
State Space Representations
and Search Algorithms

CS171, Summer 1 Quarter, 2019
Introduction to Artificial Intelligence

Prof. Richard Lathrop

 Read Beforehand: R&N 3.1-3.4

Architectures for Intelligence
• Search?

– Determine how to achieve some goal; “what to do”

• Logic & inference?
– Reason about what to do
– Encode knowledge / “expert” systems
– Know what to do

• Learning?
– Learn what to do

• Modern view: complex & multi-faceted

Search
• Formulate “what to do” as a search problem

– Solution tells the agent what to do

• If no solution in the current search space?
– Find space that does contain a solution (use search!)
– Solve original problem in new search space

• Many powerful extensions to these ideas

– Constraint satisfaction; planning; game playing; …

• Human problem-solving often looks like search

Why search?
• Engaged in bigger, important problem

– Hit a search subproblem we need to solve
– Search, solve it, get back to original problem

• Predict the results of our actions in the future

• Many sequences of actions, each with some utility

– Maximize performance measure

• Want to achieve some goal by some (any?) means
• Or, find the best (optimal) way to achieve it

Example: Romania
• On holiday in Romania

– Currently in Arad
– Flight leaves tomorrow from Bucharest

• Formulate goal:
– Be in Bucharest

• Formulate problem:
– States: various cities
– Actions: drive between cities / choose next city

• Find a solution:
– Sequence of cities, e.g.: Arad, Sibiu, Fagaras, Bucharest

Example: Romania

86

98

142

92

87

90

85
101

211

138

146

97

120
75

70

111

118

140

151

71

75

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Sibiu Fagaras

Rimnicu Vilcea

Pitesti

Cralova

Bucharest

Giurgiu

Urziceni

Neamt

Iasi

Vaslui

Hirsova

Eforie

99

80

Start state

Goal state

Environment types
Classifying the environment:

• Static / Dynamic
 Previous problem was static: no attention to changes in environment

• Deterministic / Stochastic
 Previous problem was deterministic: no new percepts
 were necessary, we can predict the future perfectly

• Observable / Partially Observable / Unobservable
 Previous problem was observable: agent knew the initial state, etc.

• Discrete / Continuous
 Previous problem was discrete: we can enumerate all possibilities

Why not Dijkstra’s Algorithm?
• D’s algorithm inputs the entire graph

– Want to search in unknown spaces
– Combine search with “exploration”
– Ex: autonomous rover on Mars must search an unknown space

• D’s algorithm takes connections as given
– Want to search based on agent’s actions, w/ unknown connections
– Ex: web crawler may not know what connections are available on a URL

before visiting it
– Ex: agent may not know the result of an action before trying it

• D’s algorithm won’t work on infinite spaces
– Many actions spaces are infinite or effectively infinite
– Ex: logical reasoning space is infinite
– Ex: real world is essentially infinite to a human-size agent

The State-Space Graph
• Graphs:

– vertices (nodes), edges (arcs), directed arcs, paths
• State-space graphs:

– States are vertices
• Initial state (start state), possibly multiple goal states

– Actions are directed arcs (carry state to state[s] that result from action)
• Solution:

– A path from the start state to any goal state
– May desire an optimal path (= lowest cost or highest value)

• Problem solving activity:
– Generate a part of the search space that contains a solution
– May desire an optimal path (= lowest cost or highest value)

Example: Vacuum World

• Observable, start in #5.

• Solution?
 [Right, Suck]

1 2

3 4

5 6

7 8

Vacuum world state space graph

R

R

L
R L

R

L

L R L

R

L

R

L
R L

S

S S

S

S S

S S

Example: Vacuum World
(Unobservable)

• Unobservable
start in {1,2,3,4,5,6,7,8}

• Solution?
[Right, Suck, Left, Suck]

1 2

3 4

5 6

7 8

Vacuum world belief-state space
R&N Fig. 4.14

State-Space Problem Formulation
A problem is defined by five items:

 (1) initial state e.g., "at Arad“

 (2) actions Actions(s) = set of actions avail. in state s

 (3) transition model Results(s,a) = state that results from action a in state s
 Alt: successor function S(x) = set of action–state pairs

– e.g., S(Arad) = {<Arad Zerind, Zerind>, … }

 (4) goal test, (or goal state)
 e.g., x = "at Bucharest”, Checkmate(x)

 (5) path cost (additive)

– e.g., sum of distances, number of actions executed, etc.
– c(x,a,y) is the step cost, assumed to be ≥ 0 (and often, assumed to be ≥ ε > 0)

 A solution is a sequence of actions leading from the initial state to a goal state

86

98

142

92

87

90

85
101

211

138

146

97

120 75

70
111

118

140

151

71

75

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Sibiu Fagaras

Rimnicu Vilcea

Pitesti

Cralova

Bucharest

Giurgiu

Urziceni

Neamt

Iasi

Vaslui

Hirsova

Eforie

99

80

Selecting a state space
• Real world is absurdly complex

 state space must be abstracted for problem solving

• (Abstract) state set of real states

• (Abstract) action complex combination of real actions
– e.g., "Arad Zerind" represents a complex set of possible routes,

detours, rest stops, etc.

• For guaranteed realizability, any real state "in Arad” must get to
some real state "in Zerind”

• (Abstract) solution set of real paths that are solutions in the real world

• Each abstract action should be "easier" than the original problem

Example: Vacuum World
• States?

– Discrete: dirt, location

• Initial state?
– Any

• Actions?
– Left, Right, Suck

• Goal test?
– No dirt at all locations

• Path cost?
– 1 per action

1 2

3 4

5 6

7 8

Example: 8-Queens
Place as many queens as possible
 on the chess board without capture

• states? - any arrangement of n<=8 queens
 - or arrangements of n<=8 queens in leftmost n
 columns, 1 per column, such that no queen
 attacks any other.
• initial state? no queens on the board
• actions? - add queen to any empty square
 - or add queen to leftmost empty square such
 that it is not attacked by other queens.
• goal test? 8 queens on the board, none attacked.
• path cost? 1 per move

Example: 8-Queens
Place as many queens as possible
 on the chess board without capture

• states? - any arrangement of n<=8 queens
 - or arrangements of n<=8 queens in leftmost n
 columns, 1 per column, such that no queen
 attacks any other.
• initial state? no queens on the board
• actions? - add queen to any empty square
 - or add queen to leftmost empty square such
 that it is not attacked by other queens.
• goal test? 8 queens on the board, none attacked.
• path cost? 1 per move (not relevant…)

Example: Robotic assembly

• states? Real-valued coordinates of robot joint angles & parts of

the object to be assembled
• initial state? Rest configuration
• actions? Continuous motions of robot joints
• goal test? Complete assembly
• path cost? Time to execute & energy used

Example: Sliding tile puzzle

• states?
• initial state?
• actions?
• goal test?
• path cost?

2 8 3

1

5

4

7

6

1 2 3

4

8

6

7

5

Start State Goal State

Try it yourselves…

Example: Sliding tile puzzle

• states? Locations of tiles
• initial state? Given
• actions? Move blank square up / down / left / right
• goal test? Goal state (given)
• path cost? 1 per move

2 8 3

1

5

4

7

6

1 2 3

4

8

6

7

5

Start State Goal State

of states: (n+1)! / 2
 8-puzzle: 181,440 states
 15-puzzle: 1.3 trillion
 24-puzzle: 10^25

Optimal solution of
n-Puzzle family is NP-hard

Importance of representation
• Definition of “state” can be very important

• A good representation
– Reveals important features
– Hides irrelevant detail
– Exposes useful constraints
– Makes frequent operations easy to do
– Supports local inferences from local features

• Called “soda straw” principle, or “locality” principle
• Inference from features “through a soda straw”

– Rapidly or efficiently computable
• It’s nice to be fast

} Most important

Reveals important features
Hides irrelevant detail

•In search: A man is traveling to market with a fox, a goose, and a bag
of oats. He comes to a river. The only way across the river is a boat that
can hold the man and exactly one of the fox, goose or bag of oats. The
fox will eat the goose if left alone with it, and the goose will eat the oats if
left alone with it.

 How can the man get all his possessions safely across the river?

•A good representation makes this problem easy:

1110
0010
1010
1111
0001

0000 1101

1011

0100 1110

0010 1010 1111

0001

0101

MFGO

M = man
F = fox
G = goose
O = oats
0 = starting side
1 = ending side

Exposes useful constraints
•In logic:
 If the unicorn is mythical, then it is immortal, but if it is not
mythical, then it is a mortal mammal. If the unicorn is either
immortal or a mammal, then it is horned. The unicorn is
magical if it is horned.

 ⇒ Prove that the unicorn is both magical and horned.

•A good representation makes this problem easy:
 Y = unicorn is mYthical
 R = unicorn is moRtal
 M = unicorn is a maMmal
 H = unicorn is Horned
 G = unicorn is maGical

 (¬ Y ¬ R) (Y R) (Y M) (R H) (¬ M H) (¬ H G) (¬ G ¬ H)

(¬ H) (¬R M)

(H)

(H M)

()

Makes frequent operations easy-to-do

• Roman numerals
• M=1000, D=500, C=100, L=50, X=10, V=5, I=1
• 2000 = MM; 1776 = MDCCLXXVI; 16 = XVI; 111 = CXI

•Long division is very tedious (try MDCCLXXVI / XVI = CXI)
•Testing for N < 1000 is very easy (first letter is not “M”)

• Arabic numerals

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, “.”

•Long division is much easier (try 1776 / 16 = 111)
•Testing for N < 1000 is slightly harder (have to scan the
string to test for three or fewer digits)

Local inferences from local features
• Linear vector of pixels
 = highly non-local inference for vision

• Rectangular array of pixels
 = local inference for vision

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

… … 0 1 0 … … 0 1 1 … … 0 0 0 … …

Corner!!

Corner??

Tree search algorithms

• Basic idea
– Explore space by generating successors of already-

explored states (“expanding” states)

– Evaluate every generated state: is it a goal state?

Example: Romania

Sibiu Timisoara Zerind

Arad

 Sibiu Timisoara Zerind

Arad

Rimnicu… Lugoj Oradea Oradea Arad Arad Fagaras Arad

Sibiu

Rimnicu… Oradea Fagaras Arad

86

98

142

92

87

90

85
101

211

138

146

97

120 75

70
111

118

140

151

71

75

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Sibiu Fagaras

Rimnicu Vilcea

Pitesti

Cralova

Bucharest

Giurgiu

Urziceni

Neamt

Iasi

Vaslui

Hirsova

Eforie

99

80

Example: Romania

Sibiu Timisoara Zerind

Arad

 Sibiu Timisoara Zerind

Arad

Rimnicu… Lugoj Oradea Oradea Arad Arad Fagaras Arad

Sibiu

Rimnicu… Oradea Fagaras Arad

function TREE-SEARCH (problem, strategy) : returns a solution or failure
 initialize the search tree using the initial state of problem
 while (true):
 if no candidates for expansion: return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state: return the corresponding solution
 else: expand the node and add the resulting nodes to the search tree

Note: we may visit the same node
often, wasting time & work

Repeated states

• Failure to detect repeated states can turn a linear problem
into an exponential one!

• Test is often implemented as a hash table.

34

35

Tree search vs. Graph search
Review Fig. 3.7, p. 77

• What R&N call Tree Search vs. Graph Search
– (And we follow R&N exactly in this class)
– Has NOTHING to do with searching trees vs. graphs

• Tree Search = do NOT remember visited nodes
– Exponentially slower search, but memory efficient

• Graph Search = DO remember visited nodes
– Exponentially faster search, but memory blow-up

• CLASSIC Comp Sci TIME-SPACE TRADE-OFF

Solutions to Repeated States

• Graph search
– never generate a state generated before

• must keep track of all possible states (uses a lot of memory)
• e.g., 8-puzzle problem, we have 9!/2 = 181,440 states
• approximation for DFS/DLS: only avoid states in its (limited) memory:

avoid infinite loops by checking path back to root.

– “visited?” test usually implemented as a hash table
36

S

B

C

S

B C

S C B S

State Space
Example of a Search Tree

faster, but memory inefficient

Why Search can be difficult
• At the start of the search, the search algorithm does not

know
– the size of the tree
– the shape of the tree
– the depth of the goal states

• How big can a search tree be?

– say there is a constant branching factor b
– and one goal exists at depth d
– search tree which includes a goal can have

 bd different branches in the tree (worst case)

• Examples:
– b = 2, d = 10: bd = 210= 1024
– b = 10, d = 10: bd = 1010= 10,000,000,000

Implementation: states vs. nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree contains
info such as: state, parent node, action, path cost g(x), depth

• The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create the
corresponding states.

Search strategies
• A search strategy is defined by picking the order of node

expansion

• Strategies are evaluated along the following dimensions:
– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of

– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)

39

Summary
• Generate the search space by applying actions to the initial

state and all further resulting states.

• Problem: initial state, actions, transition model, goal test,
step/path cost

• Solution: sequence of actions to goal

• Tree-search (don’t remember visited nodes) vs.
Graph-search (do remember them)

• Search strategy evaluation: b, d, m
– Complete? Time? Space? Optimal?

	State Space Representations�and Search Algorithms
	Architectures for Intelligence
	Search
	Why search?
	Example: Romania
	Example: Romania
	Environment types
	Why not Dijkstra’s Algorithm?
	The State-Space Graph
	Example: Vacuum World
	Vacuum world state space graph
	Example: Vacuum World (Unobservable)
	Vacuum world belief-state space�R&N Fig. 4.14
	State-Space Problem Formulation
	Selecting a state space
	Example: Vacuum World
	Example: 8-Queens
	Example: 8-Queens
	Example: Robotic assembly
	Example: Sliding tile puzzle
	Example: Sliding tile puzzle
	Importance of representation
	Slide Number 25
	Slide Number 26
	Makes frequent operations easy-to-do
	Local inferences from local features
	Tree search algorithms
	Example: Romania
	Example: Romania
	Repeated states
	Tree search vs. Graph search�Review Fig. 3.7, p. 77
	Solutions to Repeated States
	Why Search can be difficult
	Implementation: states vs. nodes
	Search strategies
	Summary

