
Games and Adversarial Search A:
Mini-max, Cutting Off Search

CS171, Summer 1 Quarter, 2019
Introduction to Artificial Intelligence

Prof. Richard Lathrop

Read Beforehand: R&N 5.1, 5.2, 5.4

Outline
• Computer programs that play 2-player games

– game-playing as search with the complication of an opponent

• General principles of game-playing and search
– game tree
– minimax principle; impractical, but theoretical basis for analysis
– evaluation functions; cutting off search; static heuristic functions
– alpha-beta-pruning
– heuristic techniques
– games with chance
– Monte-Carlo ree search

• Status of Game-Playing Systems
– in chess, checkers, backgammon, Othello, Go, etc., computers

routinely defeat leading world players.

Types of games

• Start with deterministic, perfect information games (easiest)

• Not considered:
– Physical games like tennis, ice hockey, etc.
– But, see “robot soccer,” http://www.robocup.org/

chess, checkers, go,
othello

backgammon,
monopoly

battleship, Kriegspiel Bridge, poker,
scrabble, …

Deterministic: Chance:

Perfect
 Information:

Imperfect
 Information:

http://www.robocup.org/

Typical assumptions
• Two agents, whose actions alternate
• Utility values for each agent are the opposite of the other

– “Zero-sum” game; this creates adversarial situation

• Fully observable environments

• In game theory terms:
– Deterministic, turn-taking, zero-sum, perfect information

• Generalizes: stochastic, multiplayer, non zero-sum, etc.

• Compare to e.g., Prisoner’s Dilemma” (R&N pp. 666-668)
– Non-turn-taking, Non-zero-sum, Imperfect information

Game Tree (tic-tac-toe)
• All possible moves at each step

• How do we search this tree to find the optimal move?

Search versus Games
• Search: no adversary

– Solution is a path from start to goal, or a series of actions from start to goal
– Search, Heuristics, and constraint techniques can find optimal solution
– Evaluation function: estimate cost from start to goal through a given node
– Actions have costs (sum of step costs = path cost)
– Examples: path planning, scheduling activities, …

• Games: adversary
– Solution is a strategy

• Specifies move for every possible opponent reply
– Time limits force an approximate solution
– Evaluation function: evaluate “goodness” of game position
– Examples: chess, checkers, Othello, backgammon, Go

Games as search
• Two players, “MAX” and “MIN”

• MAX moves first, and they take turns until game is over
– Winner gets reward, loser gets penalty
– “Zero sum”: sum of reward and penalty is constant

• Formal definition as a search problem:
– Initial state: set-up defined by rules, e.g., initial board for chess
– Player(s): which player has the move in state s
– Actions(s): set of legal moves in a state
– Result(s,a): transition model defines result of a move
– Terminal-Test(s): true if the game is finished; false otherwise
– Utility(s,p): the numerical value of terminal state s for player p

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe
• E.g., win (+1), lose (0), and draw (1/2) in chess

• MAX uses search tree to determine “best” next move

• Finds the optimal strategy or next best move for MAX:
• Optimal strategy is a solution tree

Brute Force:

1. Generate the whole game tree to leaves
2. Apply utility (payoff) function to leaves
3. Back-up values from leaves toward the root:

• a Max node computes the max of its child values
• a Min node computes the min of its child values

4. At root: choose move leading to the child of highest value

Minimax:
 Search the game tree using DFS to find the value (= best move) at the root

Min-Max: an optimal procedure

Two-ply Game Tree

MIN

MAX

3 12 8 2 4 6 14 5 2

3 2 2

3 The minimax decision

Minimax maximizes the utility of the worst-case outcome for MAX

Recursive min-max search
minMaxSearch(state)
 return argmax([minValue(apply(state,a)) for each action a])

maxValue(state)
 if (terminal(state)) return utility(state);
 v = -infty
 for each action a:
 v = max(v, minValue(apply(state,a)))
 return v

minValue(state)
 if (terminal(state)) return utility(state);
 v = infty
 for each action a:
 v = min(v, maxValue(apply(state,a)))
 return v

Simple stub to call recursion f’ns

If recursion limit reached, eval position

Otherwise, find our best child:

If recursion limit reached, eval position

Otherwise, find the worst child:

Properties of minimax
• Complete? Yes (if tree is finite)

• Optimal?
– Yes (against an optimal opponent)
– Can it be beaten by a suboptimal opponent? (No – why?)

• Time? O(bm)

• Space?
– O(bm) (depth-first search, generate all actions at once)
– O(m) (backtracking search, generate actions one at a time)

Game tree size
• Tic-tac-toe

– B ≈ 5 legal actions per state on average; total 9 plies in game
• “ply” = one action by one player; “move” = two plies

– 59 = 1,953,125
– 9! = 362,880 (computer goes first)
– 8! = 40,320 (computer goes second)
– Exact solution is quite reasonable

• Chess
– b ≈ 35 (approximate average branching factor)
– d ≈ 100 (depth of game tree for “typical” game)
– bd = 35100 ≈ 10154 nodes!!!
– Exact solution completely infeasible

It is usually impossible to develop the whole search tree.

Cutting off search
• One solution: cut off tree before game ends
• Replace

– Terminal(s) with Cutoff(s) – e.g., stop at some max depth
– Utility(s,p) with Eval(s,p) – estimate position quality

• Does it work in practice?
– bm ≈ 106, b ≈ 35 → m ≈ 4
– 4-ply look-ahead is a poor chess player
– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human master
– 12-ply ≈ Deep Blue, human grand champion Kasparov
– 3512 ≈ 1018 (Yikes! but possible, with other clever methods)

Static (Heuristic) Evaluation Functions
• An Evaluation Function:

– Estimate how good the current board configuration is for a player.
– Typically, evaluate how good it is for the player, and how good it is for the

opponent, and subtract the opponent’s score from the player’s.
– Often called “static” because it is called on a static board position
– Ex: Othello: Number of white pieces - Number of black pieces
– Ex: Chess: Value of all white pieces - Value of all black pieces

• Typical value ranges:
 [-1, 1] (loss/win) or [-1 , +1] or [0 , 1]

• Board evaluation: X for one player => -X for opponent
– Zero-sum game: scores sum to a constant

Applying minimax to tic-tac-toe
• The static heuristic evaluation function:

– Count the number of possible win lines

X

O

X

O

X has 6
possible win
paths

X

O

O has 5
possible win
paths

E(s) = 6 – 5 = 1

X O X

O

X has 4 possible wins
O has 6 possible wins

E(n) = 4 – 6 = -2

X has 5 possible wins
O has 4 possible wins

E(n) = 5 – 4 = 1

Minimax values (two ply)

Minimax values (two ply)

Minimax values (two ply)

Iterative deepening
• In real games, there is usually a time limit T to make a move

• How do we take this into account?
• Minimax cannot use “partial” results with any confidence, unless

the full tree has been searched
– Conservative: set small depth limit to guarantee finding a move in time < T
– But, we may finish early – could do more search!

• In practice, iterative deepening search (IDS) is used
– IDS: depth-first search with increasing depth limit
– When time runs out, use the solution from previous depth
– With alpha-beta pruning (next), we can sort the nodes based on values

from the previous depth limit in order to maximize pruning during the next
depth limit => search deeper!

• The Horizon Effect
– Sometimes there’s a major “effect” (such as a piece being captured) which

is just “below” the depth to which the tree has been expanded.
– The computer cannot see that this major event could happen because it

has a “limited horizon”.
– There are heuristics to try to follow certain branches more deeply to detect

such important events
– This helps to avoid catastrophic losses due to “short-sightedness”

• Heuristics for Tree Exploration
– Often better to explore some branches more deeply in the allotted time
– Various heuristics exist to identify “promising” branches
– Stop at “quiescent” positions – all battles are over, things are quiet
– Continue when things are in violent flux – the middle of a battle

Limited horizon effects

Selectively deeper game trees

MIN
(Opponent’s move)

MAX
(Computer’s move)

3 5
5 8

7 8

3 4

4

0
5

0 7

4

MIN
(Opponent’s move)

MAX
(Computer’s move)

Eliminate redundant nodes
• On average, each board position appears in the search tree

approximately 10150 / 1040 ≈ 10100 times
– Vastly redundant search effort

• Can’t remember all nodes (too many)
– Can’t eliminate all redundant nodes

• Some short move sequences provably lead to a redundant
position
– These can be deleted dynamically with no memory cost

• Example:
1. P-QR4 P-QR4; 2. P-KR4 P-KR4
leads to the same position as
1. P-QR4 P-KR4; 2. P-KR4 P-QR4

Summary
• Game playing as a search problem

• Game trees represent alternate computer / opponent moves

• Minimax: choose moves by assuming the opponent will always choose the
move that is best for them
– Avoids all worst-case outcomes for Max, to find the best
– If opponent makes an error, Minimax will take optimal advantage (after) & make

the best possible play that exploits the error

• Cutting off search
– In general, it’s infeasible to search the entire game tree
– In practice, Cutoff-Test decides when to stop searching
– Prefer to stop at quiescent positions
– Prefer to keep searching in positions that are still in flux

• Static heuristic evaluation function
– Estimate the quality of a given board configuration for MAX player
– Called when search is cut off, to determine value of position found

	Games and Adversarial Search A:�Mini-max, Cutting Off Search
	Outline
	Types of games
	Typical assumptions	
	Game Tree (tic-tac-toe)
	Search versus Games
	Games as search
	Min-Max: an optimal procedure
	Two-ply Game Tree
	Recursive min-max search
	Properties of minimax
	Game tree size
	Cutting off search
	Static (Heuristic) Evaluation Functions
	Slide Number 16
	Applying minimax to tic-tac-toe
	Minimax values (two ply)
	Minimax values (two ply)
	Minimax values (two ply)
	Slide Number 21
	Iterative deepening
	Limited horizon effects
	Selectively deeper game trees
	Eliminate redundant nodes
	Summary

