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Outline 
• Computer programs that play 2-player games 

– game-playing as search with the complication of an opponent 

• General principles of game-playing and search 
– game tree 
– minimax principle; impractical, but theoretical basis for analysis 
– evaluation functions; cutting off search; static heuristic functions 
– alpha-beta-pruning 
– heuristic techniques 
– games with chance 
– Monte-Carlo ree search 

• Status of Game-Playing Systems 
– in chess, checkers, backgammon, Othello, Go, etc., computers 

routinely defeat leading world players. 



Types of games 
 
 
 
 
 
 
 
 

• Start with deterministic, perfect information games (easiest) 
 

• Not considered: 
– Physical games like tennis, ice hockey, etc. 
– But, see “robot soccer,” http://www.robocup.org/ 

 

chess, checkers, go, 
othello 

backgammon, 
monopoly 

battleship, Kriegspiel Bridge, poker, 
scrabble, … 

Deterministic: Chance: 

Perfect 
  Information: 

Imperfect 
  Information: 

http://www.robocup.org/


Typical assumptions  
• Two agents, whose actions alternate 
• Utility values for each agent are the opposite of the other 

– “Zero-sum” game; this creates adversarial situation 

• Fully observable environments 
 

• In game theory terms: 
– Deterministic, turn-taking, zero-sum, perfect information 

 

• Generalizes: stochastic, multiplayer, non zero-sum, etc. 
 

• Compare to e.g., Prisoner’s Dilemma” (R&N pp. 666-668) 
– Non-turn-taking, Non-zero-sum, Imperfect information 



Game Tree (tic-tac-toe) 
• All possible moves at each step 

 
 
 
 
 
 
 
 
 

 
 

• How do we search this tree to find the optimal move? 



Search versus Games 
• Search: no adversary 

– Solution is a path from start to goal, or a series of actions from start to goal 
– Search, Heuristics, and constraint  techniques can find optimal solution 
– Evaluation function: estimate cost from start to goal through a given node 
– Actions have costs (sum of step costs = path cost) 
– Examples: path planning, scheduling activities, … 

 

• Games: adversary 
– Solution is a strategy 

• Specifies move for every possible opponent reply 
– Time limits force an approximate solution 
– Evaluation function: evaluate “goodness” of game position 
– Examples: chess, checkers, Othello, backgammon, Go 



Games as search 
• Two players, “MAX” and “MIN” 

 

• MAX moves first, and they take turns until game is over 
– Winner gets reward, loser gets penalty 
– “Zero sum”: sum of reward and penalty is constant 

 

• Formal definition as a search problem: 
– Initial state: set-up defined by rules, e.g., initial board for chess 
– Player(s): which player has the move in state s 
– Actions(s): set of legal moves in a state 
– Result(s,a): transition model defines result of a move 
– Terminal-Test(s): true if the game is finished; false otherwise 
– Utility(s,p): the numerical value of terminal state s for player p 

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe 
• E.g., win (+1), lose (0), and draw (1/2) in chess 

 

• MAX uses search tree to determine “best” next move 



• Finds the optimal strategy or next best move for MAX: 
• Optimal strategy is a solution tree 

 
Brute Force: 

1. Generate the whole game tree to leaves 
2. Apply utility (payoff) function to leaves 
3.  Back-up values from leaves toward the root: 

• a Max node computes the max of its child values 
• a Min node computes the min of its child values 

4. At root: choose move leading to the child of highest value 
 
Minimax: 
 Search the game tree using DFS to find the value  (= best move) at the root 
 

Min-Max: an optimal procedure 



Two-ply Game Tree 

MIN 

MAX 

3 12 8 2 4 6 14 5 2 

3 2 2 

3 The minimax decision 

Minimax maximizes the utility of the worst-case outcome for MAX 



Recursive min-max search 
minMaxSearch(state) 
   return argmax( [ minValue( apply(state,a) ) for each action a ] ) 
 
 
maxValue(state) 
   if (terminal(state)) return utility(state); 
   v = -infty 
   for each action a: 
      v = max( v,  minValue( apply(state,a) ) ) 
  return v 
 
 
minValue(state) 
   if (terminal(state)) return utility(state); 
   v = infty 
   for each action a: 
      v = min( v,  maxValue( apply(state,a) ) ) 
  return v 

Simple stub to call recursion f’ns 

If recursion limit reached, eval position 
 
Otherwise, find our best child: 
    

If recursion limit reached, eval position 
 
Otherwise, find the worst child: 
    



Properties of minimax 
• Complete?  Yes  (if tree is finite) 

 

• Optimal?    
– Yes (against an optimal opponent) 
– Can it be beaten by a suboptimal opponent?  (No – why?) 

 

• Time?   O(bm) 
 

• Space?   
– O(bm)    (depth-first search, generate all actions at once) 
– O(m)      (backtracking search, generate actions one at a time) 



Game tree size 
• Tic-tac-toe 

– B ≈ 5 legal actions per state on average; total 9 plies in game 
• “ply” = one action by one player; “move” = two plies 

– 59 = 1,953,125 
– 9! = 362,880  (computer goes first) 
– 8! = 40,320 (computer goes second) 
– Exact solution is quite reasonable 

 

• Chess 
– b ≈ 35 (approximate average branching factor) 
– d ≈ 100 (depth of game tree for “typical” game) 
– bd = 35100 ≈ 10154 nodes!!! 
– Exact solution completely infeasible 

 
It is usually impossible to develop the whole search tree. 



Cutting off search 
• One solution: cut off tree before game ends 
• Replace 

– Terminal(s) with   Cutoff(s)   – e.g., stop at some max depth 
– Utility(s,p)  with   Eval(s,p)  – estimate position quality 

 

• Does it work in practice? 
– bm ≈ 106, b ≈ 35  →  m ≈ 4 
– 4-ply look-ahead is a poor chess player 
– 4-ply ≈ human novice 
– 8-ply ≈ typical PC, human master 
– 12-ply ≈ Deep Blue, human grand champion Kasparov 
– 3512 ≈ 1018 (Yikes!  but possible, with other clever methods) 



Static (Heuristic) Evaluation Functions 
• An Evaluation Function: 

– Estimate how good the current board configuration is for a player. 
– Typically, evaluate how good it is for the player, and how good it is for the 

opponent, and subtract the opponent’s score from the player’s. 
– Often called “static” because it is called on a static board position 
– Ex: Othello: Number of white pieces - Number of black pieces 
– Ex: Chess:  Value of all white pieces - Value of all black pieces 

 

• Typical value ranges: 
 [ -1, 1 ]  (loss/win)  or [ -1 , +1 ] or [ 0 , 1 ] 

 

• Board evaluation:  X for one player => -X for opponent 
– Zero-sum game: scores sum to a constant 





Applying minimax to tic-tac-toe 
• The static heuristic evaluation function: 

– Count the number of possible win lines 

X 

O 

X 

O 

X has 6 
possible win 
paths 

X 

O 

O has 5 
possible win 
paths 

E(s) = 6 – 5 = 1 

X O X 

O 

X has 4 possible wins 
O has 6 possible wins 
 
E(n) = 4 – 6 = -2 

X has 5 possible wins 
O has 4 possible wins 
 
E(n) = 5 – 4 = 1 



Minimax values (two ply) 



Minimax values (two ply) 



Minimax values (two ply) 





Iterative deepening 
• In real games, there is usually a time limit T to make a move 

 

• How do we take this into account? 
• Minimax cannot use “partial” results with any confidence, unless 

the full tree has been searched 
– Conservative: set small depth limit to guarantee finding a move in time < T 
– But, we may finish early – could do more search! 

 

• In practice, iterative deepening search (IDS) is used 
– IDS: depth-first search with increasing depth limit 
– When time runs out, use the solution from previous depth 
– With alpha-beta pruning (next), we can sort the nodes based on values 

from the previous depth limit in order to maximize pruning during the next 
depth limit => search deeper! 
 



• The Horizon Effect 
– Sometimes there’s a major “effect” (such as a piece being captured) which 

is just “below” the depth to which the tree has been expanded. 
– The computer cannot see that this major event could happen because it 

has a “limited horizon”. 
– There are heuristics to try to follow certain branches more deeply to detect 

such important events 
– This helps to avoid catastrophic losses due to “short-sightedness” 

 

• Heuristics for Tree Exploration 
– Often better to explore some branches more deeply in the allotted time 
– Various heuristics exist to identify “promising” branches 
– Stop at “quiescent” positions – all battles are over, things are quiet 
– Continue when things are in violent flux – the middle of a battle 

Limited horizon effects 



Selectively deeper game trees 

MIN 
(Opponent’s move) 

MAX 
(Computer’s move) 

3 5 
5 8 

7 8 

3 4 

4 

0 
5 

0 7 

4 

MIN 
(Opponent’s move) 

MAX 
(Computer’s move) 



Eliminate redundant nodes 
• On average, each board position appears in the search tree 

approximately 10150 / 1040 ≈ 10100 times 
– Vastly redundant search effort 

 

• Can’t remember all nodes (too many) 
– Can’t eliminate all redundant nodes 

 

• Some short move sequences provably lead to a redundant 
position 
– These can be deleted dynamically with no memory cost 

 

• Example: 
1.  P-QR4  P-QR4;  2. P-KR4  P-KR4 
leads to the same position as 
1.  P-QR4  P-KR4;   2. P-KR4  P-QR4 



Summary 
• Game playing as a search problem 

 

• Game trees represent alternate computer / opponent moves 
 

• Minimax: choose moves by assuming the opponent will always choose the 
move that is best for them 
– Avoids all worst-case outcomes for Max, to find the best 
– If opponent makes an error, Minimax will take optimal advantage (after) & make 

the best possible play that exploits the error 
 

• Cutting off search 
– In general, it’s infeasible to search the entire game tree 
– In practice, Cutoff-Test decides when to stop searching 
– Prefer to stop at quiescent positions 
– Prefer to keep searching in positions that are still in flux 

 

• Static heuristic evaluation function 
– Estimate the quality of a given board configuration for MAX player 
– Called when search is cut off, to determine value of position found 
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