performance 
 



function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

Backtracking search (Figure 6.5) 



Minimum remaining values 
(MRV) 

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

 
• A.k.a. most constrained variable heuristic 

 
• Heuristic Rule: choose variable with the fewest legal moves 

– e.g., will immediately detect failure if X has no legal values 
 



Degree heuristic for the initial 
variable 

• Heuristic Rule: select variable that is involved in the largest number of constraints on 
other unassigned variables. 
 

• Degree heuristic can be useful as a tie breaker. 
 

• In what order should a variable’s values be tried? 



function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

Backtracking search (Figure 6.5) 



Least constraining value for 
value-ordering 

• Least constraining value heuristic 
 

• Heuristic Rule: given a variable choose the least constraining value 
–  leaves the maximum flexibility for subsequent variable assignments 

 
 



Look-ahead: Constraint propagation 
• Intuition:  

– Some domains have values that are inconsistent with 
the values in some other domains 

– Propagate constraints to remove inconsistent values 
– Thereby reduce future branching factors 

• Forward checking  
– Check each unassigned neighbor in constraint graph 

• Arc consistency (AC-3 in R&N) 
– Full arc-consistency everywhere until quiescence 
– Can run as a preprocessor 

• Remove obvious inconsistencies 
– Can run after each step of backtracking search 

• Maintaining Arc Consistency (MAC) 
130 



Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– ONLY check neighbors of most recently assigned variable 

131 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– ONLY check neighbors of most recently assigned variable 

Assign {WA = red} 
Effect on other variables (neighbors of WA): 

• NT can no longer be red 
• SA can no longer be red 

Red 

Not red 

Not red 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– Check neighbors of most recently assigned variable 

Assign {Q = green} 
Effect on other variables (neighbors of Q): 

• NT can no longer be green 
• SA can no longer be green 
• NSW can no longer be green 

Red 

Not red 
Not green 

Green 

Not red 
Not green 

Not green 

(We already have failure, but FC 
is too simple to detect it now) 
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Forward checking 
• Idea:  

– Keep track of remaining legal values for unassigned variables 
– Backtrack when any variable has no legal values 
– Check neighbors of most recently assigned variable 

Forward checking has detected that this partial assignment is inconsistent 
with any complete assignment 

Assign {V = blue} 
Effect on other variables (neighbors of V): 

• NSW can no longer be blue 
• SA can no longer be blue   (no values possible!) 

Red 

Not red 
Not green 

Green 

Not red 
Not green 
Not blue 

Not green 
 
 

Not blue 
Blue 



Arc consistency (AC-3) algorithm 
• An Arc X → Y is consistent iff   for every value x of X 

there is some value y of Y that is consistent with x 
• Put all arcs X → Y on a queue 

– Each undirected constraint graph arc is two directed arcs 
– Undirected X Y becomes directed X → Y  and Y → X  
– X → Y  and Y → X both go on queue, separately 

• Pop one arc X → Y and remove any inconsistent 
values from X 

• If any change in X, put all arcs Z → X back on queue, 
where Z is any neighbor of X that is not equal to Y 

• Continue until queue is empty 
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Arc consistency (AC-3) 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff (iff = if and only if) 
         for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 
 
 

• Consider state after WA=red, Q=green 
– SA →  NSW is consistent because 
 SA = blue and NSW = red satisfies all constraints on SA and NSW 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
         for every value x of X there is some allowed value y for Y      (note: directed!) 

 
 
 
 
 
 

• Consider state after WA=red, Q=green 
– NSW → SA consistent if  
 NSW = red  and  SA = blue 
 NSW = blue and SA = ??? 

 
 

=>  NSW = blue can be pruned 
No current domain value for SA is consistent 

If X  loses a value, 
neighbors of X  need 
to be rechecked 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
 for every value x of X there is some allowed value y for Y      (note: 
directed!) 

 
 
 
 

 
• Enforce arc consistency:  

– arc can be made consistent by removing blue from NSW 

• Continue to propagate constraints: 
– Check V → NSW : not consistent for V = red; remove red from V 
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Arc consistency 
• Simplest form of propagation makes each arc consistent 
• X →  Y is consistent iff 
 for every value x of X there is some allowed value y for Y      (note: 
directed!) 

 
 
 
 

 
 

• Continue to propagate constraints 
• SA  →   NT not consistent:  

– And cannot be made consistent!  Failure! 

• Arc consistency detects failure earlier than FC 
– But requires more computation: is it worth the effort? 



Local search: min-conflicts heuristic 
• Use complete-state representation 

– Initial state = all variables assigned values 
– Successor states = change 1 (or more) values 

 
• For CSPs 

– allow states with unsatisfied constraints (unlike backtracking) 
– operators reassign variable values 
– hill-climbing with n-queens is an example 

 

• Variable selection: randomly select any conflicted variable 
• Value selection: min-conflicts heuristic 

– Select new value that results in a minimum number of conflicts with 
the other variables 



Local search: min-conflicts heuristic 
function MIN-CONFLICTS(csp, max_steps) return solution or failure 
 inputs: csp, a constraint satisfaction problem 
  max_steps, the number of steps allowed before giving up  
 
 current ←   a (random) initial complete assignment for csp 
 for i = 1 to max_steps do 
  if current is a solution for csp then return current 
  var ←  a randomly chosen, conflicted variable from   

  VARIABLES[csp] 
  value  ←  the value v for var that minimize 

CONFLICTS(var,v,current,csp) 
  set var = value in current 
 return failure 

 



Min-conflicts example 1 

Use of min-conflicts heuristic in hill-climbing. 

h=5 h=3 h=1 



Summary 
• CSPs  

–  special kind of problem: states defined by values of a fixed set of variables, 
goal test defined by constraints on variable values 

 

• Backtracking = depth-first search, one variable assigned per node 
 

• Heuristics: variable order & value selection heuristics help a lot 
 

• Constraint propagation  
– does additional work to constrain values and detect inconsistencies 
– Works effectively when combined with heuristics 

 

• Iterative min-conflicts is often effective in practice. 
 

• Graph structure of CSPs determines problem complexity 
– e.g., tree structured CSPs can be solved in linear time. 

 



Review Propositional Logic A 
Chapter 7.1-7.5; Optional 7.6-7.8 

• Definitions: 
– Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, 

Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology) 

• Syntactic  & Semantic Transformations: 
– E.g., (A ⇒ B) ⇔ (¬A ∨ B) 
– E.g., (KB |= α) ≡ (|= (KB ⇒ α) 

• Truth Tables: 
– Negation, Conjunction, Disjunction, Implication, Equivalence 

(Biconditional) 



Recap propositional logic: Syntax 

• Propositional logic is the simplest logic –  illustrates basic 
ideas 
 

• The proposition symbols P1, P2 etc are sentences 
 

– If S is a sentence, ¬S is a sentence (negation) 
– If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction) 
– If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction) 
– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication) 
– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional) 



Recap propositional logic: 
Semantics 

Each model/world specifies true or false for each proposition symbol 
E.g.,  P1,2  P2,2  P3,1 
    false true false 
With these symbols, 8 possible models can be enumerated automatically. 

 
Rules for evaluating truth with respect to a model m: 
  ¬S is true iff  S is false   
  S1 ∧ S2   is true iff  S1 is true and  S2 is true 
  S1 ∨ S2   is true iff  S1is true or  S2 is true 
  S1 ⇒ S2  is true iff S1 is false or S2 is true 
   (i.e.,  is false iff S1 is true and S2 is false) 
  S1 ⇔ S2 is true iff S1⇒S2 is true and S2⇒S1 is true 
 
Simple recursive process evaluates an arbitrary sentence, e.g., 

¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (true ∨ false) =  true ∧ true = true 



Recap propositional logic: 
Truth tables for connectives 

OR: P or Q is true or both are true. 
XOR: P or Q is true but not both. 

Implication is always true 
when the premises are False! 



Recap propositional logic: 
Logical equivalence and rewrite rules 

• To manipulate logical sentences we need some rewrite rules. 
• Two sentences are logically equivalent iff they are true in same 

models: α ≡ ß iff α╞ β and β╞ α 

You need to  
know these ! 



Recap propositional logic: 
Entailment 

• Entailment means that one thing follows from 
another: 

KB ╞ α 
 

• Knowledge base KB entails sentence α if and only if α 
is true in all worlds where KB is true 

 
– E.g., the KB containing “the Giants won and the Reds won” 

entails “The Giants won”. 
– E.g., x+y = 4 entails  4 = x+y 
– E.g., “Mary is Sue’s sister and Amy is Sue’s daughter” 

entails “Mary is Amy’s aunt.” 
 



Review: Models (and in FOL, 
Interpretations) 

• Models are formal worlds in which truth can be evaluated 
 

• We say m is a model of a sentence α if α is true in m 
 

• M(α) is the set of all models of α 
 

• Then KB ╞ α iff M(KB) ⊆ M(α) 
– E.g. KB, = “Mary is Sue’s sister 
 and Amy is Sue’s daughter.” 
– α = “Mary is Amy’s aunt.” 

 
• Think of KB and α as constraints, 

 and of models m as possible states. 
• M(KB) are the solutions to KB 
   and M(α) the solutions to α. 
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) , 
      when all solutions to KB are also solutions to α.  



Wumpus models 

All possible models in this reduced Wumpus world.  What can we infer? 



Review:  Wumpus models 

• KB = all possible wumpus-worlds consistent 
with the observations and the “physics” of the 
Wumpus world. 



Review:  Wumpus models 

α1 = "[1,2] is safe", KB ╞ α1, proved by model checking. 
 
Every model that makes KB true also makes α1 true. 

 



Wumpus models 

α2 = "[2,2] is safe", KB ╞ α2 



Midterm Review 

• Agents: R&N Chap 2.1-2.3 
• State Space Search: R&N Chap 3.1-3.7 
• Local Search: R&N Chap 4.1-4.2 
• Adversarial (Game) Search: R&N Chap 5.1-5.4 
• Constraint Satisfaction: R&N Chap 6.1-6.4 

(except 6.3.3) 
• Propositional Logic A: R&N Chap 7.1-7.5 
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