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p53 and Human Cancers

Thanks to
Richard Lathrop

* P53 is a central tumor
suppressor protein

“The guardlan of the
genome

 Cancer Mutants:

About 50% of all human
cancers have p53
mutations.

e Rescue Mutants:
Several second-site

mutations restore p53 core domain bound to DNA
functionality to some p53 \mage Generated with UCSF Chimera
Cancer mUtantS In VIVO' Cho, Y., Gorina, S., Jeffrey, P.D., Pavletich, N.P. Crystal

structure of a p53 tumor suppressor-DNA complex:
understanding tumorigenic mutations. Science Vv265
pp.346-355 , 1994



Active Learning for Biological Discovery

Thanks to
Richard Lathrop

Find Cancer =

Rescue
Mutants

Theory

Experiment



Computational Active Learning
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Visualization of Selected Regions

» Positive Region:

Predicted Active
06-105

* Negative Region:

Predicted Inactive
223-232 (Red)

* Expert Region:

Predicted Active
114-123

Thanks to
Richard Lathrop




Novel Single-a.a. Cancer Rescue Mutants

Thanks to
Richard Lathrop
MIP Positive MIP Negative Expert
(96-105) (223-232) (114-123)
# Strong - g
Rescue 8 0 (p <0.008) 6 (not significant)
# Weak Rescue 3 2 (not significant) 7 (not significant)
Total # Rescue 11 2 (p<0.022) 13 (not significant)

No significant differences between the MIP Positive and Expert regions.
Both were statistically significantly better than the MIP Negative region.
The Positive region rescued for the first time the cancer mutant P152L.

NoO previous single-a.a. rescue mutants in any region.



Complete architectures for intelligence?

* Search?
— Solve the problem of what to do.
* Logic and inference?

— Reason about what to do.

— Encoded knowledge/”expert” systems?
* Know what to do.

* Learning?
— Learn what to do.

* Modern view: It’s complex & multi-faceted.



Automated Learning

< Why learn?
— Key to intelligence
— Take real data - get feedback - improve performance - reiterate
— USC Autonomous Flying Vehicle Project

< Types of learning
— Supervised learning: learn mapping: attributes - “target”
— Classification: learn discreet target variable (e.g., spam email)
— Regression: learn real valued target variable (e.g., stock market)

— Unsupervised learning: no target variable; “understand” hidden data structure
— Clustering: grouping data into K groups (e.g. K-means)
— Latent space embedding: learn simple representation of the data (e.g. PCA, SVD)

—  Other types of learning
- Reinforcement learning: e.g., game-playing agent
- Learning to rank, e.g., document ranking in Web search
= And many others....



Unsupervised Learning

Finding hidden structure in unlabeled data



Unsupervised Learning

Principal Component Analysis

PCA

T=XW

X'is a m-by-n matrix, where n columns represent attributes and m rows
represent samples

W is a m-by-m matrix whose columns are the eigenvectors of XTX

T is eigenvalue decomposition of a data covariance matrix

« EXxplains variance in the data via principle components
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Principle Component Analysis (PCA) in Biology
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Domestication in Crops
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Domestication in Crops

Principle Component Analysis (PCA) + K-means Clustering
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Clustering

Unsupervised Learning



Thanks to

Padhraic Smyth

Application to Extra-Tropical Cyclones

Gaffney et al, Climate Dynamics, 2007
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Thanks to

Padhraic Smyth
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Thanks to
Padhraic Smyth

Cluster Shapes for Pacific Typhoon Tracks

Mean Regression Trajectories
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TROPICAL CYCLONES Western North Pacific
Cluster A
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Padhraic Smyth
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Thanks to
Padhraic Smyth

An ICS Undergraduate Success Story

“The key student involved in this work started out as an ICS
undergrad. Scott Gaffney took ICS 171 and 175, got interested in Al,
started to work in my group, decided to stay in ICS for his PhD, did a
terrific job in writing a thesis on curve-clustering and working with
collaborators in climate science to apply it to important scientific
problems, and is now one of the leaders of Yahoo! Labs reporting
directly to the CEO there, http://labs.yahoo.com/author/gaffney/.
Scott grew up locally in Orange County and is someone | like to point
as a great success story for ICS.”

--- From Padhraic Smyth



Supervised Learning

Inference made by learning from labeled training data



Computer Vision

Classification

Courtesy of Nvidia
Website




Computer Vision

Classification

NVIDIA DRIVE™ PX DEEP NEURAL NETWORK COMPUTER VISION

Courtesy of Nvidia
Website




Computer Vision

PEAS = Performance Measure, Environment, Actuators, and Sensors
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iInput layer

Deep Learning

hidden layer 1 hidden layer 2

Website



Neurons
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Deep Learning

Example of Best Price using Deep Neural Net (Deep Learning)
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Computer Vision

Increasing computational power

WORLD’S 1°T TERAFLOPS MOBILE PROCESSOR

1200
Tegra X1 (FP1&)

ASCI Red




Computer Vision

PEAS = Performance Measure, Environment, Actuators, and Sensors

Recorded
steering
wheel angle Adjust for shift Desired steering command
and rotation |
2 " Network
Left camera computed
L ’ ' ' | steering Y
[ ' Random shift command _ / h
kCenter camera .| and rotation | . CNN ' h - )
Right camera A
Back propagation | EMor
weight adjustment
Courtesy of Nvidia \
Website

Reward function
Utility gradient



Minimization of Cost Function

Gradient Decent

J(w) Iniljial | _— Gradient

/
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Minimization of Cost Function

Gradient Decent Local Minima

Local Minima

0 ~ Local Minima

Global Minima

Entertaining and informative way to learn about Neural Nets and Deep Learning
https://www.youtube.com/watch?v=p69khggrlJo



Deep Learning in Physics: ———
Searching for Exotic Particles | Pierre Baldi
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nature \ =

Thanks to

COMMUNICATIONS Pierre Baldi
ARTICLE
Received 19 Feb 2014 | Accepted 4 Jun 2014 | Published 2 Jul 2014 DOI: 10.1038/ncomms5308

Searching for exotic particles in high-energy

physics with deep learning

P. Baldi' P. Sadowski' & D. Whiteson?

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle
discoveries. Finding these rare particles requires solving difficult signal-versus-background
classification problems, hence machine-learning approaches are often used. S5Standard
approaches have relied on ‘shallow’ machine-learning models that have a limited capacity to
learn complex nonlinear functions of the inputs, and rely on a painstaking search through
manually constructed nonlinear features. Progress on this problem has slowed, as a variety of
technigues have shown equivalent performance. Recent advances in the field of deep learning
make it possible to learn more complex functions and better discriminate between signal and
background classes. Here, using benchmark data sets, we show that deep-learning methods
need no manually constructed inputs and yet improve the classification metric by as much as
8% over the best current approaches. This demonstrates that deep-learning approaches can
improve the power of collider searches for exotic particles.

Peter SadowskKi



Background Rejection

Higgs Boson Detection pierre Bald
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-------- DN lo+hi-level (AUC=0.88)
........ DN lo-level (AUC=0.88)
— NN lo+hi-level (AUC=0.81)

-------- DN hi-level (AUC=0.80)

——— NN hi-level (AUC=0.78)

——— NN lo-level (AUC=0.73)
| \

] — AUC
"v,* Technique Low-level High-level Complete
BDT 0.73 0.78 0.81
| NN 0.733 (0.007) 0.777 (0.001)  0.816 (0.004)
DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)

BDT= Boosted Decision Trees in TMVA package

|
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Signal efficiency

Deep network improves AUC by 8%

Nature Communications, July 2014



Supervised Learning

Definitions and Properties



Terminology

Attributes

— Also known as features, variables, independent variables,
covariates

e Target Variable
— Also known as goal predicate, dependent variable, f(x), vy ...

» Classification
— Also known as discrimination, supervised classification, ...

Error function
— ODbjective function, loss function, ...



Supervised learning

e Let X = input vector of attributes (feature vectors)

e Let f(x) = target label
— The implicit mapping from x to f(x) is unknown to us
— We only have training data pairs, D = {x, f(xX)} available

e We want to learn a mapping from x to f(x)
e Qur hypothesis function is h(x, 0)
e h(x, 0) = f(x) for all training data points x
e 0O are the parameters of our predictor function h

e Examples:
— h(x, 0) = sign(06,x; + 0 ,X,+ 0 3) (perceptron)
- h(X’ 9) = e0 + 61X1 + e2X2 (regression)
— he(x) = (X1 Axz) V (23 A —xy)



Empirical Error Functions

e E(h) = ZX distance[h(x, 0) , f(X)]
Sum is over all training pairs in the training data D
Examples:
distance = squared error if h and f are real-valued (regression)
distance = delta-function if h and f are categorical (classification)

In learning, we get to choose

1. what class of functions h(..) that we want to learn
— potentially a huge space! (“hypothesis space”)

2. what error function/distance to use
- should be chosen to reflect real “loss” in problem
- but often chosen for mathematical/algorithmic convenience



Inductive Learning as Optimization or Search

e Empirical error function:
E(h) = ZX distance[h(Xx, 0) , f(X)]

e Empirical learning = finding h(x), or h(x; 0) that minimizes E(h)
— In simple problems there may be a closed form solution
e E.g., “normal equations” when h is a linear function of x, E = squared error

— If E(h) is differentiable - continuous optimization problem using gradient descent, etc
e E.g., multi-layer neural networks

— If E(h) is non-differentiable (e.g., classification - systematic search problem through the
space of functions h

e E.g., decision tree classifiers

e Once we decide on what the functional form of h is, and what the error function E

Is, then machine learning typically reduces to a large search or optimization
problem

e Additional aspect: we really want to learn a function h that will generalize well to
new data, not just memorize training data — will return to this later



Simple illustrative learning problem

Problem:
decide whether to wait for a table at a restaurant, based on the following attributes:

Alternate: is there an alternative restaurant nearby?
Bar: is there a comfortable bar area to wait in?
Fri/Sat: is today Friday or Saturday?
Hungry: are we hungry?
Patrons: number of people in the restaurant (None, Some, Full)
Price: price range ($, $$, $3%)
Raining: is it raining outside?
Reservation: have we made a reservation?
Type: kind of restaurant (French, Italian, Thai, Burger)
. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

©CONOOAONE

(Y
o

Is it a weekend? Hungry? Busy? Cost? Wait time? Etc...



Example Training Data

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res| Type | Est | Wait
X, T F F T Some| $%% F T | French | 0-10 T
Ao T F F T Full $ F F Thai |30-60 F
X3 F T F F | Some $ F F | Burger| 0-10 T
X4 T F T T Full $ F F Thai | 10-30 T
X5 T F T F Full $5% F T |French| =60 F
X F T F T |Some| %% T T | ltalian | 0-10 T
X7 F T F F None $ T F | Burger| 0-10 F
Xa F F F T |Some| %% T T Thai | 0-10 T
Xy F T T F Full $ T F | Burger| =60 F
X1 T T T T Full $5% F T | ltalian | 10-30 F
X1 F F F F None $ F F Thai | 0-10 F
Xio T T T T Full $ F F | Burger | 30-60 T

« If all attributes were binary, h(..) could be any arbitrary Boolean function

e Natural error function E(h) to use is classification error, i.e., how many incorrect
predictions does a hypothesis h make

e Note an implicit assumption:
— For any set of attribute values there is a unique target value
— This in effect assumes a “no-noise” mapping from inputs to targets
e This is often not true in practice (e.g., in medicine).



Supervised Learning

Decision Trees



Learning Boolean Functions

e Given examples of the function, can we learn the function?
f : B4 — B where B = {0, 1}
e How many Boolean functions can be defined on d attributes?  William of

SRS . Ockham
— Boolean function = Truth table + binary target column c. 1288-1347

— Truth table 2¢ rows + binary 24 targets = 22°

— 22 hypothesis search space
— i.e. ford = 6, there are 1.84 x 10'° possible Boolean functions

e Observations:
— Huge hypothesis spaces —> directly searching over all functions is impossible
— Given a small data (n pairs) our learning problem may be under constrained

e Ockham’s razor: if multiple candidate functions all explain the data
equally well, pick the simplest explanation (least complex function)

e Constrain our search to classes of Boolean functions, i.e.,
— decision trees
— Weighted linear sums of inputs (e.g., perceptron’s)



Decision Tree Representations

*Decision trees are fully expressive
—can represent any Boolean function
—Every path in the tree could represent 1 row in the truth table
—Yields an exponentially large tree
*Truth table with 2% rows, where d is the number of attributes

B AxorB y\
F F

mT D




Decision Tree Representations

e Decision trees are DNF representations

— often used in practice - result in compact approximate representations for
complex functions

— E.g., consider a truth table where most of the variables are irrelevant to the
function

— Simple DNF formulae can be easily represented
e E.g.,, f=(AAB)V(=AAD)
e DNF = disjunction of conjunctions

e Trees can be very inefficient for certain types of functions
— Parity function: 1 only if an even number of 1’s in the input vector
» Trees are very inefficient at representing such functions
— Majority function: 1 if more than ¥z the inputs are 1’s
» Also inefficient



Decision Tree Learning

e Find the smallest decision tree consistent with the n examples
— Not optimal
— n<d

e Greedy heuristic search used in practice:
— Select root node that is “best” in some sense
— Partition data into 2 subsets, depending on root attribute value
— Recursively grow subtrees
— Different termination criteria

= For noiseless data, if all examples at a node have the same label then
declare it a leaf and backup

e For noisy data it might not be possible to find a “pure” leaf using the
given attributes

— a simple approach is to have a depth-bound on the tree (or go to
max depth) and use majority vote

e We have talked about binary variables up until now, but we can
trivially extend to multi-valued variables



Pseudocode for Decision tree learning

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all exzamples have the same classification then return the classification
else if attributes is empty then return MoDE(ezamples)
else
best <— CHOOSE- ATTRIBUTE( attributes, examples)
tree + a new decision tree with root test best
for each value v; of best do
examples; «— {elements of examples with best = v;}
subtree +— DTL(examples;, attributes — best, MODE( ezamples))
add a branch to tree with label v; and subtree subtree
return [ree




Decision Tree Learning

Authors Created

| Reservation? || FriSat? j
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Choosing an attribute

e ldea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

000000 00000
00000 00000
Fatrons? Type?
Nﬂmull me ncm rger
000 00 O © 00 o0
o0 o000 o ® 00 o0

e Patrons? is a better choice
— How can we quantify this?
— One approach would be to use the classification error E directly (greedily)
e Empirically it is found that this works poorly
— Much better is to use information gain (next slides)



\Entropy and Information

» “Entropy’ is a measure of randomness

* In chemistry:

If the particles represent gas molecules at normal temperatures
inside a closed container, which of the illustrated configurations

came first?
a8 e
a8 e [ ®
*ee Time's .
amow e L
-
’ ®
®
®

If you tossed bricks off a truck, which kind of pile of bricks
would you more likely produce?

Disorder is

I_;_I more probable

| | | | than order.

https://www.youtube.com/watch?v=ZsY4WcQOrfk



Entropy with only 2 outcomes

In binary case (2 outcomes)

H(p) = —plog,(p) — (1 —p)log,(1 —p)

v

1
For multiple outcomes we have maxH(p) = —log, <H> = log,(n)



Information Gain

= H(p) = entropy of class distribution at a particular node

e H(p | A) = conditional entropy
e Weighted average entropy of conditional class distribution
e Partitioned the data according to the values in A
e The sum of each partition given the group/class

= Gain(A) = H(p) —H(p | A)

e Simple rule in decision tree learning

— At each internal node, split on the node with the largest
information gain (or equivalently, with smallest H(p|A))

e Note that by definition, conditional entropy can’t be greater
than the entropy



Entropy Example

- L
o O _WE)10 squares

e -~ 11 Circles

1 Square
9 Circles

- L

Class = color
grn = green; blu = blue; sq = square

10 10 11 11
H(psq) = —5;logz o, — 5 loga o

H(psq) = 0.998

H(psq |COlO7‘) = pbluH(psq)blu + pgrnH(psq)grn

9 9 2 2
H(®sq)p = — 771082 7 —7loga

H(psq)blu = 0.684
H(psq)grn = 0.469

o O _WE)9 square
] = 2 Circles

Weighted average -

Gain(color) = H(psq) + H(p5q|col0r)

H(p5q|col0r) = % % 0.469 + — * 0.684

21
H(p5q|col0r) = 0.582
Gain(color) = 0.998 — 0.582
Gain(color) = 0.416



Root Node Example

For the training set, 6 positives, 6 negatives, H(6/12, 6/12) = 1 bit

™

positivep)  haqative (1-p)

Consider the attributes Patrons and Type:

Conclude:

Patrons has the highest IG of all attributes and so is chosen by the learning
algorithm as the root

Information gain is then repeatedly applied at internal nodes until all leaves contain
only examples from one class or the other



Decision Tree Learned

Authors Created
Learned

Patrons?

m Full




Assessing Performance

Training data performance is typically optimistic
e.g., error rate on training data

Reasons?
- classifier may not have enough data to fully learn the concept (but
on training data we don’t know this)
- for noisy data, the classifier may overfit the training data

In practice we want to assess performance “out of sample subsets”
how well will the classifier do on new unseen data? This is the
true test of what we have learned (like we take exams)

With large data sets we can partition our data into 2 subsets, train and test
- build a model on the training data
- assess performance on the test data



Training and Validation Data

Full Data Set Idea: train each

/ Training Data model on the
“—"training data”

and then test

\ each model’s

- Validation Data accurac_:y o_n
+— the validation data




Overfitting and Underfitting

v



A Complex Model

Y = high-order polynomial in X




A Much Simpler Model

Y=aX +b + noise

v
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How Overfitting affects Prediction

Predictive
Error

Error on Training Data

»
»

Model Complexity



How Overfitting affects Prediction

Predictive
Error

Error on Test Data

/

Error on Training Data

»
»

Model Complexity



How Overfitting affects Prediction

Complex Models

A

»
»

A Underfitting Overfitting

Predictive
Error

Error on Test Data

/

Error on Training Data

»
»

Model Complexity

+—>

|deal Range
for Model Complexity

Simple Models



The k-fold Cross-Validation Method

e Why stop at a 90/10 “split” of the data?
— In principle we could do this multiple times

« “k-fold Cross-Validation” (e.g., k=10)

— randomly partition our full data set into k disjoint subsets (each
roughly of size n/k, n = total number of training data points)

e for i = 1:k (where k = 10)

— train on 90% of the i data subset

— Accuracy[i] = accuracy on 10% of the in data subset
e end

» Cross-Validation-Accuracy = 1/k Zi Accuracy/i]
— choose the method with the highest cross-validation accuracy
— common values for k are 5 and 10
— Can also do “leave-one-out” where k = n



Disjoint Validation Data Sets for k =5

Validation Data (aka Test Data)

Full Data Set

/'

1t partition

Training Data



Disjoint Validation Data Sets for k =5

Validation Data (aka Test Data)

Full Data Set

15t partition 2n partition

Training Data



Disjoint Validation Data Sets for k =5

Validation Data (aka Test Data)

Full Data Set

Validation
Data

15t partition 2n partition

Training Data

3 partition At partition 5t partition



More on Cross-Validation

e Notes

— cross-validation generates an approximate estimate of how well
the learned model will do on “unseen” data

— by averaging over different partitions it is more robust than just a
single train/validate partition of the data

— “k-fold” cross-validation is a generalization
e partition data into disjoint validation subsets of size n/k
e train, validate, and average over the v partitions
e e.g., k=10 is commonly used

— k-fold cross-validation is approximately k times computationally
more expensive than just fitting a model to all of the data



You will be expected to know

« Understand Attributes, Error function, Classification,
Regression, Hypothesis (Predictor function)

« What is Supervised and Unsupervised Learning?

« Decision Tree Algorithm

. Entropy

. Information Gain

« Tradeoff between train and test with model complexity

. Cross validation



Extra Slides



Summary

e Inductive learning
— Error function, class of hypothesis/models {h}
— Want to minimize E on our training data
— Example: decision tree learning

e Generalization
— Training data error is over-optimistic
— We want to see performance on test data
— Cross-validation is a useful practical approach

e Learning to recognize faces

— Viola-Jones algorithm: state-of-the-art face detector, entirely
learned from data, using boosting+decision-stumps



| Importance of representation
I

Properties of a good representation:

* Reveals important features

* Hides irrelevant detail

* Exposes useful constraints

* Makes frequent operations easy-to-do

* Supports local inferences from local features
* Called the “soda straw” principle or “locality” principle
* Inference from features “through a soda straw”

* Rapidly or efficiently computable
° |t’s nice to be fast



Reveals important features / Hides irrelevant detail

e “You can’t learn what you can’t represent.” --- G. Sussman

e Insearch: A man is traveling to market with a fox, a goose, and a bag of oats.
He comes to a river. The only way across the river is a boat that can hold the
man and exactly one of the fox, goose or bag of oats. The fox will eat the goose
if left alone with it, and the goose will eat the oats if left alone with it.

e A good representation makes this problem easy:




|Entropy and Information

I- Entropy H(X) = E[ log 1/p(X) ] = 2 ,.x P(X) log 1/p(X)
= =2 yex P(X) log p(x)

— Log base two, units of entropy are “bits”
— If only two outcomes: H = - p log(p) - (1-p) log(1-p)

« Examples:

06 .

05 1

04 ,

03 1

02 .

0.1 .
0 1 2 3 4

H(x) =.25log 4 + .25 log 4 + H(x) = .75 log 4/3 + .25 log 4 H(x) =1log 1
25log4 +.25log 4 = 0.8133 bits = 0 bits
= log 4 = 2 bits

Max entropy for 4 outcomes Min entropy



|Entropy and Information

» “Entropy’ is a measure of randomness
— How long a message does it take to communicate a result to you?
— Depends on the probability of the outcomes; more predictable = shorter message

 Communicating fair coin tosses
— OQOutput: HHTHTTTHHHHT ...
— Sequence takes n bits — each outcome totally unpredictable

*  Communicating my daily lottery results
— Output:000000... Lost: O
— Most likely to take one bit — | lost every day. Won 1: 1(when)0
— Small chance I'll have to send more bits (won & when) \won 2: 1(when)1(when)0

* More predictable takes less length to communicate because it’s less random
— Use a few bits for the most likely outcome, more for less likely ones



Example of Test Performance

Restaurant problem
- simulate 100 data sets of different sizes
- train on this data, and assess performance on an independent test set
- learning curve = plotting accuracy as a function of training set size
- typical “diminishing returns” effect (some nice theory to explain this)

0.9 r

08 | |
07 t |

0.6 | |

% correct on test set

0.5 R

0.4 : : ' :
0 20 40 60 80 100
Training set size
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