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• p53 is a central tumor 
suppressor protein 

 “The guardian of the 
genome”  

 
• Cancer Mutants:         
 About 50% of all human 

cancers have p53 
mutations. 

 
• Rescue Mutants: 
     Several second-site 

mutations restore 
functionality to some p53 
cancer mutants in vivo.  

p53 core domain bound to DNA 
Image Generated with UCSF Chimera 

Cho, Y.,  Gorina, S.,  Jeffrey, P.D.,  Pavletich, N.P.   Crystal 
structure of a p53 tumor suppressor-DNA complex: 

understanding tumorigenic mutations.   Science   v265   
pp.346-355 , 1994    

 

p53 and Human Cancers 
Thanks to 
Richard Lathrop 



Theory 

Find Cancer 
Rescue 
Mutants 

Knowledge 

Experiment 

Active Learning for Biological Discovery 
Thanks to 
Richard Lathrop 
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Computational Active Learning 
Pick the Best (= Most Informative) Unknown Examples 

to Label 



• Positive Region: 
  Predicted Active 

 96-105  (Green) 
 
• Negative Region: 
  Predicted Inactive 

 223-232 (Red) 
 
• Expert Region: 
  Predicted Active 

 114-123 (Blue) 

Visualization of Selected Regions 

Danziger, et al. 
(2009) 

Thanks to 
Richard Lathrop 



MIP Positive 
(96-105) 

MIP Negative 
(223-232) 

Expert 
(114-123) 

# Strong 
Rescue 8 0 (p < 0.008) 6 (not significant) 

# Weak Rescue 3 2 (not significant) 7 (not significant) 

Total # Rescue 11 2 (p < 0.022) 13 (not significant) 
p-Values are two-tailed, comparing Positive to Negative and Expert regions. Danziger, et al. (2009)  

Novel Single-a.a. Cancer Rescue Mutants 

No significant differences between the MIP Positive and Expert regions. 
 
Both were statistically significantly better than the MIP Negative region. 
 
The Positive region rescued for the first time the cancer mutant P152L. 
 
No previous single-a.a. rescue mutants in any region. 

Thanks to 
Richard Lathrop 



Complete architectures for intelligence? 

• Search? 
– Solve the problem of what to do. 

• Logic and inference? 
– Reason about what to do. 
– Encoded knowledge/”expert” systems? 

• Know what to do. 

• Learning? 
– Learn what to do. 

• Modern view: It’s complex & multi-faceted. 



Automated Learning 
 

• Why learn? 
– Key to intelligence 
– Take real data  get feedback  improve performance  reiterate 
– USC Autonomous Flying Vehicle Project 
 

• Types of learning 
– Supervised learning: learn mapping: attributes  “target” 

– Classification: learn discreet target variable (e.g., spam email) 
– Regression: learn real valued target variable (e.g., stock market) 

 
– Unsupervised learning: no target variable; “understand” hidden data structure 

– Clustering: grouping data into K groups (e.g. K-means) 
– Latent space embedding: learn simple representation of the data (e.g. PCA, SVD) 

 
–  Other types of learning 

• Reinforcement learning: e.g., game-playing agent 
• Learning to rank, e.g., document ranking in Web search 
• And many others…. 



Unsupervised Learning 
Finding hidden structure in unlabeled data 

 



Principal Component Analysis 

T=XW 

X is a m-by-n matrix, where n columns represent attributes and m rows 
represent samples 
W is a m-by-m matrix whose columns are the eigenvectors of XTX 
T is eigenvalue decomposition of a data covariance matrix 
• Explains variance in the data via principle components 

PCA 

Unsupervised Learning 

  



Maize 
Trtikova et al, 2017 

Domestication in Crops 

Maize 
Trtikova et al, 2017 

Principle Component Analysis (PCA) in Biology 
 



Rice 
Chung et al, 2015 

Domestication in Crops 

Rice 
Chung et al, 2015 



Rice 
Kanapeckas et al, 2016 

Domestication in Crops 

Citrus 
Wu et al, 2018 

Principle Component Analysis (PCA) + K-means Clustering 
 



Clustering 
Unsupervised Learning 

  



Application to Extra-Tropical Cyclones 
Gaffney et al, Climate Dynamics, 2007 

Thanks to 
Padhraic Smyth 



Iceland Cluster 

Horizontal Cluster Greenland Cluster 

Original Data 

Thanks to 
Padhraic Smyth 



Cluster Shapes for Pacific Typhoon Tracks 
Camargo et al,  J. Climate, 2007 

Thanks to 
Padhraic Smyth 



 © Padhraic Smyth, UC Irvine: DS 06     19 
Camargo et al,  J. Climate, 2007 

Thanks to 
Padhraic Smyth  TROPICAL CYCLONES Western North Pacific  



An ICS Undergraduate Success Story 
“The key student involved in this work started out as an ICS 
undergrad. Scott Gaffney took ICS 171 and 175, got interested in AI, 
started to work in my group, decided to stay in ICS for his PhD, did a 
terrific job in writing a thesis on curve-clustering and working with 
collaborators in climate science to apply it to important scientific 
problems, and is now one of the leaders of Yahoo! Labs reporting 
directly to the CEO there, http://labs.yahoo.com/author/gaffney/. 
Scott grew up locally in Orange County and is someone I like to point 
as a great success story for ICS.” 
            --- From Padhraic Smyth 

Thanks to 
Padhraic Smyth 



Supervised Learning 
Inference made by learning from labeled training data 

 



Computer Vision 
Classification 

Courtesy of Nvidia 
Website 

 



Computer Vision 

Courtesy of Nvidia 
Website 

Classification 
 



Computer Vision 

Courtesy of Nvidia 
Website 

Performance 
Measure 

PEAS =  Performance Measure, Environment, Actuators, and Sensors 

Environment 

Actuators 

Sensors 



Maize 
Trtikova et al, 2017 

Deep Learning 

Maize 
Trtikova et al, 2017 

Example Neural Net 

Courtesy of Nvidia 
Website 

x1*w1 + b1 x2*w2 + b2 

y 

X 

 



Neurons 
3rd Generation Neuron (Spiking Neurons) 1st Generation Neuron (McCulloch-Pitts) 

https://www.slideshare.net/hitechpro/introduction-to-spiking-neural-networksfrom-a-
computational-neuroscience-perspective/30 

2nd Generation Neuron 

Hodgkin-Huxley Model 
Izhikevish Model 
Leakage Integrate-and-Fire Model 



Deep Learning 
Example of Best Price using Deep Neural Net (Deep Learning) 

Courtesy of Nvidia 
Website 

HL1 
HL2 

HL3 

HL4 

HL5 

 



Computer Vision 
Increasing computational power 

Courtesy of Nvidia 
Website 

 



Computer Vision 

Courtesy of Nvidia 
Website 

Reward function 
Utility gradient 

PEAS =  Performance Measure, Environment, Actuators, and Sensors 



Minimization of Cost Function 
Gradient Decent 

Courtesy of Nvidia 
Website 

 



Minimization of Cost Function 
Gradient Decent 

Entertaining and informative way to learn about Neural Nets and Deep Learning 
https://www.youtube.com/watch?v=p69khggr1Jo 

Local Minima 

Global Minima 

Local Minima 

Local Minima 
 



Deep Learning in Physics: 
Searching for Exotic Particles 

Thanks to 
Pierre Baldi 



Thanks to 
Pierre Baldi 



Daniel Whiteson 

Peter Sadowski 

Thanks to 
Pierre Baldi 



Higgs Boson Detection 

Deep network improves AUC by 8% 
Nature Communications, July 2014 

BDT= Boosted  Decision Trees in TMVA package 

Thanks to 
Pierre Baldi 



Supervised Learning 
Definitions and Properties 

 



Terminology 

• Attributes 
– Also known as features, variables, independent variables, 

covariates 
 

• Target Variable 
– Also known as goal predicate, dependent variable, f(x), y … 
 
 

• Classification 
– Also known as discrimination, supervised classification, … 
 

• Error function 
– Objective function, loss function, … 



Supervised learning 

• Let x = input vector of attributes (feature vectors) 
 
• Let f(x) = target label 

– The implicit mapping from x to f(x) is unknown to us 
– We only have training data pairs, D = {x, f(x)} available 

 
• We want to learn a mapping from x to f(x) 

• Our hypothesis function is h(x, θ) 
• h(x, θ) ≈ f(x) for all training data points x 
• θ are the parameters of our predictor function h 

 
• Examples: 

– h(x, θ) = sign(θ1x1 + θ 2x2+ θ 3) (perceptron) 
– h(x, θ) = θ0  + θ1x1 + θ2x2 (regression) 
–  ℎ𝑘(𝑥) = (𝑥1 ∧ 𝑥2) ∨ (𝑥3 ∧ ¬𝑥4) 



Empirical Error Functions 

• E(h) = Σx distance[h(x, θ) , f(x)] 
Sum is over all training pairs in the training data D 
Examples: 
distance = squared error if h and f are real-valued  (regression) 
distance = delta-function if h and f are categorical  (classification) 
 
 
In learning, we get to choose  
 
 1. what class of functions h(..) that we want to learn  
          – potentially a huge space!  (“hypothesis space”) 
 
    2. what error function/distance to use 
          - should be chosen to reflect real “loss” in problem 
          - but often chosen for mathematical/algorithmic convenience 
 
 



Inductive Learning as Optimization or Search 

• Empirical error function: 
      E(h) = Σx distance[h(x, θ) , f(x)] 
 
 

• Empirical learning = finding h(x), or h(x; θ) that minimizes E(h) 
– In simple problems there may be a closed form solution 

• E.g., “normal equations” when h is a linear function of x, E = squared error 
 

– If E(h) is differentiable  continuous optimization problem using gradient descent, etc 
• E.g., multi-layer neural networks 
 

– If E(h) is non-differentiable (e.g., classification  systematic search problem through the 
space of functions h 

• E.g., decision tree classifiers 
 

• Once we decide on what the functional form of h is, and what the error function E 
is, then machine learning typically reduces to a large search or optimization 
problem 

 
• Additional aspect: we really want to learn a function h that will generalize well to 

new data, not just memorize training data – will return to this later 
 



Simple illustrative learning problem 

Problem:  
   decide whether to wait for a table at a restaurant, based on the following attributes: 
 

1. Alternate: is there an alternative restaurant nearby? 
2. Bar: is there a comfortable bar area to wait in? 
3. Fri/Sat: is today Friday or Saturday? 
4. Hungry: are we hungry? 
5. Patrons: number of people in the restaurant (None, Some, Full) 
6. Price: price range ($, $$, $$$) 
7. Raining: is it raining outside? 
8. Reservation: have we made a reservation? 
9. Type: kind of restaurant (French, Italian, Thai, Burger) 
10.  WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60) 

Is it a weekend? Hungry? Busy? Cost? Wait time? Etc… 



Example Training Data 

• If all attributes were binary, h(..) could be any arbitrary Boolean function 
 

• Natural error function E(h) to use is classification error, i.e., how many incorrect 
predictions does a hypothesis h make 
 

• Note an implicit assumption: 
– For any set of attribute values there is a unique target value 
– This in effect assumes a “no-noise” mapping from inputs to targets 

• This is often not true in practice (e.g., in medicine). 



Supervised Learning 
Decision Trees 

 



Learning Boolean Functions 

• Given examples of the function, can we learn the function? 
  ƒ : Bd → B where B = {0, 1} 
• How many Boolean functions can be defined on d attributes? 

– Boolean function = Truth table + binary target column 
– Truth table 𝟐𝒅 rows + binary 𝟐𝒅 targets = 𝟐𝟐𝒅 

– 𝟐𝟐𝒅 hypothesis search space 
– i.e. for d = 6, there are 1.84 x 1019  possible Boolean functions 

 
• Observations: 

– Huge hypothesis spaces –> directly searching over all functions is impossible 
– Given a small data (n pairs) our learning problem may be under constrained 

• Ockham’s razor: if multiple candidate functions all explain the data 
equally well, pick the simplest explanation (least complex function) 

• Constrain our search to classes of Boolean functions, i.e., 
– decision trees 
– Weighted linear sums of inputs (e.g., perceptron's) 

William of 
Ockham 
c. 1288-1347 



Decision Tree Representations 
•Decision trees are fully expressive 

–can represent any Boolean function 
–Every path in the tree could represent 1 row in the truth table 
–Yields an exponentially large tree 

•Truth table with 𝟐𝒅 rows, where 𝒅 is the number of attributes 
 
 

 



Decision Tree Representations 

 
• Decision trees are DNF representations 

– often used in practice  result in compact approximate representations for 
complex functions 

– E.g., consider a truth table where most of the variables are irrelevant to the 
function 

 
– Simple DNF formulae can be easily represented 

• E.g.,  𝑓 = (𝐴 ∧ 𝐵) ∨ (¬𝐴 ∧ 𝐷) 
• DNF = disjunction of conjunctions 

 
• Trees can be very inefficient for certain types of functions 

– Parity function: 1 only if an even number of 1’s in the input vector 
• Trees are very inefficient at representing such functions 

– Majority function: 1 if more than ½ the inputs are 1’s 
• Also inefficient 

 



Decision Tree Learning 

• Find the smallest decision tree consistent with the n examples 
– Not optimal 
– n<d 
 

• Greedy heuristic search used in practice: 
– Select root node that is “best” in some sense 
– Partition data into 2 subsets, depending on root attribute value 
– Recursively grow subtrees 
– Different termination criteria 

• For noiseless data, if all examples at a node have the same label then 
declare it a leaf and backup 

• For noisy data it might not be possible to find a “pure” leaf using the 
given attributes 

– a simple approach is to have a depth-bound on the tree (or go to 
max depth) and use majority vote 

 
• We have talked about binary variables up until now, but we can 

trivially extend to multi-valued variables 



Pseudocode for Decision tree learning 



Decision Tree Learning 

Authors Created 



Choosing an attribute 

• Idea: a good attribute splits the examples into subsets that are 
(ideally) "all positive" or "all negative" 

 
 
 
 
 
 
 
 
 
 
• Patrons? is a better choice 

– How can we quantify this? 
– One approach would be to use the classification error E directly (greedily) 

• Empirically it is found that this works poorly 
– Much better is to use information gain (next slides) 



Entropy and Information 
• “Entropy” is a measure of randomness 

 
• In chemistry: 

https://www.youtube.com/watch?v=ZsY4WcQOrfk 



Entropy with only 2 outcomes 

In binary case (2 outcomes) 
 
 
 

 

For multiple outcomes we have 

𝐻 𝒙 = −�𝑃 𝑥𝑖 𝑙𝑙𝑙2𝑃
𝑛

𝑖=1

𝑥𝑖

= −𝑝 𝑙𝑙𝑙2 𝑝 − (1 − 𝑝)𝑙𝑙𝑙2(1 − 𝑝) 

𝐻 𝑝 = −𝑝 𝑙𝑙𝑙2 𝑝 − (1 − 𝑝)𝑙𝑙𝑙2(1 − 𝑝) 

0.5 1 0 

1 

𝐻 𝑝  

𝑝 

max𝐻 𝑝 = − log2
1
𝑛 = log2(𝑛) 



Information Gain 

• H(p) = entropy of class distribution at a particular node 
 
• H(p | A) = conditional entropy  

• Weighted average entropy of conditional class distribution 
• Partitioned the data according to the values in A 
• The sum of each partition given the group/class 

 
• Gain(A) = H(p) – H(p | A) 
 
• Simple rule in decision tree learning 

– At each internal node, split on the node with the largest 
information gain (or equivalently, with smallest H(p|A)) 

 
• Note that by definition, conditional entropy can’t be greater 

than the entropy 



9 Square 
2 Circles 

1 Square 
9 Circles 

10 Squares 
11 Circles 

Entropy Example 

Class = color  
grn = green; blu = blue; sq = square 

• 𝐻 𝑝𝑠𝑠 = −10
21

log2
10
21
− 11

21
log2

11
21

 

• 𝐻 𝑝𝑠𝑠 = 0.998 
• 𝐻 𝑝𝑠𝑠|𝑐𝑐𝑐𝑐𝑐 = 𝑝𝑏𝑏𝑏𝐻(𝑝𝑠𝑠)𝑏𝑏𝑏 + 𝑝𝑔𝑔𝑔𝐻(𝑝𝑠𝑠)𝑔𝑔𝑔 
• 𝐻(𝑝𝑠𝑠)𝑏𝑏𝑏 = − 9

11
log2

9
11
− 2

11
log2

2
11

  

• 𝐻(𝑝𝑠𝑠)𝑏𝑏𝑏 = 0.684 
• 𝐻(𝑝𝑠𝑠)𝑔𝑔𝑔 = 0.469 
• 𝐺𝐺𝐺𝐺 𝑐𝑐𝑐𝑐𝑐 =  𝐻 𝑝𝑠𝑠 + 𝐻 𝑝𝑠𝑠|𝑐𝑐𝑐𝑐𝑐  

 
• 𝐻 𝑝𝑠𝑠|𝑐𝑐𝑐𝑐𝑐 = 10

21
∗ 0.469 + 11

21
∗ 0.684 

• 𝐻 𝑝𝑠𝑠|𝑐𝑐𝑐𝑐𝑐 = 0.582 
• 𝐺𝐺𝐺𝐺 𝑐𝑐𝑐𝑐𝑐 = 0.998 − 0.582 
• 𝐺𝐺𝐺𝐺 𝑐𝑐𝑐𝑐𝑐 = 0.416 

Weighted average  



Root Node Example 
 
For the training set, 6 positives, 6 negatives, H(6/12, 6/12) = 1 bit 
 
 
 
 
 
Consider the attributes Patrons and Type: 
 
 
 
 
 
 
 
Conclude: 
Patrons has the highest IG of all attributes and so is chosen by the learning 

algorithm as the root 
 
Information gain is then repeatedly applied at internal nodes until all leaves contain 

only examples from one class or the other 

positive (p) negative (1-p) 



Decision Tree Learned 

Learned Authors Created 



Assessing Performance 

Training data performance is typically optimistic 
 e.g., error rate on training data 
 
 
Reasons? 
 - classifier may not have enough data to fully learn the concept (but 
               on training data we don’t know this) 
          - for noisy data, the classifier may overfit the training data 
 
 
In practice we want to assess performance “out of sample subsets” 
 how well will the classifier do on new unseen data? This is the 
            true test of what we have learned (like we take exams) 
 
With large data sets we can partition our data into 2 subsets, train and test 
 - build a model on the training data 
          - assess performance on the test data 
 
 



Training and Validation Data 

Full Data Set 

Training Data 

Validation Data 

Idea: train each 
model on the 
“training data” 
 
and then test 
each model’s 
accuracy on 
the validation data 



Overfitting and Underfitting 

X 

Y 



A Complex Model 

X 

Y 

Y = high-order polynomial in X 



A Much Simpler Model 

X 

Y 

Y = a X  + b  +  noise 



Example 2 



Example 2 



Example 2 



Example 2 



Example 2 



How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 



How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 

Error on Test Data 



How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 

Error on Test Data 

Ideal Range 
for Model Complexity 

Overfitting Underfitting 

Simple Models 

Complex Models 



 The k-fold Cross-Validation Method 

• Why stop at a 90/10 “split” of the data? 
– In principle we could do this multiple times 
 

• “k-fold Cross-Validation” (e.g., k=10) 
– randomly partition our full data set into k disjoint subsets (each 

roughly of size n/k, n = total number of training data points) 
• for  i = 1:k  (where k = 10) 

– train on 90% of the ith data subset 
– Accuracy[i] =  accuracy on 10% of the ith data subset 

• end 

• Cross-Validation-Accuracy =  1/k  Σi  Accuracy[i] 
– choose the method with the highest cross-validation accuracy 
– common values for k are 5 and 10 
– Can also do “leave-one-out” where k = n 
 



Disjoint Validation Data Sets for k = 5 

Full Data Set 

Training Data 

Validation Data (aka Test Data) 

1st partition 



Disjoint Validation Data Sets for k = 5 

Full Data Set 

Training Data 

Validation Data (aka Test Data) 

1st partition 2nd partition 



Disjoint Validation Data Sets for k = 5 

Full Data Set 

Training Data 

Validation Data (aka Test Data) 

Validation  
Data 

1st partition 2nd partition 

3rd partition 4th partition 5th partition 



More on Cross-Validation 

• Notes 
– cross-validation generates an approximate estimate of how well 

the learned model will do on “unseen” data 
 
– by averaging over different partitions it is more robust than just a 

single train/validate partition of the data 
 
– “k-fold” cross-validation is a generalization 

• partition data into disjoint validation subsets of size n/k 
• train, validate, and average over the v partitions 
• e.g., k=10 is commonly used 
 

– k-fold cross-validation is approximately k times computationally 
more expensive than just fitting a model to all of the data 



You will be expected to know 

 Understand Attributes, Error function, Classification, 
 Regression, Hypothesis (Predictor function)  
 
 What is Supervised and Unsupervised Learning? 
 
 Decision Tree Algorithm 
 
 Entropy 
 
 Information Gain 
 
 Tradeoff between train and test with model complexity 
 
 Cross validation 



Extra Slides 

 



Summary 

• Inductive learning 
– Error function, class of hypothesis/models {h} 
– Want to minimize E on our training data 
– Example: decision tree learning 
 

• Generalization 
– Training data error is over-optimistic 
– We want to see performance on test data 
– Cross-validation is a useful practical approach 
 

• Learning to recognize faces 
– Viola-Jones algorithm: state-of-the-art face detector, entirely 

learned from data, using boosting+decision-stumps 
 
 



Importance of representation 
Properties of a good representation: 
• Reveals important features  
• Hides irrelevant detail 
• Exposes useful constraints 
• Makes frequent operations easy-to-do 
• Supports local inferences from local features 

• Called the “soda straw” principle or “locality” principle 
• Inference from features “through a soda straw” 

• Rapidly or efficiently computable 
• It’s nice to be fast 

 



Reveals important features / Hides irrelevant detail 

• “You can’t learn what you can’t represent.” --- G. Sussman 
 
• In search:  A man is traveling to market with a fox, a goose, and a bag of oats.  

He comes to a river.  The only way across the river is a boat that can hold the 
man and exactly one of the fox, goose or bag of oats.  The fox will eat the goose 
if left alone with it, and the goose will eat the oats if left alone with it. 
 

• A good representation makes this problem easy: 
 
1110 
0010 
1010 
1111 
0001 
0101 

 
 

 

0000 1101 

1011 

0100 1110 

0010 1010 1111 

0001 

0101 



Entropy and Information 
• Entropy H(X) = E[ log 1/p(X) ] = ∑ x∈X p(x) log 1/p(x) 
  = −∑ x∈X p(x) log p(x) 

– Log base two, units of entropy are “bits” 
– If only two outcomes:  H = - p log(p) - (1-p) log(1-p) 

• Examples: 

 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 + 
              .25 log 4 + .25 log 4 
        =  log 4 = 2 bits 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4 
        = 0.8133 bits 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1 
         = 0 bits 

Max entropy for 4 outcomes Min entropy 



Entropy and Information 
• “Entropy” is a measure of randomness 

– How long a message does it take to communicate a result to you? 
– Depends on the probability of the outcomes; more predictable = shorter message 

 
• Communicating fair coin tosses 

– Output:  H H T H T T T H H H H T … 
– Sequence takes n bits – each outcome totally unpredictable 

 
• Communicating my daily lottery results 

– Output: 0 0 0 0 0 0 … 
– Most likely to take one bit – I lost every day. 
– Small chance I’ll have to send more bits (won & when) 

 
• More predictable takes less length to communicate because it’s less random 

– Use a few bits for the most likely outcome, more for less likely ones 

Lost:      0 
Won 1:  1(when)0 
Won 2:  1(when)1(when)0 



Example of Test Performance 

Restaurant problem 
 - simulate 100 data sets of different sizes 
          - train on this data, and assess performance on an independent test set 
          - learning curve = plotting accuracy as a function of training set size 
          - typical “diminishing returns” effect (some nice theory to explain this) 
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