
Introduction to
Artificial Intelligence

CS171, Summer 1 Quarter, 2019
Introduction to Artificial Intelligence

Prof. Richard Lathrop

 Read Beforehand: All assigned reading so far

Midterm Review

• Agents: R&N Chap 2.1-2.3
• State Space Search: R&N Chap 3.1-3.7
• Local Search: R&N Chap 4.1-4.2
• Adversarial (Game) Search: R&N Chap 5.1-5.4
• Constraint Satisfaction: R&N Chap 6.1-6.4

(except 6.3.3)
• Propositional Logic A: R&N Chap 7.1-7.5

Review Agents
Chapter 2.1-2.3

• Agent definition (2.1)

• Rational Agent definition (2.2)
– Performance measure

• Task evironment definition (2.3)
– PEAS acronym
– Properties of task environments

Agents
• An agent is anything that can be viewed as

perceiving its environment through sensors and
acting upon that environment through actuators

• Human agent:

– Sensors: eyes, ears, …
– Actuators: hands, legs, mouth…

• Robotic agent

– Sensors: cameras, range finders, …
– Actuators: motors

Agents and environments

• Percept: agent’s perceptual inputs at an
instant

• The agent function maps from percept
sequences to actions: [f: P* A]

• The agent program runs on the physical
architecture to produce f

• agent = architecture + program

• Rational Agent: For each possible percept sequence, a
rational agent should select an action that is expected to
maximize its performance measure, based on the
evidence provided by the percept sequence and
whatever built-in knowledge the agent has.

• Performance measure: An objective criterion for success

of an agent's behavior (“cost”, “reward”, “utility”)

• E.g., performance measure of a vacuum-cleaner agent
could be amount of dirt cleaned up, amount of time
taken, amount of electricity consumed, amount of noise
generated, etc.

Rational agents

Task Environment

• Before we design an intelligent agent, we
must specify its “task environment”:

 PEAS:

 Performance measure
 Environment
 Actuators
 Sensors

Environment types
• Fully observable (vs. partially observable): An agent's

sensors give it access to the complete state of the
environment at each point in time.

• Deterministic (vs. stochastic): The next state of the
environment is completely determined by the current state
and the action executed by the agent. (If the environment
is deterministic except for the actions of other agents, then
the environment is strategic)

• Episodic (vs. sequential): An agent’s action is divided into
atomic episodes. Decisions do not depend on previous
decisions/actions.

• Known (vs. unknown): An environment is considered to
be "known" if the agent understands the laws that govern
the environment's behavior.

Environment types
• Static (vs. dynamic): The environment is unchanged while

an agent is deliberating. (The environment is semidynamic
if the environment itself does not change with the passage
of time but the agent's performance score does)

• Discrete (vs. continuous): A limited number of distinct,
clearly defined percepts and actions.
– How do we represent or abstract or model the world?

• Single agent (vs. multi-agent): An agent operating by itself

in an environment. Does the other agent interfere with my
performance measure?

Review State Space Search
Chapter 3

• Problem Formulation (3.1, 3.3)
• Blind (Uninformed) Search (3.4)

• Depth-First, Breadth-First, Iterative Deepening
• Uniform-Cost, Bidirectional (if applicable)
• Time? Space? Complete? Optimal?

• Heuristic Search (3.5)
• A*, Greedy-Best-First

State-Space Problem Formulation
A problem is defined by five items:

 (1) initial state e.g., "at Arad“

 (2) actions Actions(s) = set of actions avail. in state s

 (3) transition model Results(s,a) = state that results from action a in state s
 Alt: successor function S(x) = set of action–state pairs

– e.g., S(Arad) = {<Arad Zerind, Zerind>, … }

 (4) goal test, (or goal state)
 e.g., x = "at Bucharest”, Checkmate(x)

 (5) path cost (additive)

– e.g., sum of distances, number of actions executed, etc.
– c(x,a,y) is the step cost, assumed to be ≥ 0 (and often, assumed to be ≥ ε > 0)

 A solution is a sequence of actions leading from the initial state to a goal state

86

98

142

92

87

90

85
101

211

138

146

97

120 75

70
111

118

140

151

71

75

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Sibiu Fagaras

Rimnicu Vilcea

Pitesti

Cralova

Bucharest

Giurgiu

Urziceni

Neamt

Iasi

Vaslui

Hirsova

Eforie

99

80

12

Vacuum world state space graph

• states? discrete: dirt and robot locations
• initial state? any
• actions? Left, Right, Suck
• transition model? as shown on graph
• goal test? no dirt at all locations
• path cost? 1 per action

13

Implementation: states vs. nodes
• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree
• A node contains info such as:

– state, parent node, action, path cost g(x), depth, etc.

• The Expand function creates new nodes, filling in the various
fields using the Actions(S) and Result(S,A)functions
associated with the problem.

14

Tree search vs. Graph search
Review Fig. 3.7, p. 77

• Failure to detect repeated states can turn a
linear problem into an exponential one!

• Test is often implemented as a hash table.

15

Tree search vs. Graph search
Review Fig. 3.7, p. 77

• What R&N call Tree Search vs. Graph Search
– (And we follow R&N exactly in this class)
– Has NOTHING to do with searching trees vs. graphs

• Tree Search = do NOT remember visited nodes
– Exponentially slower search, but memory efficient

• Graph Search = DO remember visited nodes
– Exponentially faster search, but memory blow-up

• CLASSIC Comp Sci TIME-SPACE TRADE-OFF

Solutions to Repeated States

• Graph search
– never generate a state generated before

• must keep track of all possible states (uses a lot of memory)
• e.g., 8-puzzle problem, we have 9! = 362,880 states
• approximation for DFS/DLS: only avoid states in its (limited) memory:

avoid infinite loops by checking path back to root.

– “visited?” test usually implemented as a hash table
16

S

B

C

S

B C

S C B S

State Space
Example of a Search Tree

faster, but memory inefficient

Checking for identical nodes (1)
Check if a node is already in fringe-frontier

• It is “easy” to check if a node is already in the
fringe/frontier (recall fringe = frontier = open = queue)
– Keep a hash table holding all fringe/frontier nodes

• Hash size is same O(.) as priority queue, so hash does not increase overall
space O(.)

• Hash time is O(1), so hash does not increase overall time O(.)

– When a node is expanded, remove it from hash table (it is
no longer in the fringe/frontier)

– For each resulting child of the expanded node:
• If child is not in hash table, add it to queue (fringe) and hash table
• Else if an old lower- or equal-cost node is in hash, discard the new

higher- or equal-cost child
• Else remove and discard the old higher-cost node from queue and

hash, and add the new lower-cost child to queue and hash

Always do this for tree or graph search in BFS, UCS, GBFS, and A*

Checking for identical nodes (2)
Check if a node is in explored/expanded

• It is memory-intensive [O(bd) or O(bm)]to check if a
node is in explored/expanded (recall explored =
expanded = closed)
– Keep a hash table holding all explored/expanded nodes

(hash table may be HUGE!!)
• When a node is expanded, add it to hash (explored)
• For each resulting child of the expanded node:

– If child is not in hash table or in fringe/frontier, then add it
to the queue (fringe/frontier) and process normally (BFS
normal processing differs from UCS normal processing, but
the ideas behind checking a node for being in
explored/expanded are the same).

– Else discard any redundant node.
 Always do this for graph search

function BRE ADT H-FIRST-SEARCH(problem) returns a solution, or failure
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0 if
problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node) frontier ←
a FIFO queue with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the shallowest node in frontier */
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

if problem .GOAL -TEST(child .STAT E) then return SOL UT ION(child)
frontier ← INSE RT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

Breadth-first graph search (R&N Fig. 3.11)

Goal test before push

These three statements change tree search to graph search.

Avoid
redundant
frontier nodes

Properties of breadth-first search

• Complete? Yes, it always reaches a goal (if b is finite)
• Time? 1 + b + b2 + b3 + … + bd = O(bd)
 (this is the number of nodes we generate)
• Space? O(bd)
 (keeps every node in memory, either in frontier or on a path to frontier).
• Optimal? No, for general cost functions.
 Yes, if cost is a non-decreasing function only of depth.

– With f(d) ≥ f(d-1), e.g., step-cost = constant:
• All optimal goal nodes occur on the same level
• Optimal goals are always shallower than non-optimal goals
• An optimal goal will be found before any non-optimal goal

• Usually Space is the bigger problem (more than time)

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0
frontier ← a priority queue ordered by PAT H-COST, with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the lowest-cost node in frontier */
 if problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node)
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

frontier ← INSE RT(child , frontier)
else if child .STAT E is in frontier with higher PAT H-COST then

replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an
extra check in case a shorter path to a frontier state is discovered. The data structure for frontier
needs to support efficient membership testing, so it should combine the capabilities of a priority
queue and a hash table.

Uniform cost search (R&N Fig. 3.14)
[A* is identical except queue sort = f(n)]

Goal test after pop

Avoid
redundant
frontier nodes

These three statements change tree search to graph search.

Avoid
higher-cost
frontier nodes

Uniform-cost search
Implementation: Frontier = queue ordered by path cost.
Equivalent to breadth-first if all step costs all equal.

•Complete? Yes, if b is finite and step cost ≥ ε > 0.
 (otherwise it can get stuck in infinite regression)

•Time? # of nodes with path cost ≤ cost of optimal solution.
 O(b1+C*/ε) ≈ O(bd+1)

•Space? # of nodes with path cost ≤ cost of optimal solution.
 O(b1+C*/ε) ≈ O(bd+1).

•Optimal? Yes, for step cost ≥ ε > 0.

Depth-limited search & IDS (R&N Fig. 3.17-18)

Goal test in
recursive call,
one-at-a-time

At depth = 0, IDS only goal-tests
the start node. The start node is
is not expanded at depth = 0.

Properties of iterative deepening search

• Complete? Yes

• Time? O(bd)

• Space? O(bd)

• Optimal? No, for general cost functions.
 Yes, if cost is a non-decreasing function only of

depth.

Generally the preferred uninformed search strategy.

Depth-First Search (R&N Section 3.4.3)

• Your textbook is ambiguous about DFS.
– The second paragraph of R&N 3.4.3 states that DFS is an

instance of Fig. 3.7 using a LIFO queue. Search behavior
may differ depending on how the LIFO queue is
implemented (as separate pushes, or one concatenation).

– The third paragraph of R&N 3.4.3 says that an alternative
implementation of DFS is a recursive algorithm that calls
itself on each of its children, as in the Depth-Limited
Search of Fig. 3.17 (above).

• For quizzes and exams, we will follow Fig. 3.17.

Properties of depth-first search

• Complete? No: fails in loops/infinite-depth spaces
– Can modify to avoid loops/repeated states along path

• check if current nodes occurred before on path to root
– Can use graph search (remember all nodes ever seen)

• problem with graph search: space is exponential, not linear
– Still fails in infinite-depth spaces (may miss goal entirely)

• Time? O(bm) with m =maximum depth of space
– Terrible if m is much larger than d
– If solutions are dense, may be much faster than BFS

• Space? O(bm), i.e., linear space!
– Remember a single path + expanded unexplored nodes

• Optimal? No: It may find a non-optimal goal first

A

B C

Bidirectional Search
• Idea

– simultaneously search forward from S and backwards from G
– stop when both “meet in the middle”
– need to keep track of the intersection of 2 open sets of nodes

• What does searching backwards from G mean

– need a way to specify the predecessors of G
• this can be difficult,
• e.g., predecessors of checkmate in chess?

– what if there are multiple goal states?
– what if there is only a goal test, no explicit list?

• Complexity

– time complexity is best: O(2 b(d/2)) = O(b (d/2))
– memory complexity is the same as time complexity

Bi-Directional Search

Blind Search Strategies (3.4)

• Depth-first: Add successors to front of queue
• Breadth-first: Add successors to back of queue
• Uniform-cost: Sort queue by path cost g(n)
• Depth-limited: Depth-first, cut off at limit l
• Iterated-deepening: Depth-limited, increasing l
• Bidirectional: Breadth-first from goal, too.

• Review “Example hand-simulated search”
– Lecture on “Uninformed Search”

Search strategy evaluation
• A search strategy is defined by the order of node

expansion

• Strategies are evaluated along the following dimensions:
– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
– (UCS: C*: true cost to optimal goal; ε > 0: minimum step cost)

Summary of algorithms
Fig. 3.21, p. 91

Generally the preferred
uninformed search strategy

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deepening
DLS

Bidirectional
(if applicable)

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d]

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d]

There are a number of footnotes, caveats, and assumptions.
See Fig. 3.21, p. 91.
[a] complete if b is finite
[b] complete if step costs ≥ ε > 0
[c] optimal if step costs are all identical
 (also if path cost non-decreasing function of depth only)
[d] if both directions use breadth-first search
 (also if both directions use uniform-cost search with step costs ≥ ε > 0)

Summary
• Generate the search space by applying actions to the

initial state and all further resulting states.

• Problem: initial state, actions, transition model, goal
test, step/path cost

• Solution: sequence of actions to goal

• Tree-search (don’t remember visited nodes) vs.
 Graph-search (do remember them)

• Search strategy evaluation: b, d, m (UCS: C*, ε)
– Complete? Time? Space? Optimal?

Heuristic function (3.5)
 Heuristic:
 Definition: a commonsense rule (or set of rules) intended to

increase the probability of solving some problem
 “using rules of thumb to find answers”

 Heuristic function h(n)
 Estimate of (optimal) cost from n to goal
 Defined using only the state of node n
 h(n) = 0 if n is a goal node
 Example: straight line distance from n to Bucharest
Note that this is not the true state-space distance
 It is an estimate – actual state-space distance can be higher

 Provides problem-specific knowledge to the search algorithm

Relationship of search algorithms
• Notation:

– g(n) = known cost so far to reach n
– h(n) = estimated optimal cost from n to goal
– h*(n) = true optimal cost from n to goal (unknown to agent)
– f(n) = g(n)+h(n) = estimated optimal total cost through n

• Uniform cost search: sort frontier by g(n)
• Greedy best-first search: sort frontier by h(n)
• A* search: sort frontier by f(n) = g(n) + h(n)

– Optimal for admissible / consistent heuristics
– Generally the preferred heuristic search framework
– Memory-efficient versions of A* are available: RBFS, SMA*

Greedy best-first search
• h(n) = estimate of cost from n to goal

– e.g., h(n) = straight-line distance from n to
Bucharest

• Greedy best-first search expands the node
that appears to be closest to goal.
– Sort queue by h(n)

• Not an optimal search strategy
– May perform well in practice

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Optimal Path

Properties of greedy best-first search

• Complete?
– Tree version can get stuck in loops.
– Graph version is complete in finite spaces.

• Time? O(bm)
– A good heuristic can give dramatic improvement

• Space? O(bm)
– Graph search keeps all nodes in memory
– A good heuristic can give dramatic improvement

• Optimal? No
– E.g., Arad Sibiu Rimnicu Vilcea Pitesti Bucharest

is shorter!

A* search

• Idea: avoid paths that are already expensive
– Generally the preferred simple heuristic search
– Optimal if heuristic is:
 admissible (tree search)/consistent (graph search)

• Evaluation function f(n) = g(n) + h(n)
– g(n) = known path cost so far to node n.
– h(n) = estimate of (optimal) cost to goal from node n.
– f(n) = g(n)+h(n)
 = estimate of total cost to goal through node n.

• Priority queue sort function = f(n)

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next:
• Children:
• Expanded:
• Frontier: Arad/366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

• Next: Arad/366=0+366
• Children: Sibiu/393=140+253, Timisoara/447=118+329,

Zerind/449=75+374
• Expanded: Arad/366=0+366
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
366=0+366

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: Sibiu/393=140+253
• Children: Arad/646=280+366, Fagaras/415=239+176,

Oradea/671=291+380, RimnicuVilcea/413=220+193
• Expanded: Arad/366=0+366, Sibiu/393=140+253
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374, Arad/646=280+366,
Fagaras/415=239+176, Oradea/671=291+380,
RimnicuVilcea/413=220+193

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: RimnicuVilcea/413=220+193
• Children: Craiova/526=366+160, Pitesti/417=317+100,

Sibiu/553=300+253
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example
Note: The
search below
did not “back
track.” Rather,
both arms are
being pursued
in parallel on
the queue.

A* tree search example:
Simulated queue. City/f=g+h

• Next: Fagaras/415=239+176
• Children: Bucharest/450=450+0, Sibiu/591=338+253
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0, Sibiu/591=338+253

A* tree search example
Note: The
search below
did not “back
track.” Rather,
both arms are
being pursued
in parallel on
the queue.

A* tree search example:
Simulated queue. City/f=g+h

• Next: Pitesti/417=317+100
• Children: Bucharest/418=418+0, Craiova/615=455+160,

RimnicuVilcea/607=414+193
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176,
Pitesti/417=317+100

• Frontier: Arad/366=0+366, Sibiu/393=140+253,
Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0,
Sibiu/591=338+253, Bucharest/418=418+0,
Craiova/615=455+160, RimnicuVilcea/607=414+193

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: Bucharest/418=418+0
• Children: None; goal test succeeds.
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176,
Pitesti/417=317+100, Bucharest/418=418+0

• Frontier: Arad/366=0+366, Sibiu/393=140+253,
Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0,
Sibiu/591=338+253, Bucharest/418=418+0,
Craiova/615=455+160, RimnicuVilcea/607=414+193

Note that
the short
expensive
path stays
on the
queue.
The long
cheap
path is
found and
returned.

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Bucharest/
418=418+0

…
…

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Bucharest/
418=418+0 …

…

Arad/
366=0+366

Properties of A*

• Complete? Yes
 (unless there are infinitely many nodes with f ≤ f(G);
 can’t happen if step-cost ≥ ε > 0)
• Time/Space? Exponential O(bd)
 except if:
• Optimal? Yes
 (with: Tree-Search, admissible heuristic;
 Graph-Search, consistent heuristic)
• Optimally Efficient? Yes
 (no optimal algorithm with same heuristic is guaranteed to expand

fewer nodes)

* *| () () | (log ())h n h n O h n− ≤

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal

state from n.
• An admissible heuristic never overestimates the cost to

reach the goal, i.e., it is optimistic
• Example: hSLD(n) (never overestimates the actual road

distance)
• Theorem: If h(n) is admissible, A* using TREE-SEARCH is

optimal

Consistent heuristics
(consistent => admissible)

• A heuristic is consistent if for every node n, every successor n' of n
generated by any action a,

 h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n’) = g(n’) + h(n’) (by def.)
 = g(n) + c(n,a,n') + h(n’) (g(n’)=g(n)+c(n.a.n’))
 ≥ g(n) + h(n) = f(n) (consistency)
f(n’) ≥ f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem:
 If h(n) is consistent, A* using GRAPH-SEARCH is optimal

It’s the triangle
inequality !

keeps all checked nodes in
memory to avoid repeated states

Optimality of A* (proof)
Tree Search, where h(n) is admissible

• Suppose some suboptimal goal G2 has been generated and is in the
frontier. Let n be an unexpanded node in the frontier such that n is on a
shortest path to an optimal goal G.

• f(G2) = g(G2) since h(G2) = 0
• f(G) = g(G) since h(G) = 0
• g(G2) > g(G) since G2 is suboptimal

• f(G2) > f(G) from above, with h=0
• h(n) ≤ h*(n) since h is admissible (under-estimate)
• g(n) + h(n) ≤ g(n) + h*(n) from above
• f(n) ≤ f(G) since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G)
• f(n) < f(G2) from above

We want to prove:
 f(n) < f(G2)
(then A* will expand n before G2)

R&N pp. 95-98 proves the optimality of A*
graph search with a consistent heuristic

Dominance

• IF h2(n) ≥ h1(n) for all n
 THEN h2 dominates h1

– h2 is almost always better for search than h1
– h2 guarantees to expand no more nodes than does h1
– h2 almost always expands fewer nodes than does h1
– Not useful unless both h1 & h2 are admissible/consistent

• Typical 8-puzzle search costs
 (average number of nodes expanded):

– d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

– d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

Review Local Search
Chapter 4.1-4.2, 4.6; Optional 4.3-4.5

• Problem Formulation (4.1)
• Hill-climbing Search (4.1.1)
• Simulated annealing search (4.1.2)
• Local beam search (4.1.3)
• Genetic algorithms (4.1.4)

Local search algorithms
• In many optimization problems, the path to the goal is

irrelevant; the goal state itself is the solution
– Local search: widely used for very big problems
– Returns good but not optimal solutions
– Usually very slow, but can yield good solutions if you wait

• State space = set of "complete" configurations
• Find a complete configuration satisfying constraints

– Examples: n-Queens, VLSI layout, airline flight schedules

• Local search algorithms
– Keep a single "current" state, or small set of states
– Iteratively try to improve it / them
– Very memory efficient

• keeps only one or a few states
• You control how much memory you use

Random restart wrapper

• We’ll use stochastic local search methods
– Return different solution for each trial & initial state

• Almost every trial hits difficulties (see sequel)
– Most trials will not yield a good result (sad!)

• Using many random restarts improves your chances
– Many “shots at goal” may finally get a good one

• Restart a random initial state, many times
– Report the best result found across many trials

Random restart wrapper
best_found ← RandomState() // initialize to something

// now do repeated local search
loop do
 if (tired of doing it)
 then return best_found
 else
 result ← LocalSearch(RandomState())
 if (Cost(result) < Cost(best_found))
 // keep best result found so far

 then best_found ← result

Typically, “tired of doing it” means that some resource limit has been
exceeded, e.g., number of iterations, wall clock time, CPU time, etc.
It may also mean that result improvements are small and infrequent,
e.g., less than 0.1% result improvement in the last week of run time.

You, as
algorithm
designer, write
the functions
named in red.

Tabu search wrapper

• Add recently visited states to a tabu-list
– Temporarily excluded from being visited again
– Forces solver away from explored regions
– Less likely to get stuck in local minima (hope, in principle)

• Implemented as a hash table + FIFO queue

– Unit time cost per step; constant memory cost
– You control how much memory is used

• RandomRestart(TabuSearch (LocalSearch()))

Tabu search wrapper (inside random restart!)

best_found ← current_state ← RandomState() // initialize
loop do // now do local search
 if (tired of doing it) then return best_found else
 neighbor ← MakeNeighbor(current_state)
 if (neighbor is in hash_table) then discard neighbor

 else push neighbor onto fifo, pop oldest_state
 remove oldest_state from hash_table, insert neighbor

 current_state ← neighbor;
 if (Cost(current_state) < Cost(best_found))
 then best_found ← current_state

 FIFO QUEUE Oldest
State

New
State

 HASH TABLE
State

Present?

Local search algorithms

• Hill-climbing search
– Gradient descent in continuous state spaces
– Can use, e.g., Newton’s method to find roots

• Simulated annealing search
• Local beam search
• Genetic algorithms
• Linear Programming (for specialized problems)

Local Search Difficulties

• Problems: depending on state, can get stuck in local maxima
– Many other problems also endanger your success!!

These difficulties apply to ALL local search algorithms, and become MUCH
more difficult as the search space increases to high dimensionality.

Local Search Difficulties

• Ridge problem: Every neighbor appears to be downhill
– But the search space has an uphill!! (worse in high dimensions)

Ridge:
Fold a piece of
paper and hold
it tilted up at an
unfavorable
angle to every
possible search
space step.
Every step
leads downhill;
but the ridge
leads uphill.

These difficulties apply to ALL local search algorithms, and become MUCH
more difficult as the search space increases to high dimensionality.

Hill-climbing search

“…like trying to find the top of Mount Everest in a thick fog while
suffering from amnesia”

Equivalently: “if COST[neighbor] ≥ COST[current] then …”

Equivalently:
“…a lowest-cost successor…”

You must shift effortlessly between maximizing value and minimizing cost

Simulated annealing (Physics!)

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

•

Improvement: Track the
BestResultFoundSoFar.
Here, this slide follows
Fig. 4.5 of the textbook,
which is simplified.

Probability(accept worse successor)
•Decreases as temperature T decreases
•Increases as |Δ E| decreases
•Sometimes, step size also decreases with T

Tem
perature

e ∆E / T
Temperature T

High Low

|∆E |
High Medium Low

Low High Medium

(accept very bad moves early on; later, mainly accept “not very much worse”)

Your “random restart
wrapper” starts here.

A
Value=42

B
Value=41

C
Value=45

D
Value=44

E
Value=48

F
Value=47

G
Value=51

Va
lu

e

You want to get
here. HOW??

This is an illustrative cartoon…

Arbitrary (Fictitious) Search Space Coordinate

Goal: “ratchet up” a bumpy slope
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)

C
Value=45
∆E(CB)=-4
∆E(CD)=-1

P(CB) ≈.018
P(CD)≈.37

B
Value=41
∆E(BA)=1
∆E(BC)=4
P(BA)=1
P(BC)=1

A
Value=42
∆E(AB)=-1
P(AB) ≈.37

D
Value=44
∆E(DC)=1
∆E(DE)=4
P(DC)=1
P(DE)=1

E
Value=48
∆E(ED)=-4
∆E(EF)=-1

P(ED) ≈.018
P(EF)≈.37

F
Value=47
∆E(FE)=1
∆E(FG)=4
P(FE)=1
P(FG)=1

G
Value=51
∆E(GF)=-4

P(GF) ≈.018

x -1 -4

ex ≈.37 ≈.018

From A you will accept a move to B with P(AB) ≈.37.
From B you are equally likely to go to A or to C.
From C you are ≈20X more likely to go to D than to B.
From D you are equally likely to go to C or to E.
From E you are ≈20X more likely to go to F than to D.
From F you are equally likely to go to E or to G.
Remember best point you ever found (G or neighbor?). This is an illustrative cartoon…

Your “random
restart wrapper”
starts here.

Goal: “ratchet up” a jagged slope

Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states are
generated

• If any one is a goal state, stop; else select the k best
successors from the complete list and repeat.

• Concentrates search effort in areas believed to be fruitful
– May lose diversity as search progresses, resulting in wasted effort

a1 b1 k1 … Create k random initial states

… Generate their children

a2 b2 k2 … Select the k best children

… Repeat indefinitely…

Is it better than simply running k searches?
Maybe…??

Local beam search

Genetic algorithms (Darwin!!)
• A state = a string over a finite alphabet (an individual)

– A successor state is generated by combining two parent states

• Start with k randomly generated states (a population)

• Fitness function (= our heuristic objective function).

– Higher fitness values for better states.

• Select individuals for next generation based on fitness
– P(individual in next gen.) = individual fitness/total population fitness

• Crossover fit parents to yield next generation (offspring)

• Mutate the offspring randomly with some low probability

Genetic algorithms

• Fitness function (value): number of non-attacking pairs of

queens (min = 0, max = 8 × 7/2 = 28)
• 24/(24+23+20+11) = 31%
• 23/(24+23+20+11) = 29%; etc.

• Fitness function: #non-attacking queen pairs

– min = 0, max = 8 × 7/2 = 28

• Σ_i fitness_i = 24+23+20+11 = 78
• P(child_1 in next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31%
• P(child_2 in next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc

fitness =
#non-attacking
queens

probability of being
in next generation =
fitness/(Σ_i fitness_i)

How to convert a
fitness value into a
probability of being in
the next generation.

Review Adversarial (Game) Search
Chapter 5.1-5.4

• Minimax Search with Perfect Decisions (5.2)
– Impractical in most cases, but theoretical basis for analysis

• Minimax Search with Cut-off (5.4)
– Replace terminal leaf utility by heuristic evaluation

function
• Alpha-Beta Pruning (5.3)

– The fact of the adversary leads to an advantage in search!
• Practical Considerations (5.4)

– Redundant path elimination, look-up tables, etc.

Games as Search
• Two players: MAX and MIN
• MAX moves first and they take turns until the game is over

– Winner gets reward, loser gets penalty.
– “Zero sum” means the sum of the reward and the penalty is a constant.

• Formal definition as a search problem:

– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess.
– Player(s): Defines which player has the move in a state.
– Actions(s): Returns the set of legal moves in a state.
– Result(s,a): Transition model defines the result of a move.
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.)
– Terminal-Test(s): Is the game finished? True if finished, false otherwise.
– Utility function(s,p): Gives numerical value of terminal state s for player p.

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe.
• E.g., win (+1), lose (0), and draw (1/2) in chess.

• MAX uses search tree to determine “best” next move.

An optimal procedure:
The Min-Max method

Will find the optimal strategy and best next move for Max:

• 1. Generate the whole game tree, down to the leaves.

• 2. Apply utility (payoff) function to each leaf.

• 3. Back-up values from leaves through branch nodes:

– a Max node computes the Max of its child values
– a Min node computes the Min of its child values

• 4. At root: choose move leading to the child of highest value.

Two-ply Game Tree

MIN

MAX

3 12 8 2 4 6 14 5 2

3 2 2

3 The minimax decision

Minimax maximizes the utility of the worst-case outcome for MAX

Pseudocode for Minimax
Algorithm

function MINIMAX-DECISION(state) returns an action
 inputs: state, current state in game
return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a))

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← +∞
 for a in ACTIONS(state) do
 v ← MIN(v,MAX-VALUE(Result(state,a)))
 return v

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← −∞
 for a in ACTIONS(state) do
 v ← MAX(v,MIN-VALUE(Result(state,a)))
 return v

Properties of minimax
• Complete?

– Yes (if tree is finite).

• Optimal?
– Yes (against an optimal opponent).
– Can it be beaten by an opponent playing sub-optimally?

• No. (Why not?)

• Time complexity?
– O(bm)

• Space complexity?

– O(bm) (depth-first search, generate all actions at once)
– O(m) (backtracking search, generate actions one at a time)

Static (Heuristic) Evaluation Functions

• An Evaluation Function:
– Estimates how good the current board configuration is for a player.
– Typically, evaluate how good it is for the player, how good it is for

the opponent, then subtract the opponent’s score from the
player’s.

– Othello: Number of white pieces - Number of black pieces
– Chess: Value of all white pieces - Value of all black pieces

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

• If the board evaluation is X for a player, it’s -X for the opponent

– “Zero-sum game”

General alpha-beta pruning
• Consider a node n in the tree ---

• If player has a better choice at:

– Parent node of n
– Or any choice point further

up

• Then n will never be reached in
play.

• Hence, when that much is
known about n, it can be
pruned.

Alpha-beta Algorithm
• Depth first search

– only considers nodes along a single path from root at any time

 α = highest-value choice found at any choice point of path for MAX
 (initially, α = −infinity)
 β = lowest-value choice found at any choice point of path for MIN
 (initially, β = +infinity)

• Pass current values of α and β down to child nodes during search.
• Update values of α and β during search:

– MAX updates α at MAX nodes
– MIN updates β at MIN nodes

• Prune remaining branches at a node when α ≥ β

Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
 inputs: state, current state in game
 v←MAX-VALUE(state, - ∞ , +∞)
 return the action in ACTIONS(state) with value v

function MAX-VALUE(state,α , β) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← - ∞
 for a in ACTIONS(state) do
 v ← MAX(v, MIN-VALUE(Result(s,a), α , β))
 if v ≥ β then return v
 α ← MAX(α ,v)
 return v

(MIN-VALUE is defined analogously)

When to Prune?

• Prune whenever α ≥ β.

– Prune below a Max node whose alpha value becomes greater than or
equal to the beta value of its ancestors.

• Max nodes update alpha based on children’s returned values.

– Prune below a Min node whose beta value becomes less than or equal
to the alpha value of its ancestors.

• Min nodes update beta based on children’s returned values.

α/β Pruning vs. Returned Node Value

• Some students are confused about the use of
α/β pruning vs. the returned value of a node

• α/β are used ONLY FOR PRUNING
– α/β have no effect on anything other than pruning
– IF (α >= β) THEN prune & return current node value

• Returned node value = “best” child seen so far
– Maximum child value seen so far for MAX nodes
– Minimum child value seen so far for MIN nodes
– If you prune, return to parent “best” child so far

• Returned node value is received by parent

Alpha-Beta Example Revisited

α, β, initial values
Do DF-search until first leaf

α=−∞
β =+∞

α=−∞
β =+∞

α, β, passed to kids

Review Detailed Example of Alpha-Beta
Pruning in lecture slides.

Alpha-Beta Example (continued)

MIN updates β, based on kids

α=−∞
β =+∞

α=−∞
β =3

Alpha-Beta Example (continued)

α=−∞
β =3

MIN updates β, based on kids.
No change.

α=−∞
β =+∞

Alpha-Beta Example (continued)

MAX updates α, based on kids.
α=3
β =+∞

3 is returned
as node value.

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =2

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =2

α ≥ β,
so prune.

α=3
β =+∞

Alpha-Beta Example (continued)

2 is returned
as node value.

MAX updates α, based on kids.
No change. α=3

β =+∞

Alpha-Beta Example (continued)

,
α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

,

α=3
β =14

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

,

α=3
β =5

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =+∞ 2 is returned

as node value.

2

Alpha-Beta Example (continued)

Max calculates the same
node value, and makes the
same move!

2

Review Detailed Example of Alpha-Beta
Pruning in lecture slides.

Review Constraint Satisfaction
R&N 6.1-6.4 (except 6.3.3)

• What is a CSP?

• Backtracking search for CSPs
• Choose a variable, then choose an order for values
• Minimum Remaining Values (MRV), Degree

Heuristic (DH), Least Constraining Value (LCV)

• Constraint propagation
• Forward Checking (FC), Arc Consistency (AC-3)

• Local search for CSPs

• Min-conflicts heuristic

Constraint Satisfaction Problems
• What is a CSP?

– Finite set of variables, X1, X2, …, Xn
– Nonempty domain of possible values for each: D1, ..., Dn
– Finite set of constraints, C1, ..., Cm

• Each constraint Ci limits the values that variables can take, e.g., X1 ≠ X2

– Each constraint Ci is a pair: Ci = (scope, relation)
• Scope = tuple of variables that participate in the constraint
• Relation = list of allowed combinations of variables
 May be an explicit list of allowed combinations
 May be an abstract relation allowing membership testing & listing

• CSP benefits
– Standard representation pattern
– Generic goal and successor functions
– Generic heuristics (no domain-specific expertise required)

CSPs --- what is a solution?

• A state is an assignment of values to some variables.
– Complete assignment

• = every variable has a value.
– Partial assignment

• = some variables have no values.
– Consistent assignment

• = assignment does not violate any constraints

• A solution is a complete and consistent assignment.

CSP example: map coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di={red,green,blue}
• Constraints: Adjacent regions must have

different colors, e.g., WA ≠ NT.

(WA)

(NT)

(SA)

(Q)

(NSW)
(V)
(T)

Example: Map coloring solution
All variables assigned, all constraints satisfied.

(WA)

(NT)

(SA)

(Q)

(NSW)

(V)

(T)

Example: Map Coloring
• Constraint graph

– Vertices: variables
– Edges: constraints
 (connect involved variables)

• Graphical model
– Abstracts the problem to a canonical form
– Can reason about problem through graph connectivity
– Ex: Tasmania can be solved independently (more later)

• Binary CSP
– Constraints involve at most two variables
– Sometimes called “pairwise”

Backtracking search
• Similar to depth-first search

– At each level, pick a single variable to expand
– Iterate over the domain values of that variable

• Generate children one at a time,
– One child per value
– Backtrack when no legal values left

• Uninformed algorithm

– Poor general performance

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking search (Figure 6.5)

Minimum remaining values
(MRV)

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

• A.k.a. most constrained variable heuristic

• Heuristic Rule: choose variable with the fewest legal moves

– e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial
variable

• Heuristic Rule: select variable that is involved in the largest number of constraints on
other unassigned variables.

• Degree heuristic can be useful as a tie breaker.

• In what order should a variable’s values be tried?

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking search (Figure 6.5)

Least constraining value for
value-ordering

• Least constraining value heuristic

• Heuristic Rule: given a variable choose the least constraining value
– leaves the maximum flexibility for subsequent variable assignments

Look-ahead: Constraint propagation
• Intuition:

– Some domains have values that are inconsistent with
the values in some other domains

– Propagate constraints to remove inconsistent values
– Thereby reduce future branching factors

• Forward checking
– Check each unassigned neighbor in constraint graph

• Arc consistency (AC-3 in R&N)
– Full arc-consistency everywhere until quiescence
– Can run as a preprocessor

• Remove obvious inconsistencies
– Can run after each step of backtracking search

• Maintaining Arc Consistency (MAC)
130

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– ONLY check neighbors of most recently assigned variable

131

132

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– ONLY check neighbors of most recently assigned variable

Assign {WA = red}
Effect on other variables (neighbors of WA):

• NT can no longer be red
• SA can no longer be red

Red

Not red

Not red

133

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– Check neighbors of most recently assigned variable

Assign {Q = green}
Effect on other variables (neighbors of Q):

• NT can no longer be green
• SA can no longer be green
• NSW can no longer be green

Red

Not red
Not green

Green

Not red
Not green

Not green

(We already have failure, but FC
is too simple to detect it now)

134

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– Check neighbors of most recently assigned variable

Forward checking has detected that this partial assignment is inconsistent
with any complete assignment

Assign {V = blue}
Effect on other variables (neighbors of V):

• NSW can no longer be blue
• SA can no longer be blue (no values possible!)

Red

Not red
Not green

Green

Not red
Not green
Not blue

Not green

Not blue
Blue

Arc consistency (AC-3) algorithm
• An Arc X → Y is consistent iff for every value x of X

there is some value y of Y that is consistent with x
• Put all arcs X → Y on a queue

– Each undirected constraint graph arc is two directed arcs
– Undirected X Y becomes directed X → Y and Y → X
– X → Y and Y → X both go on queue, separately

• Pop one arc X → Y and remove any inconsistent
values from X

• If any change in X, put all arcs Z → X back on queue,
where Z is any neighbor of X that is not equal to Y

• Continue until queue is empty

136

Arc consistency (AC-3)
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff (iff = if and only if)
 for every value x of X there is some allowed value y for Y (note: directed!)

• Consider state after WA=red, Q=green
– SA → NSW is consistent because
 SA = blue and NSW = red satisfies all constraints on SA and NSW

137

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff
 for every value x of X there is some allowed value y for Y (note: directed!)

• Consider state after WA=red, Q=green
– NSW → SA consistent if
 NSW = red and SA = blue
 NSW = blue and SA = ???

=> NSW = blue can be pruned
No current domain value for SA is consistent

If X loses a value,
neighbors of X need
to be rechecked

138

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff
 for every value x of X there is some allowed value y for Y (note:
directed!)

• Enforce arc consistency:

– arc can be made consistent by removing blue from NSW

• Continue to propagate constraints:
– Check V → NSW : not consistent for V = red; remove red from V

139

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff
 for every value x of X there is some allowed value y for Y (note:
directed!)

• Continue to propagate constraints
• SA → NT not consistent:

– And cannot be made consistent! Failure!

• Arc consistency detects failure earlier than FC
– But requires more computation: is it worth the effort?

Local search: min-conflicts heuristic
• Use complete-state representation

– Initial state = all variables assigned values
– Successor states = change 1 (or more) values

• For CSPs

– allow states with unsatisfied constraints (unlike backtracking)
– operators reassign variable values
– hill-climbing with n-queens is an example

• Variable selection: randomly select any conflicted variable
• Value selection: min-conflicts heuristic

– Select new value that results in a minimum number of conflicts with
the other variables

Local search: min-conflicts heuristic
function MIN-CONFLICTS(csp, max_steps) return solution or failure
 inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

 current ← a (random) initial complete assignment for csp
 for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen, conflicted variable from

 VARIABLES[csp]
 value ← the value v for var that minimize

CONFLICTS(var,v,current,csp)
 set var = value in current
 return failure

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

Summary
• CSPs

– special kind of problem: states defined by values of a fixed set of variables,
goal test defined by constraints on variable values

• Backtracking = depth-first search, one variable assigned per node

• Heuristics: variable order & value selection heuristics help a lot

• Constraint propagation
– does additional work to constrain values and detect inconsistencies
– Works effectively when combined with heuristics

• Iterative min-conflicts is often effective in practice.

• Graph structure of CSPs determines problem complexity
– e.g., tree structured CSPs can be solved in linear time.

Review Propositional Logic A
Chapter 7.1-7.5; Optional 7.6-7.8

• Definitions:
– Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives,

Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology)

• Syntactic & Semantic Transformations:
– E.g., (A ⇒ B) ⇔ (¬A ∨ B)
– E.g., (KB |= α) ≡ (|= (KB ⇒ α)

• Truth Tables:
– Negation, Conjunction, Disjunction, Implication, Equivalence

(Biconditional)

Recap propositional logic: Syntax

• Propositional logic is the simplest logic – illustrates basic
ideas

• The proposition symbols P1, P2 etc are sentences

– If S is a sentence, ¬S is a sentence (negation)
– If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)
– If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)
– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication)
– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)

Recap propositional logic:
Semantics

Each model/world specifies true or false for each proposition symbol
E.g., P1,2 P2,2 P3,1
 false true false
With these symbols, 8 possible models can be enumerated automatically.

Rules for evaluating truth with respect to a model m:
 ¬S is true iff S is false
 S1 ∧ S2 is true iff S1 is true and S2 is true
 S1 ∨ S2 is true iff S1is true or S2 is true
 S1 ⇒ S2 is true iff S1 is false or S2 is true
 (i.e., is false iff S1 is true and S2 is false)
 S1 ⇔ S2 is true iff S1⇒S2 is true and S2⇒S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (true ∨ false) = true ∧ true = true

Recap propositional logic:
Truth tables for connectives

OR: P or Q is true or both are true.
XOR: P or Q is true but not both.

Implication is always true
when the premises are False!

Recap propositional logic:
Logical equivalence and rewrite rules

• To manipulate logical sentences we need some rewrite rules.
• Two sentences are logically equivalent iff they are true in same

models: α ≡ ß iff α╞ β and β╞ α

You need to
know these !

Recap propositional logic:
Entailment

• Entailment means that one thing follows from
another:

KB ╞ α

• Knowledge base KB entails sentence α if and only if α
is true in all worlds where KB is true

– E.g., the KB containing “the Giants won and the Reds won”

entails “The Giants won”.
– E.g., x+y = 4 entails 4 = x+y
– E.g., “Mary is Sue’s sister and Amy is Sue’s daughter”

entails “Mary is Amy’s aunt.”

Review: Models (and in FOL,
Interpretations)

• Models are formal worlds in which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)
– E.g. KB, = “Mary is Sue’s sister
 and Amy is Sue’s daughter.”
– α = “Mary is Amy’s aunt.”

• Think of KB and α as constraints,

 and of models m as possible states.
• M(KB) are the solutions to KB
 and M(α) the solutions to α.
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) ,
 when all solutions to KB are also solutions to α.

Wumpus models

All possible models in this reduced Wumpus world. What can we infer?

Review: Wumpus models

• KB = all possible wumpus-worlds consistent
with the observations and the “physics” of the
Wumpus world.

Review: Wumpus models

α1 = "[1,2] is safe", KB ╞ α1, proved by model checking.

Every model that makes KB true also makes α1 true.

Wumpus models

α2 = "[2,2] is safe", KB ╞ α2

Midterm Review

• Agents: R&N Chap 2.1-2.3
• State Space Search: R&N Chap 3.1-3.7
• Local Search: R&N Chap 4.1-4.2
• Adversarial (Game) Search: R&N Chap 5.1-5.4
• Constraint Satisfaction: R&N Chap 6.1-6.4

(except 6.3.3)
• Propositional Logic A: R&N Chap 7.1-7.5

	Introduction to �Artificial Intelligence
	Midterm Review
	Review Agents�Chapter 2.1-2.3
	Agents
	Agents and environments
	Rational agents
	Task Environment
	Environment types
	Environment types
	Review State Space Search�Chapter 3
	State-Space Problem Formulation
	Vacuum world state space graph
	Implementation: states vs. nodes
	Tree search vs. Graph search�Review Fig. 3.7, p. 77
	Tree search vs. Graph search�Review Fig. 3.7, p. 77
	Solutions to Repeated States
	Checking for identical nodes (1)�Check if a node is already in fringe-frontier
	Checking for identical nodes (2)�Check if a node is in explored/expanded
	Breadth-first graph search (R&N Fig. 3.11)
	Properties of breadth-first search
	Uniform cost search (R&N Fig. 3.14)�[A* is identical except queue sort = f(n)]
	Uniform-cost search
	Depth-limited search & IDS (R&N Fig. 3.17-18)
	Properties of iterative deepening search
	Depth-First Search (R&N Section 3.4.3)
	Properties of depth-first search
	Bidirectional Search
	Bi-Directional Search
	Blind Search Strategies (3.4)
	Search strategy evaluation
	Summary of algorithms�Fig. 3.21, p. 91
	Summary
	Heuristic function (3.5)
	Relationship of search algorithms
	Greedy best-first search
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Optimal Path
	Properties of greedy best-first search
	A* search
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	Properties of A*
	Admissible heuristics
	Consistent heuristics�(consistent => admissible)
	Optimality of A* (proof)�Tree Search, where h(n) is admissible
	Dominance
	Review Local Search�Chapter 4.1-4.2, 4.6; Optional 4.3-4.5
	Local search algorithms
	Random restart wrapper
	Random restart wrapper
	Tabu search wrapper
	Tabu search wrapper (inside random restart!)
	Local search algorithms
	Local Search Difficulties
	Local Search Difficulties
	Hill-climbing search
	Simulated annealing (Physics!)
	Probability(accept worse successor)
	Goal: “ratchet up” a bumpy slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Slide Number 84
	Local beam search
	Local beam search
	Genetic algorithms (Darwin!!)
	Genetic algorithms
	Slide Number 89
	Review Adversarial (Game) Search�Chapter 5.1-5.4
	Games as Search
	An optimal procedure:�The Min-Max method
	Two-ply Game Tree
	Pseudocode for Minimax Algorithm
	Properties of minimax
	Slide Number 97
	Static (Heuristic) Evaluation Functions
	Slide Number 99
	General alpha-beta pruning
	Alpha-beta Algorithm
	Pseudocode for Alpha-Beta Algorithm
	When to Prune?
	α/β Pruning vs. Returned Node Value
	Alpha-Beta Example Revisited
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Review Constraint Satisfaction�R&N 6.1-6.4 (except 6.3.3)
	Constraint Satisfaction Problems
	CSPs --- what is a solution?
	CSP example: map coloring
	Example: Map coloring solution
	Example: Map Coloring
	Backtracking search
	Backtracking search (Figure 6.5)
	Minimum remaining values (MRV)
	Degree heuristic for the initial variable
	Backtracking search (Figure 6.5)
	Least constraining value for value-ordering
	Look-ahead: Constraint propagation
	Forward checking
	Forward checking
	Forward checking
	Forward checking
	Arc consistency (AC-3) algorithm
	Arc consistency (AC-3)
	Arc consistency
	Arc consistency
	Arc consistency
	Local search: min-conflicts heuristic
	Local search: min-conflicts heuristic
	Min-conflicts example 1
	Summary
	Review Propositional Logic A�Chapter 7.1-7.5; Optional 7.6-7.8
	Recap propositional logic: Syntax
	Recap propositional logic: Semantics
	Recap propositional logic:�Truth tables for connectives
	Recap propositional logic:�Logical equivalence and rewrite rules
	Recap propositional logic: Entailment
	Review: Models (and in FOL, Interpretations)
	Wumpus models
	Review: Wumpus models
	Review: Wumpus models
	Wumpus models
	Midterm Review

