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CS-171 Midterm Review 
• Agents 

• (R&N Ch. 1-2, 26.preamble, 26.3-4, 27.4) 
• Propositional Logic 

• (R&N Ch. 7.1-7.5) 
• First-Order Logic 

• (R&N Ch. 8.1-8.5, 9.1-9.2) 
• Probability & Bayesian Networks 

• (R&N Ch. 13, 14.1-14.5) 
• Hidden Markov Models 

• (R&N Ch. 5.1-15.3) 
• Questions on any topic 
• Please review your quizzes & old test 



Review Agents 
Chapter 2.1-2.3 

• Agent definition (2.1) 
 

• Rational Agent definition (2.2) 
– Performance measure 

 

• Task evironment definition (2.3) 
– PEAS acronym 
– Properties of task environments 



Agents 
• An agent is anything that can be viewed as 

perceiving its environment through sensors and 
acting upon that environment through actuators 

 
• Human agent:  

– Sensors: eyes, ears, …  
– Actuators: hands, legs, mouth… 

 
• Robotic agent 

– Sensors: cameras, range finders, … 
– Actuators: motors 



Agents and environments 

• Percept: agent’s perceptual inputs at an 
instant 

• The agent function maps from percept 
sequences to actions: [f: P*  A] 

• The agent program runs on the physical 
architecture to produce f 

• agent = architecture + program 



• Rational Agent: For each possible percept sequence, a 
rational agent should select an action that is expected to 
maximize its performance measure, based on the 
evidence provided by the percept sequence and 
whatever built-in knowledge the agent has. 

 
• Performance measure: An objective criterion for success 

of an agent's behavior    (“cost”, “reward”, “utility”) 
 

• E.g., performance measure of a vacuum-cleaner agent 
could be amount of dirt cleaned up, amount of time 
taken, amount of electricity consumed, amount of noise 
generated, etc. 

Rational agents 



Task Environment 
• Before we design an intelligent agent, we must 

specify its “task environment”: 
   
   PEAS: 
 
   Performance measure 
   Environment 
   Actuators 
   Sensors 
 



Environment types 
• Fully observable (vs. partially observable): An agent's 

sensors give it access to the complete state of the 
environment at each point in time. 
 

• Deterministic (vs. stochastic): The next state of the 
environment is completely determined by the current state 
and the action executed by the agent. (If the environment 
is deterministic except for the actions of other agents, then 
the environment is strategic.) 
 

• Episodic (vs. sequential): An agent’s action is divided into 
atomic episodes. Decisions do not depend on previous 
decisions/actions. 
 

• Known (vs. unknown):  An environment is considered to 
be "known" if the agent understands the laws that govern 
the environment's behavior. 



Environment types 

• Static (vs. dynamic): The environment is unchanged while 
an agent is deliberating. (The environment is semidynamic 
if the environment itself does not change with the passage 
of time but the agent's performance score does) 
 

• Discrete (vs. continuous): A limited number of distinct, 
clearly defined percepts and actions. 
– How do we represent or abstract or model the world? 

 
• Single agent (vs. multi-agent): An agent operating by itself 

in an environment. Does the other agent interfere with my 
performance measure? 
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Review Propositional Logic 
Chapter 7.1-7.5; Optional 7.6-7.8 
• Definitions: 

– Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, 
Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology) 

• Syntactic  & Semantic Transformations: 
– E.g., (A ⇒ B) ⇔ (¬A ∨ B) 
– E.g., (KB |= α) ≡ (|= (KB ⇒ α) 

• Truth Tables: 
– Negation, Conjunction, Disjunction, Implication, Equivalence 

(Biconditional) 

• Inference: 
– By Resolution (CNF) 
– By Backward & Forward Chaining (Horn Clauses) 
– By Model Enumeration (Truth Tables) 



Recap propositional logic: Syntax 

• Propositional logic is the simplest logic –  illustrates basic 
ideas 
 

• The proposition symbols P1, P2 etc are sentences 
 

– If S is a sentence, ¬S is a sentence (negation) 
– If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction) 
– If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction) 
– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication) 
– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional) 



Recap propositional logic: 
Semantics 
Each model/world specifies true or false for each proposition symbol 

E.g.,  P1,2   P2,2   P3,1 
    false true  false 
With these symbols, 8 possible models can be enumerated automatically. 

 
Rules for evaluating truth with respect to a model m: 
  ¬S  is true iff  S is false   
  S1 ∧ S2   is true iff  S1 is true and  S2 is true 
  S1 ∨ S2   is true iff  S1is true or   S2 is true 
  S1 ⇒ S2  is true iff S1 is false or  S2 is true 
   (i.e.,  is false iff S1 is true and  S2 is false 
  S1 ⇔ S2 is true iff S1⇒S2 is true and S2⇒S1 is true 
 
Simple recursive process evaluates an arbitrary sentence, e.g., 

¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (true ∨ false) =  true ∧ true = true 



Recap propositional logic: 
Truth tables for connectives 

OR: P or Q is true or both are true. 
XOR: P or Q is true but not both. 

Implication is always true 
when the premises are False! 



Recap propositional logic: 
Logical equivalence and rewrite rules 
• To manipulate logical sentences we need some rewrite rules. 
• Two sentences are logically equivalent iff they are true in same 

models: α ≡ ß iff α╞ β and β╞ α 

You need to  
know these ! 



Entailment 
• Entailment means that one thing follows from 

another set of things: 
KB ╞ α 

 
• Knowledge base KB entails sentence α if and 

only if α is true in all worlds wherein KB is true 
 

– E.g., the KB = “the Giants won and the Reds won” 
entails α = “The Giants won”. 

– E.g., KB = “x+y = 4” entails α = “4 = x+y” 
– E.g., KB = “Mary is Sue’s sister and Amy is Sue’s 

daughter” entails α = “Mary is Amy’s aunt.” 
• The entailed α MUST BE TRUE in ANY world in 

which KB IS TRUE. 
 



Review: Models (and in FOL, 
Interpretations) 
• Models are formal worlds in which truth can be evaluated 

 
• We say m is a model of a sentence α if α is true in m 

 
• M(α) is the set of all models of α 

 
• Then KB ╞ α iff M(KB) ⊆ M(α) 

– E.g. KB, = “Mary is Sue’s sister 
 and Amy is Sue’s daughter.” 
– α = “Mary is Amy’s aunt.” 

 
• Think of KB and α as constraints, 

 and of models m as possible states. 
• M(KB) are the solutions to KB 
   and M(α) the solutions to α. 
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) , 
      when all solutions to KB are also solutions to α.  



Wumpus models 

All possible models in this reduced Wumpus world.  What can we infer? 



Review:  Wumpus models 

• KB = all possible wumpus-worlds consistent 
with the observations and the “physics” of the 
Wumpus world. 



Review:  Wumpus models 

α1 = "[1,2] is safe", KB ╞ α1, proved by model checking. 
 
Every model that makes KB true also makes α1 true. 

 



Wumpus models 

Now we have a query sentence, α1 = "[1,2] is safe“ 
KB ╞ α1, proved by model checking 
M(KB) (red outline) is a subset of M(α1) (orange dashed outline) 
⇒ α1 is true in any world in which KB is true 

 



Wumpus models 

Now we have another query sentence, α2 = "[2,2] is safe" 
KB ╞ α2, proved by model checking 
M(KB) (red outline) is a not a subset of M(α2) (dashed outline) 
⇒ α2 is false in some world(s) in which KB is true 



Recap propositional logic: Validity and satisfiability 

A sentence is valid if it is true in all models, 
e.g., True, A ∨¬A,  A ⇒ A,  (A ∧ (A ⇒ B)) ⇒ B 

 

Validity is connected to inference via the Deduction Theorem: 
KB ╞ α if and only if (KB ⇒ α) is valid 

 
A sentence is satisfiable if it is true in some model 

e.g., A∨ B,  C 
 

A sentence is unsatisfiable if it is false in all models 
e.g., A∧¬A 

 

Satisfiability is connected to inference via the following: 
 

KB ╞ A if and only if (KB ∧¬A) is unsatisfiable 
(there is no model for which KB is true and A is false)  



Logical inference 
• The notion of entailment can be used for logic inference. 

– Model checking (see wumpus example): 
 enumerate all possible models and check whether α  is true. 

 
• KB |-i α means KB derives a sentence α using inference procedure i 

 
• Sound (or truth preserving): 
 The algorithm only derives entailed sentences. 

– Otherwise it just makes things up. 
i is sound iff whenever KB |-i α it is also true that KB|= α 

– E.g., model-checking is sound 
Refusing to infer any sentence is Sound; so, Sound is weak alone. 

• Complete: 
 The algorithm can derive every entailed sentence. 
  i is complete iff whenever KB |= α it is also true that KB|-i α 
 Deriving every sentence is Complete; so, Complete is weak alone. 
 
       

 



Inference by Resolution 

• KB is represented in CNF 
– KB = AND of all the sentences in KB 
– KB sentence = clause = OR of literals 
– Literal = propositional symbol or its negation 

 
• Find two clauses in KB, one of which contains a literal and the 

other its negation 
– Cancel the literal and its negation 
– Bundle everything else into a new clause 
– Add the new clause to KB 
– Repeat 



Example: Conversion to CNF 
Example: B1,1  ⇔ (P1,2 ∨ P2,1) 
 
1. Eliminate ⇔ by replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α). 

= (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) 
 

2. Eliminate ⇒ by replacing α ⇒ β with ¬α∨ β and simplify. 
= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1) 

 

3. Move ¬ inwards using de Morgan's rules and simplify. 
   ¬(α ∨ β) ≡ (¬α ∧ ¬β), ¬(α ∧ β) ≡ (¬α ∨ ¬β) 

= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1) 
 

4. Apply distributive law (∧ over ∨) and simplify. 
= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) 



Example: Conversion to CNF 

Example: B1,1  ⇔ (P1,2 ∨ P2,1) 
 
From the previous slide we had: 

= (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) 
 
5. KB is the conjunction of all of its sentences (all are true), 
 so write each clause (disjunct) as a sentence in KB: 
 
     KB = 
 … 

(¬B1,1 ∨ P1,2 ∨ P2,1)  
(¬P1,2 ∨ B1,1)  
(¬P2,1 ∨ B1,1) 
… 
 

Often, Won’t Write “∨” or “∧” 
(we know they are there) 

(¬B1,1     P1,2    P2,1)  
(¬P1,2    B1,1)  
(¬P2,1   B1,1) 

(same) 



Resolution = Efficient Implication 

(OR    A  B  C  D) 
(OR  ¬A  E  F  G) 
----------------------------- 
(OR  B  C  D  E  F  G) 

(NOT (OR  B  C  D))  =>  A 
A  =>  (OR  E  F  G) 
---------------------------------------------------- 
(NOT (OR  B  C  D))  => (OR  E  F  G) 
---------------------------------------------------- 
(OR  B  C  D  E  F  G) 

->Same -> 
->Same -> 

Recall that (A => B) = ( (NOT A) OR B) 
and so: 
             (Y OR X) = ( (NOT X) => Y) 
 ( (NOT Y) OR Z) = (Y => Z) 
which yields: 
 ( (Y OR X) AND ( (NOT Y) OR Z) ) = ( (NOT X) => Z) = (X OR Z)   

Recall: All clauses in KB are conjoined by an implicit AND (= CNF representation). 



Resolution Examples 
 

• Resolution: inference rule for CNF: sound and complete! * 
( )
( )

( )

A B C
A

B C

∨ ∨

¬
− − − − − − − − − − − −

∴ ∨

“If A or B or C is true, but not A, then B or C must be true.” 

( )
( )

( )

A B C
A D E

B C D E

∨ ∨

¬ ∨ ∨
− − − − − − − − − − −

∴ ∨ ∨ ∨

“If A is false then B or C must be true, or if A is true 
then D or E must be true, hence since A is either true or  
false, B or C or D or E must be true.”  

( )
( )

( )

A B
A B

B B B

∨

¬ ∨
− − − − − − − −

∴ ∨ ≡ Simplification 
is done always. 

* Resolution is “refutation complete” 
in that it can prove the truth of any 
entailed sentence by refutation. 

“If A or B is true, and 
not A or B is true, 
then B must be true.”  



More Resolution Examples 

1.  (P Q ¬R S) with (P ¬Q W X) yields (P ¬R S W X) 
 Order of literals within clauses does not matter. 

2. (P Q ¬R S) with (¬P) yields (Q ¬R S) 
3.  (¬R) with (R) yields ( ) or FALSE 
4.  (P Q ¬R S) with (P R ¬S W X) yields (P Q ¬R R W X) or (P Q S ¬S W X) or TRUE 
5. (P ¬Q R ¬S) with (P ¬Q R ¬S) yields None possible (no complementary literals) 
6.  (P ¬Q ¬S W) with (P R ¬S X) yields None possible (no complementary literals) 
7.  ( (¬ A) (¬ B) (¬ C) (¬ D) ) with ( (¬ C) D) yields ( (¬ A) (¬ B) (¬ C ) ) 
8.  ( (¬ A) (¬ B) (¬ C ) ) with ( (¬ A) C) yields ( (¬ A) (¬ B) ) 
9.  ( (¬ A) (¬ B) ) with (B) yields (¬ A) 
10.  (A C) with (A (¬ C) ) yields (A) 
11.  (¬ A) with (A) yields ( ) or FALSE 



Only Resolve ONE Literal Pair! 
If more than one pair, result always = TRUE. 
Useless!! Always simplifies to TRUE!! 
No! 
(OR    A    B    C    D) 
(OR  ¬A  ¬B    F    G) 
----------------------------- 
(OR  C  D  F  G) 
No! This is wrong! 

Yes! (but = TRUE) 
(OR    A    B    C    D) 
(OR  ¬A  ¬B    F    G) 
----------------------------- 
(OR   B ¬B C  D  F  G) 
Yes! (but = TRUE) 

No! 
(OR    A    B    C    D) 
(OR  ¬A  ¬B  ¬C  ) 
----------------------------- 
(OR  D) 
No! This is wrong! 

Yes! (but = TRUE) 
(OR    A    B    C    D) 
(OR  ¬A  ¬B  ¬C   ) 
----------------------------- 
(OR   A ¬A B ¬B  D) 
Yes! (but = TRUE) 



•  The resolution algorithm tries to prove: 
 
 

•  Generate all new sentences from KB and the (negated) query. 
•  One of two things can happen: 

 
1. We find                         which is unsatisfiable. I.e. we can entail the query. 

 
2. We find no contradiction: there is a model that satisfies the sentence 
                        (non-trivial) and hence we cannot entail the query. 

Resolution Algorithm 

P P∧ ¬

KB α∧ ¬

|KB equivalent to
KB unsatisfiable

α
α

=

∧ ¬



Resolution example 
Resulting Knowledge Base stated in CNF 

• “Laws of Physics” in the Wumpus World: 
 (¬B1,1     P1,2    P2,1)  
 (¬P1,2    B1,1)  
 (¬P2,1   B1,1) 
 

• Particular facts about a specific instance: 
 (¬ B1,1) 
 

• Negated goal or query sentence: 
 (P1,2) 



Resolution example 
A Resolution proof ending in ( ) 

• Knowledge Base at start of proof: 
 (¬B1,1     P1,2    P2,1) 
 (¬P1,2    B1,1) 
 (¬P2,1   B1,1) 
 (¬ B1,1) 
 (P1,2) 

 A resolution proof ending in ( ): 
• Resolve (¬P1,2    B1,1) and (¬ B1,1) to give (¬P1,2 ) 
• Resolve (¬P1,2 ) and (P1,2) to give ( ) 

 
• Consequently, the goal or query sentence is entailed by KB. 
• Of course, there are many other proofs, which are OK iff correct. 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 
( (NOT Y) (NOT R) ) (M Y)  (R Y)  (H (NOT M) ) 
(H R)   ( (NOT H) G) ( (NOT G) (NOT H) ) 
 

• Fourth, produce a resolution proof ending in ( ): 
• Resolve (¬H ¬G) and (¬H G) to give (¬H) 
• Resolve (¬Y ¬R) and (Y M) to give (¬R M) 
• Resolve (¬R M) and (R H) to give (M H) 
• Resolve (M H) and (¬M H) to give (H) 
• Resolve (¬H) and (H) to give ( ) 

 
• Of course, there are many other proofs, which are OK iff correct. 



Horn Clauses 

• Resolution can be exponential in space and time. 
 
• If we can reduce all clauses to “Horn clauses” inference is linear in space and time 

A clause with at most 1 positive literal. 
e.g.  
• Every Horn clause can be rewritten as an implication with 
  a conjunction of positive literals in the premises and at most 
  a single positive literal as a conclusion. 
  e.g.                      ≡ 
• 1 positive literal and ≥ 1 negative literal: definite clause (e.g., above) 
• 0 positive literals: integrity constraint or goal clause 
   e.g.                                               states that (A ∧ B) must be false 
• 0 negative literals: fact 
    e.g., (A) ≡ (True ⇒ A) states that A must be true. 
• Forward Chaining and Backward chaining are sound and complete 
  with Horn clauses and run linear in space and time. 

A B C∨ ¬ ∨ ¬

B C A∧ ⇒

( ) ( )A B A B False¬ ∨ ¬ ≡ ∧ ⇒

A B C∨ ¬ ∨ ¬



Propositional Logic --- Summary 

• Logical agents apply inference to a knowledge base to derive new 
information and make decisions 
 

• Basic concepts of logic: 
– syntax: formal structure of sentences 
– semantics: truth of sentences wrt models 
– entailment: necessary truth of one sentence given another 
– inference: deriving sentences from other sentences 
– soundness: derivations produce only entailed sentences 
– completeness: derivations can produce all entailed sentences 
– valid: sentence is true in every model (a tautology) 

 
• Logical equivalences allow syntactic manipulations 
 
• Propositional logic lacks expressive power 

– Can only state specific facts about the world. 
– Cannot express general rules about the world 
    (use First Order Predicate Logic instead) 
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Review First-Order Logic 
Chapter 8.1-8.5, 9.1-9.2, 9.5.1-9.5.5 

• Syntax & Semantics  
– Predicate symbols, function symbols, constant symbols, variables, quantifiers. 
– Models, symbols, and interpretations 

• De Morgan’s rules for quantifiers 
• Nested quantifiers 

– Difference between “∀ x ∃ y P(x, y)” and “∃ x ∀ y P(x, y)” 
• Translate simple English sentences to FOPC and back 

– ∀ x ∃ y Likes(x, y) ⇔ “Everyone has someone that they like.” 
– ∃ x ∀ y Likes(x, y) ⇔ “There is someone who likes every person.” 

• Unification and the Most General Unifier 
• Inference in FOL 

– By Resolution (CNF) 



Syntax of FOL: Basic syntax elements are symbols 

• Constant Symbols (correspond to English nouns) 
– Stand for objects in the world. 

• E.g., KingJohn, 2, UCI, ...  
 
• Predicate Symbols (correspond to English verbs) 

– Stand for relations (maps a tuple of objects to a truth-value) 
• E.g., Brother(Richard, John), greater_than(3,2), ... 

– P(x, y) is usually read as “x is P of y.” 
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.” 

 
• Function Symbols (correspond to English nouns) 

– Stand for functions (maps a tuple of objects to an object) 
• E.g., Sqrt(3), LeftLegOf(John), ... 

 
• Model (world) = set of domain objects, relations, functions 
• Interpretation maps symbols onto the model (world) 

– Very many interpretations are possible for each KB and world! 
– The KB is to rule out those inconsistent with our knowledge. 



Syntax of FOL: Terms 
• Term = logical expression that refers to an object 

 

• There are two kinds of terms: 
 
– Constant Symbols stand for (or name) objects: 

• E.g., KingJohn, 2, UCI, Wumpus, ...  
 

– Function Symbols map tuples of objects to an object: 
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x) 
• This is nothing but a complicated kind of name 

– No “subroutine” call, no “return value” 
 



Syntax of FOL: Atomic Sentences 
• Atomic Sentences state facts (logical truth values). 

– An atomic sentence is a Predicate symbol, optionally followed by a 
parenthesized list of any argument terms 

– E.g., Married( Father(Richard), Mother(John) ) 
– An atomic sentence asserts that some relationship (some predicate) holds 

among the objects that are its arguments. 
 

• An Atomic Sentence is true in a given model if the relation referred to 
by the predicate symbol holds among the objects (terms) referred to 
by the arguments. 



Syntax of FOL: 
Connectives & Complex Sentences 

• Complex Sentences are formed in the same way, using 
the same logical connectives, as in propositional logic 

 
• The Logical Connectives: 

– ⇔   biconditional 
– ⇒   implication 
– ∧   and 
– ∨   or 
– ¬   negation 

 
• Semantics for these logical connectives are the same as 

we already know from propositional logic. 



Syntax of FOL: Variables 

• Variables range over objects in the world. 
 

• A variable is like a term because it represents an object. 
 

• A variable may be used wherever a term may be used. 
– Variables may be arguments to functions and predicates. 

 
• (A term with NO variables is called a ground term.) 

 
• (A variable not bound by a quantifier is called free.) 

– All variables we will use are bound by a quantifier. 
 



Syntax of FOL: Logical Quantifiers 
• There are two Logical Quantifiers: 

– Universal: ∀ x P(x)   means “For all x, P(x).” 
• The “upside-down A” reminds you of “ALL.” 
• Some texts put a comma after the variable: ∀ x, P(x) 

– Existential: ∃ x P(x)   means “There exists x such that, P(x).” 
• The “backward E” reminds you of “EXISTS.” 
• Some texts put a comma after the variable: ∃ x, P(x) 

 
• You can ALWAYS convert one quantifier to the other. 

– ∀ x P(x) ≡ ¬∃ x ¬P(x) 
– ∃ x P(x) ≡ ¬∀ x ¬P(x) 
– RULES: ∀ ≡ ¬∃¬  and  ∃ ≡ ¬∀¬ 

 
• RULES: To move negation “in” across a quantifier, 

Change the quantifier to “the other quantifier” 
and negate the predicate on “the other side.” 

– ¬∀ x P(x) ≡ ¬ ¬∃ x ¬P(x) ≡ ∃ x ¬P(x) 
– ¬∃ x P(x) ≡ ¬ ¬∀ x ¬P(x) ≡ ∀ x ¬P(x) 

 
 
 



Universal Quantification ∀ 
• ∀ x means “for all x it is true that…” 

 
• Allows us to make statements about all objects that have 

certain properties 
 

• Can now state general rules: 
 
∀ x  King(x) => Person(x)   “All kings are persons.” 
∀ x  Person(x) => HasHead(x)   “Every person has a head.” 
∀ i  Integer(i) => Integer(plus(i,1))   “If i is an integer then i+1 is an integer.” 
 

• Note:  ∀ x  King(x) ∧ Person(x)   is not correct!   
 
This would imply that all objects x are Kings and are People (!) 
 
∀ x  King(x) => Person(x) is the correct way to say this 
 

• Note that => (or ⇔) is the natural connective to use with ∀ . 
 
 
 

 
 



Existential Quantification ∃ 
• ∃ x means “there exists an x such that….”  

– There is in the world at least one such object x 
 

• Allows us to make statements about some object without 
naming it, or even knowing what that object is: 
 

∃ x   King(x)   “Some object is a king.” 
∃ x   Lives_in(John, Castle(x))   “John lives in somebody’s castle.” 
∃ i    Integer(i) ∧ Greater(i,0)   “Some integer is greater than zero.” 
                 
 

• Note:  ∃ i    Integer(i) ⇒ Greater(i,0)   is not correct!   
 
It is vacuously true if anything in the world were not an integer (!) 
 
∃ i    Integer(i) ∧ Greater(i,0) is the correct way to say this 
 

• Note that ∧ is the natural connective to use with ∃ . 
 
 
 

 
    



Combining Quantifiers --- Order (Scope) 
The order of “unlike” quantifiers is important. 
 Like nested variable scopes in a programming language. 
 Like nested ANDs and ORs in a logical sentence. 
 
∀ x ∃ y  Loves(x,y)     

– For everyone (“all x”) there is someone (“exists y”) whom they love. 
– There might be a different y for each x (y is inside the scope of x) 

∃ y ∀ x  Loves(x,y) 
– There is someone (“exists y”) whom everyone loves (“all x”). 
– Every x loves the same y (x is inside the scope of y) 

Clearer with parentheses:  ∃ y ( ∀ x    Loves(x,y) ) 
 
The order of “like” quantifiers does not matter. 
 Like nested ANDs and ANDs in a logical sentence 
  ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y) 
  ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y) 



De Morgan’s Law for Quantifiers 
De Morgan’s Rule Generalized De Morgan’s Rule 

AND/OR Rule is simple: if you bring a negation inside a disjunction or a 
conjunction, always switch between them (¬ OR  AND ¬ ;  ¬ AND  OR ¬). 

QUANTIFIER Rule is similar: if you bring a negation inside a universal or 
existential, always switch between them (¬ ∃ ∀ ¬ ; ¬ ∀  ∃ ¬). 

P ∧ Q ≡ ¬ (¬ P ∨ ¬ Q)  ∀ x P(x) ≡ ¬ ∃ x ¬ P(x) 
P ∨ Q ≡ ¬ (¬ P ∧ ¬ Q)  ∃ x P(x) ≡ ¬ ∀ x ¬ P(x) 
 
¬ (P ∧ Q) ≡ (¬ P ∨ ¬ Q)  ¬ ∀ x P(x) ≡ ∃ x ¬ P(x) 
¬ (P ∨ Q) ≡ (¬ P ∧ ¬ Q)  ¬ ∃ x P(x) ≡ ∀ x ¬ P(x) 





Semantics: Interpretation 
• An interpretation of a sentence is an assignment that maps  

• Object constants to objects in the worlds,  
• n-ary function symbols to n-ary functions in the world, 
• n-ary relation symbols to n-ary relations in the world 

• Given an interpretation, an atomic sentence has the value 
“true” if it denotes a relation that holds for those individuals 
denoted in the terms. Otherwise it has the value “false.” 
• Example: Block world: 

• A, B, C, Floor, On, Clear 
• World: 
• On(A,B) is false, Clear(B) is true, On(C,Floor) is true… 

• Under an interpretation that maps symbol A to block A, 
    symbol B to block B, symbol C to block C, symbol Floor to the Floor 
• Some other interpretation might result in different truth values. 



Semantics: Models and Definitions 

•An interpretation and possible world satisfies a wff (sentence) if the wff 
has the value “true” under that interpretation in that possible world. 
 

•Model: A domain and an interpretation that satisfies a wff is a model of 
that wff 
 

•Validity: Any wff that has the value “true” in all possible worlds and 
under all interpretations is valid. 
 

•Any wff that does not have a model under any interpretation is 
inconsistent or unsatisfiable. 
 

•Any wff that is true in at least one possible world under at least one 
interpretation is satisfiable. 
 

•If a wff w has a value true under all the models of a set of sentences KB 
then KB logically entails w. 



Conversion to CNF 
• Everyone who loves all animals is loved by someone: 

 
∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)] 

 
1. Eliminate biconditionals and implications 

 
∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)] 

 
2. Move ¬ inwards: 
   ¬∀x p ≡ ∃x ¬p,  ¬ ∃x p ≡ ∀x ¬p 
 

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]  
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
 



Conversion to CNF contd. 
3. Standardize variables: each quantifier should use a different one 

 
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)] 

  
 

4. Skolemize: a more general form of existential instantiation. 
Each existential variable is replaced by a Skolem function of the enclosing universally 

quantified variables: 
 
 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x) 

 

5. Drop universal quantifiers: 
 [Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x) 

 
 

6. Distribute ∨ over ∧ : 
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)] 



Unification 
•Recall: Subst(θ, p) = result of substituting θ into sentence p 
 
 

•Unify algorithm: takes 2 sentences p and q and returns a unifier if one exists 
 

         Unify(p,q) = θ   where Subst(θ, p) = Subst(θ, q) 
 
  where θ is a list of variable/substitution pairs 
  that will make p and q syntactically identical 
 
•Example: 
       p = Knows(John,x) 
       q = Knows(John, Jane) 
 
           Unify(p,q) = {x/Jane}    



Unification examples 
•  simple example: query = Knows(John,x), i.e., who does John know? 
   
 
p    q    θ   
Knows(John,x)  Knows(John,Jane)   {x/Jane} 
Knows(John,x) Knows(y,OJ)   {x/OJ,y/John} 
Knows(John,x)  Knows(y,Mother(y))  {y/John,x/Mother(John)} 
Knows(John,x) Knows(x,OJ)   {fail} 
 

 
 

 
• Last unification fails: only because x can’t take values John and OJ at the same time 

– But we know that if John knows x, and everyone (x) knows OJ, we should be able to infer that John 
knows OJ 

 
• Problem is due to use of same variable x in both sentences 

 
• Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,OJ) 



Unification examples 
1) UNIFY( Knows( John, x ), Knows( John, Jane ) )     { x / Jane }   

 
2) UNIFY( Knows( John, x ), Knows( y, Jane ) )   { x / Jane, y / John } 

 
3) UNIFY( Knows( y, x ), Knows( John, Jane ) )   { x / Jane, y / John } 

 
4) UNIFY( Knows( John, x ), Knows( y, Father (y) ) )    { y / John, x / Father (John) }  

 
5) UNIFY( Knows( John, F(x) ), Knows( y, F(F(z)) ) )    { y / John, x / F (z) }   

 
6) UNIFY( Knows( John, F(x) ), Knows( y, G(z) ) )   None   

 
7) UNIFY( Knows( John, F(x) ), Knows( y, F(G(y)) ) )   { y / John, x / G (John) } 

  

 



Example knowledge base 

• The law says that it is a crime for an American to sell weapons 
to hostile nations.  The country Nono, an enemy of America, 
has some missiles, and all of its missiles were sold to it by 
Colonel West, who is American. 

 

• Prove that Col. West is a criminal 



Example knowledge base (Horn clauses) 
... it is a crime for an American to sell weapons to hostile nations: 

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x) 
 

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x): 
Owns(Nono,M1) ∧ Missile(M1) 

 

… all of its missiles were sold to it by Colonel West 
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono) 

 

Missiles are weapons: 
Missile(x) ⇒ Weapon(x) 

 

An enemy of America counts as "hostile“: 
Enemy(x,America) ⇒ Hostile(x) 

 

West, who is American … 
American(West) 

 

The country Nono, an enemy of America … 
Enemy(Nono,America) 
 



Resolution proof: 

¬ 
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Review Probability 
Chapter 13 
• Basic probability notation/definitions: 

– Probability model, unconditional/prior and 
conditional/posterior probabilities, factored 
representation (= variable/value pairs), random variable, 
(joint) probability distribution, probability density function 
(pdf), marginal probability, (conditional) independence, 
normalization, etc. 

• Basic probability formulas: 
– Probability axioms, sum rule, product rule, Bayes’ rule. 

• How to use Bayes’ rule: 
– Naïve Bayes model (naïve Bayes classifier) 

 



Syntax 
 

•Basic element: random variable 
•Similar to propositional logic: possible worlds defined by assignment of 

values to random variables. 
 

•Booleanrandom variables 

 e.g., Cavity (= do I have a cavity?) 
•Discreterandom variables 

 e.g., Weather is one of 
<sunny,rainy,cloudy,snow> 

•Domain values must be exhaustive and mutually exclusive 
 

•Elementary proposition is an assignment of a value to a random variable: 
 e.g., Weather = sunny; Cavity = false(abbreviated as ¬cavity) 

 
•Complex propositions formed from elementary propositions and standard 

logical connectives : 
 e.g., Weather = sunny ∨  Cavity = false 

 



Probability 
• P(a) is the probability of proposition “a” 

– e.g., P(it will rain in London tomorrow) 
– The proposition a is actually true or false in the real-world 
 

• Probability Axioms: 
– 0  ≤ P(a) ≤ 1 
– P(NOT(a))  = 1 – P(a) =>  ΣA P(A) = 1 
– P(true)  =  1 
– P(false) =  0 
– P(A OR B) = P(A) + P(B) – P(A AND B) 

 
• Any agent that holds degrees of beliefs that contradict these 

axioms will act irrationally in some cases 
 

• Rational agents cannot violate probability theory. 
─ Acting otherwise results in irrational behavior. 

 
 
 
 
 

 



Conditional Probability 
• P(a|b) is the conditional probability of proposition a, 

conditioned on knowing that b is true, 
– E.g., P(rain in London tomorrow | raining in London today) 
– P(a|b) is a “posterior” or conditional probability 
– The updated probability that a is true, now that we know b 
– P(a|b) = P(a ∧ b) / P(b) 
– Syntax:  P(a | b) is the probability of a given that b is true 

• a and b can be any propositional sentences 
• e.g., p( John wins OR Mary wins | Bob wins AND Jack loses) 

 

• P(a|b) obeys the same rules as probabilities, 
– E.g., P(a | b)  + P(NOT(a) | b) = 1 
– All probabilities in effect are conditional probabilities 

• E.g., P(a) = P(a | our background knowledge) 

 
 
 
 
 
 

 



Concepts of Probability 
• Unconditional Probability  

─ P(a), the probability of “a” being true, or P(a=True) 
─ Does not depend on anything else to be true (unconditional) 
─ Represents the probability prior to further information that may adjust it 

(prior) 
 

• Conditional Probability  
─ P(a|b), the probability of “a” being true, given that “b” is true 
─ Relies on “b” =  true (conditional) 
─ Represents the prior probability adjusted based upon new information “b” 

(posterior) 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a|b, c, d) 
 

• Joint Probability  
─ P(a, b) = P(a ˄ b), the probability of “a” and “b” both being true 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a, b, c, d) 
 

 
 

 
 
 
 
 

 



Basic Probability Relationships 
• P(A) + P(¬ A) = 1 

– Implies that P(¬ A) = 1 ─ P(A) 

• P(A, B) = P(A ˄ B) = P(A) + P(B) ─ P(A ˅ B) 
– Implies that P(A ˅ B) = P(A) + P(B) ─ P(A ˄ B) 

• P(A | B) = P(A, B) / P(B) 
– Conditional probability; “Probability of A given B” 

• P(A, B) = P(A | B) P(B) 
– Product Rule (Factoring); applies to any number of variables 
– P(a, b, c,…z) = P(a | b, c,…z) P(b | c,...z) P(c|...z)...P(z) 

• P(A) =  ΣB,C P(A, B, C) =  Σb∈B,c∈C P(A, b, c) 
– Sum Rule (Marginal Probabilities); for any number of variables 
– P(A, D) = ΣB  ΣC  P(A, B, C, D) = Σb∈B  Σc∈C  P(A, b, c, D) 

• P(B | A) = P(A | B) P(B) / P(A) 
– Bayes’ Rule; for any number of variables 

 
 

 

 
 

 

You need to  
know these ! 



Full Joint Distribution 
• We can fully specify a probability space by 

constructing a full joint distribution: 
– A full joint distribution contains a probability for 

every possible combination of variable values.  
– E.g., P( J=f, M=t, A=t, B=t, E=f ) 

 

• From a full joint distribution, the product rule, 
sum rule, and Bayes’ rule can create any desired 
joint and conditional probabilities. 

    

 



Computing with Probabilities: Law of Total Probability 

Law of Total Probability (aka “summing out” or marginalization) 
             P(a)  = Σb  P(a, b)  
                     = Σb  P(a | b) P(b)        where B is any random variable 
 
  

Why is this useful? 

  Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any 
“marginal” probability (e.g., P(b)) by summing out the other 
variables, e.g., 

                   

                 P(b)  = Σa Σc Σd P(a, b, c, d)  
 

We can compute any conditional probability given a joint distribution, e.g., 
                

              P(c | b)  = Σa Σd P(a, c, d | b)  
                        =  Σa Σd P(a, c, d, b) / P(b)   
                          where P(b) can be computed as above 
 
 

 

 
 



Computing with Probabilities: 
The Chain Rule or Factoring 
We can always write 
      P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z) 
                                       (by definition of joint probability) 
 
Repeatedly applying this idea, we can write 
       P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z) 
 
This factorization holds for any ordering of the variables 
 
This is the chain rule for probabilities 
 



Independence 

• Formal Definition: 
– 2 random variables A and B are independent iff: 
   P(a, b) = P(a) P(b),     for all values a, b 

 

• Informal Definition: 
– 2 random variables A and B are independent iff: 
              P(a | b) = P(a)     OR   P(b | a) = P(b),   for all values a, b 
– P(a | b) = P(a) tells us that knowing b provides no change in our probability 

for a, and thus b contains no information about a. 
 

• Also known as marginal independence, as all other variables have 
been marginalized out. 

 
• In practice true independence is very rare: 

– “butterfly in China” effect 
– Conditional independence is much more common and useful   

 
 



Conditional Independence 
• Formal Definition: 

– 2 random variables A and B are conditionally independent given C iff: 
  P(a, b|c) = P(a|c) P(b|c),     for all values a, b, c 
 

• Informal Definition: 
– 2 random variables A and B are conditionally independent given C iff: 
  P(a|b, c) = P(a|c)     OR   P(b|a, c) = P(b|c),   for all values a, b, c 
– P(a|b, c) = P(a|c) tells us that learning about b, given that we already know c, 

provides no change in our probability for a, and thus b contains no 
information about a beyond what c provides. 
 

• Naïve Bayes Model: 
– Often a single variable can directly influence a number of other variables, all 

of which are conditionally independent, given the single variable. 
– E.g., k different symptom variables X1, X2, … Xk, and C = disease, reducing to: 
  P(X1, X2,…. XK | C) = P(C) Π  P(Xi | C) 

 

 



Examples of Conditional 
Independence 
• H=Heat, S=Smoke, F=Fire 

– P(H, S | F) = P(H | F) P(S | F) 
– P(S | F, S) = P(S | F) 
– If we know there is/is not a fire, observing heat tells us no more 

information about smoke 

• F=Fever, R=RedSpots, M=Measles 
– P(F, R | M) = P(F | M) P(R | M) 
– P(R | M, F) = P(R | M) 
– If we know we do/don’t have measles, observing fever tells us no 

more information about red spots 

• C=SharpClaws, F=SharpFangs, S=Species 
– P(C, F | S) = P(C | S) P(F | S) 
– P(F | S, C) = P(F | S) 
– If we know the species, observing sharp claws tells us no more 

information about sharp fangs 



Review Bayesian Networks 
Chapter 14.1-5 

• Basic concepts and vocabulary of Bayesian networks. 
– Nodes represent random variables. 
– Directed arcs represent (informally) direct influences. 
– Conditional probability tables, P( Xi | Parents(Xi) ). 

 
• Given a Bayesian network: 

– Write down the full joint distribution it represents. 
 

• Given a full joint distribution in factored form: 
– Draw the Bayesian network that represents it. 

 
• Given a variable ordering and background assertions of conditional 

independence among the variables: 
– Write down the factored form of the full joint distribution, as simplified by the 

conditional independence assertions. 
• Use the network to find answers to probability questions about it.  

 



Bayesian Networks 
• Represent dependence/independence via a directed graph   

– Nodes = random variables 
– Edges = direct dependence 

• Structure of the graph  Conditional independence 
 

• Recall the chain rule of repeated conditioning: 
 
 

 
 

 
• Requires that graph is acyclic (no directed cycles) 
• 2 components to a Bayesian network 

– The graph structure (conditional independence assumptions) 
– The numerical probabilities (of each variable given its parents) 

 

The full joint distribution The graph-structured approximation 



•   A Bayesian network specifies a joint distribution in a structured form: 

 

 

 

 

   

 
• Dependence/independence represented via a directed graph:   

− Node   = random variable 
− Directed Edge  = conditional dependence 
− Absence of Edge  = conditional independence 
 

 
•Allows concise view of joint distribution relationships:   

− Graph nodes and edges show conditional relationships between variables. 
− Tables provide probability data. 
 

Bayesian Network 

A B 

C 

p(A,B,C) = p(C|A,B)p(A|B)p(B) 
   = p(C|A,B)p(A)p(B) 

Full factorization 

After applying 
conditional 
independence 
from the graph 



Burglar Alarm Example 

• Consider the following 5 binary variables: 
– B = a burglary occurs at your house 
– E = an earthquake occurs at your house 
– A = the alarm goes off 
– J  = John calls to report the alarm 
– M = Mary calls to report the alarm 

 

• Sample Query: What is P(B|M, J) ? 
• Using full joint distribution to answer this question requires  

– 25 - 1= 31 parameters 

•  Can we use prior domain knowledge to come up with a 
Bayesian network that requires fewer probabilities? 



The Resulting Bayesian Network 



Given a graph, can we “read off” 
conditional independencies? 

The “Markov Blanket” of X 
(the gray area in the figure) 
 
X is conditionally independent of 
everything else, GIVEN the 
values of: 
 * X’s parents 
 * X’s children 
 * X’s children’s parents 
 
X is conditionally independent of 
its non-descendants, GIVEN the 
values of its parents. 
 



Summary 

• Bayesian networks represent a joint distribution using a graph 
 

• The graph encodes a set of conditional independence assumptions 
 

• Answering queries (or inference or reasoning) in a Bayesian network amounts 
to computation of appropriate conditional probabilities 
 

• Probabilistic inference is intractable in the general case 
– Can be done in linear time for certain classes of Bayesian networks (polytrees: at 

most one directed path between any two nodes) 
– Usually faster and easier than manipulating the full joint distribution 
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