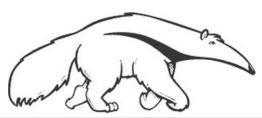
Constraint Satisfaction Problems A: Definition, Search Strategies

CS171, Summer 1 Quarter, 2019
Introduction to Artificial Intelligence
Prof. Richard Lathrop



Read Beforehand: R&N 6.1-6.4, except 6.3.3

Constraint Satisfaction Problems

• What is a CSP?

- Finite set of variables, X₁, X₂, ..., X_n
- Nonempty domain of possible values for each: D₁, ..., D_n
- Finite set of constraints, C₁, ..., C_m
 - Each constraint C_i limits the values that variables can take, e.g., $X_1 \neq X_2$
- Each constraint C_i is a pair: $C_i = (scope, relation)$
 - Scope = tuple of variables that participate in the constraint
 - Relation = list of allowed combinations of variables
 May be an explicit list of allowed combinations
 May be an abstract relation allowing membership testing & listing

CSP benefits

- Standard representation pattern
- Generic goal and successor functions
- Generic heuristics (no domain-specific expertise required)

Example: Sudoku

Problem specification

```
Variables: {A1, A2, A3, ... I7, I8, I9}
```

Domains: $D_i = \{ 1, 2, 3, ..., 9 \}$

Constraints:

each row, column "all different"

each 3x3 block "all different"

	1	2	3	4	5	6	7	8	9
Α			2	4		6			
В	8	6	5	1			2		
С		1				8	6		9
D	9				4		8	6	
Е		4	7				1	9	
F		5	8		6				3
G	4		6	9				7	
Н			9			4	5	8	1
ı				3		2	9		

Task: solve (complete a partial solution)

check "well-posed": exactly one solution?

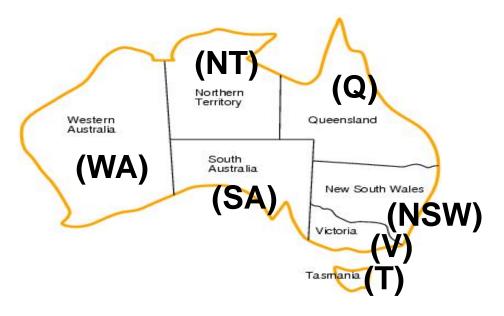
CSPs --- what is a solution?

- A **state** is an **assignment** of values to some variables.
 - **Complete** assignment
 - = every variable has a value.
 - Partial assignment
 - = some variables have no values.
 - **Consistent** assignment
 - = assignment does not violate any constraints
- A *solution* is a *complete* and *consistent* assignment.

CSPs with objective functions

- A solution may have to maximize an objective function
 - Preferences, often called "soft" constraints
 - Example: linear objective function
 - => linear programming or integer linear programming
 - Example: "Weighted" CSPs where each variable has a cost
- Examples of CSP applications
 - Scheduling the time of observations on a space telescope
 - Airline flight scheduling
 - Cryptography
 - Job shop scheduling
 - Classroom scheduling
 - Computer vision, image interpretation

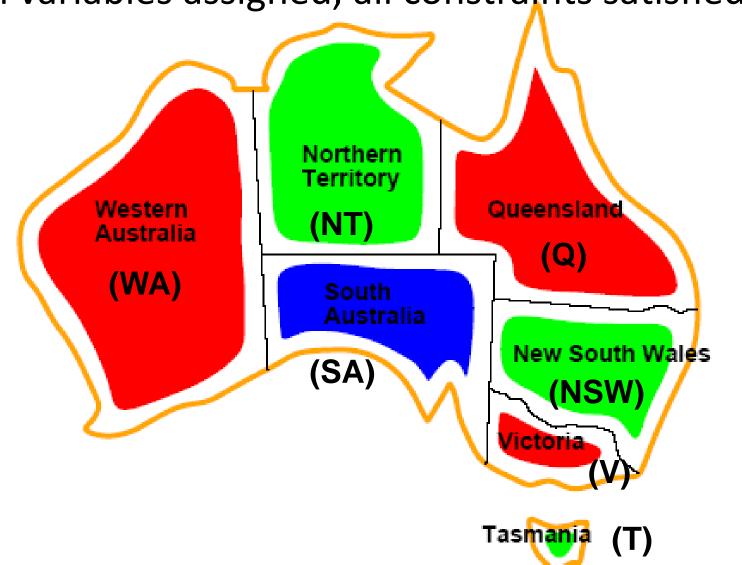
CSP example: map coloring

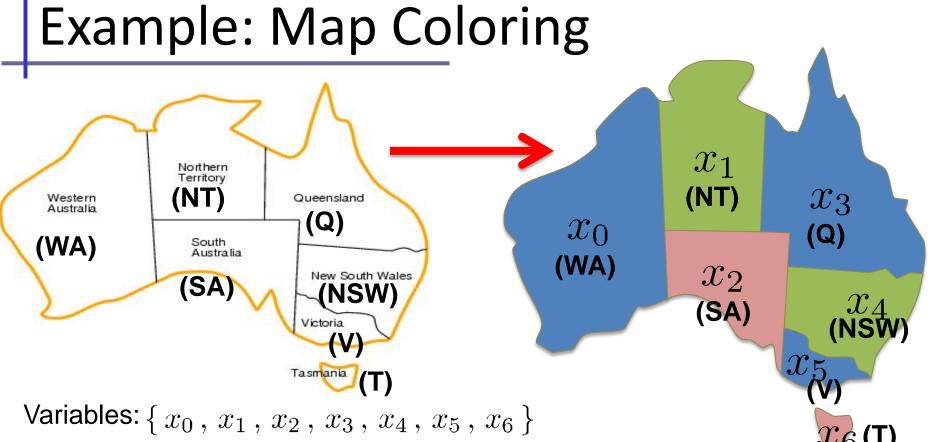


- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D_i={red,green,blue}
- Constraints: Adjacent regions must have different colors, e.g., WA ≠ NT.

Example: Map coloring solution

All variables assigned, all constraints satisfied.





Domains: D_i = { red, green, blue }

Constraints: bordering regions must have different colors:

$$x_0 \neq x_1, \ x_0 \neq x_2, \ x_1 \neq x_2, \dots$$

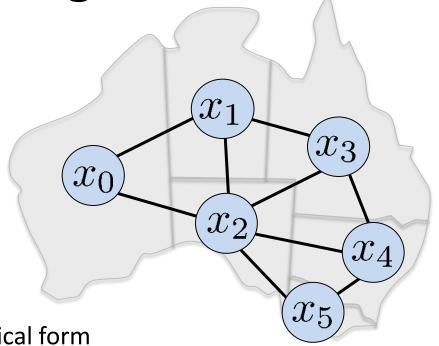
A **solution** is any setting of the variables that satisfies all the constraints, e.g.,

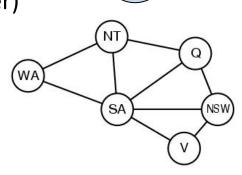
$$x_0 = blue, \ x_1 = green, \ x_2 = red, \ x_3 = blue,$$
 $x_4 = green, \ x_5 = blue, \ x_6 = red$

Example: Map Coloring

- Constraint graph
 - Vertices: variables
 - Edges: constraints (connect involved variables)

- Graphical model
 - Abstracts the problem to a canonical form
 - Can reason about problem through graph connectivity
 - Ex: Tasmania can be solved independently (more later)
- Binary CSP
 - Constraints involve at most two variables
 - Sometimes called "pairwise"





Aside: Graph coloring

More general problem than map coloring

Planar graph:
 graph in 2D plane with no
 edge crossings

Guthrie's conjecture (1852)
 Every planar graph can be colored in ≤ 4 colors

 x_{0} x_{2} x_{3} x_{4} x_{5} x_{6}

Proved (using a computer) in 1977 (Appel & Haken 1977)

Varieties of CSPs

- Discrete variables
 - Finite domains, size $d \Rightarrow O(d^n)$ complete assignments
 - Ex: Boolean CSPs: Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - Ex: Job scheduling, variables are start/end days for each job
 - Need a constraint language, e.g., StartJob_1 + 5 < StartJob_3
 - Infinitely many solutions
 - Linear constraints: solvable
 - Nonlinear: no general algorithm
- Continuous variables
 - Ex: Building an airline schedule or class schedule
 - Linear constraints: solvable in polynomial time by LP methods

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 - e.g., SA ≠ WA
- Higher-order constraints involve 3 or more variables,
 - Ex: jobs A,B,C cannot all be run at the same time
 - Can always be expressed using multiple binary constraints
- Preference (soft constraints)
 - Ex: "red is better than green" can often be represented by a cost for each variable assignment
 - Combines optimization with CSPs

Simplify...

• We restrict attention to:

- Discrete & finite domains
 - Variables have a discrete, finite set of values
- No objective function
 - Any complete & consistent solution is OK
- Solution
 - Find a complete & consistent assignment
- Example: Sudoku puzzles

Binary CSPs

CSPs only need binary constraints!

- Unary constraints
 - Just delete values from the variable's domain
- Higher order (3 or more variables): reduce to binary
 - Simple example: 3 variables X,Y,Z
 - Domains Dx={1,2,3}, Dy={1,2,3}, Dz={1,2,3}
 - Constraint C[X,Y,Z] = {X+Y=Z} = {(1,1,2),(1,2,3),(2,1,3)}(Plus other variables & constraints elsewhere in the CSP)
 - Create a new variable W, taking values as triples (3-tuples)
 - Domain of W is $Dw=\{(1,1,2),(1,2,3),(2,1,3)\}$
 - Dw is exactly the tuples that satisfy the higher-order constraint
 - Create three new constraints:
 - C[X,W] = { [1,(1,1,2)], [1,(1,2,3)], [2,(2,1,3) }
 - C[Y,W] = { [1,(1,1,2)], [2,(1,2,3)], [1,(2,1,3) }
 - C[Z,W] = { [2,(1,1,2)], [3,(1,2,3)], [3,(2,1,3) }

Other constraints elsewhere involving X,Y,Z are unaffected

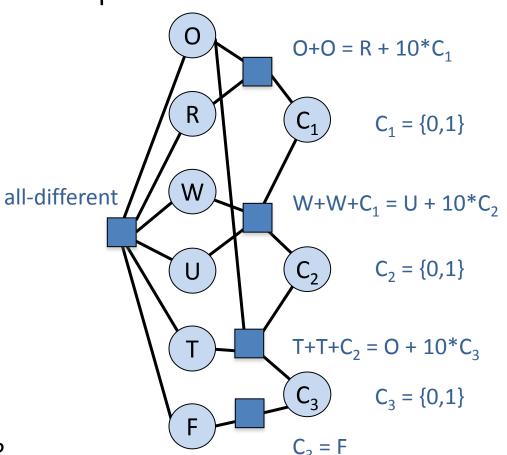
Example: Cryptarithmetic problems

Find numeric substitutions that make an equation hold:

For example:

$$O = 4$$
 $R = 8$
 $W = 3$
 $T = 7$
 $A = 1$
 $A = 4$
 $A = 8$
 $A = 8$
 $A = 7$
 $A = 1$
 $A = 8$
 $A = 1$
 $A =$

Non-pairwise CSP:



Note: not unique – how many solutions?

Example: Cryptarithmetic problems

Try it yourself at home:

(a frequent request from college students to parents)

Random binary CSPs

- A random binary CSP is defined by a four-tuple (n, d, p₁, p₂)
 - n = the number of variables.
 - d = the domain size of each variable.
 - p_1 = probability a constraint exists between two variables.
 - p_2 = probability a pair of values in the domains of two variables connected by a constraint is incompatible.
 - Note that R&N lists compatible pairs of values instead.
 - Equivalent formulations; just take the set complement.
- (n, d, p₁, p₂) generate random binary constraints
- The so-called "model B" of Random CSP (n, d, n₁, n₂)
 - $n1 = p_1 n(n-1)/2$ pairs of variables are randomly and uniformly selected and binary constraints are posted between them.
 - For each constraint, $n_2 = p_2 d^2$ randomly and uniformly selected pairs of values are picked as incompatible.
- The random CSP as an optimization problem (minCSP).
 - Goal is to minimize the total sum of values for all variables.

CSP as a standard search problem

- A CSP can easily be expressed as a standard search problem.
- Incremental formulation
 - Initial State: the empty assignment {}
 - Actions: Assign a value to an unassigned variable provided that it does not violate a constraint
 - Goal test: the current assignment is complete (by construction it is consistent)
 - Path cost: constant cost for every step (not really relevant)

```
BUT: solution is at depth n (# of variables) For BFS: branching factor at top level is nd next level: (n-1)d
```

. . .

Total: *n! d*ⁿ leaves! But there are only *d*ⁿ complete assignments!

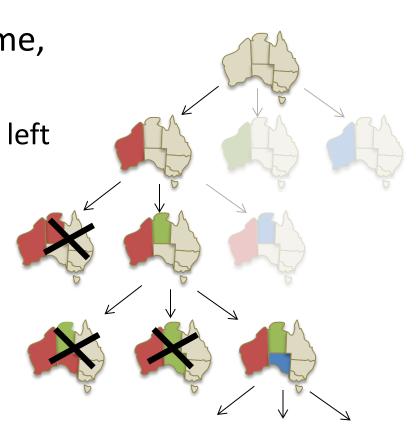
- Aside: can also use complete-state formulation
 - Local search techniques (Chapter 4) tend to work well

Commutativity

- CSPs are commutative.
 - Order of any given set of actions has no effect on the outcome.
 - Example: choose colors for Australian territories, one at a time.
 - [WA=red then NT=green] same as [NT=green then WA=red]
- All CSP search algorithms can generate successors by considering assignments for only a single variable at each node in the search tree
 - \Rightarrow there are d^n irredundant leaves
- (Figure out later to which variable to assign which value.)

- Similar to depth-first search
 - At each level, pick a single variable to expand
 - Iterate over the domain values of that variable
- Generate children one at a time,
 - One child per value
 - Backtrack when no legal values left

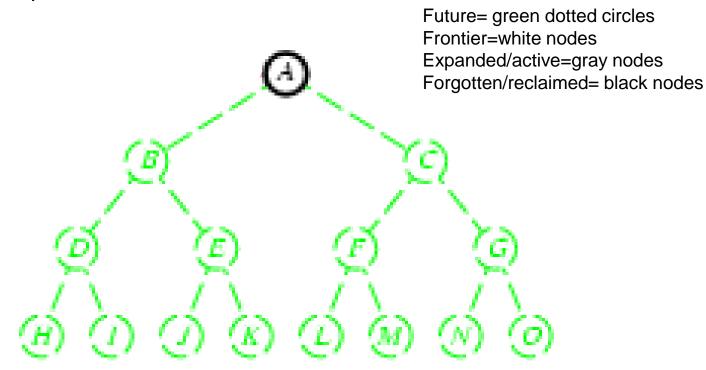
- Uninformed algorithm
 - Poor general performance



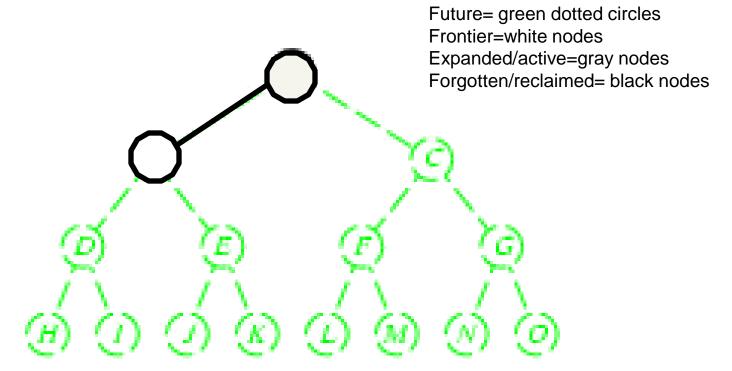
function BACKTRACKING-SEARCH(*csp*) **return** a solution or failure **return** RECURSIVE-BACKTRACKING({}, csp)

```
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
  if assignment is complete then return assignment
  var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
    if value is consistent with assignment according to CONSTRAINTS[csp] then
        add {var=value} to assignment
        result ← RECURSIVE-BACTRACKING(assignment, csp)
        if result ≠ failure then return result
        remove {var=value} from assignment
    return failure
```

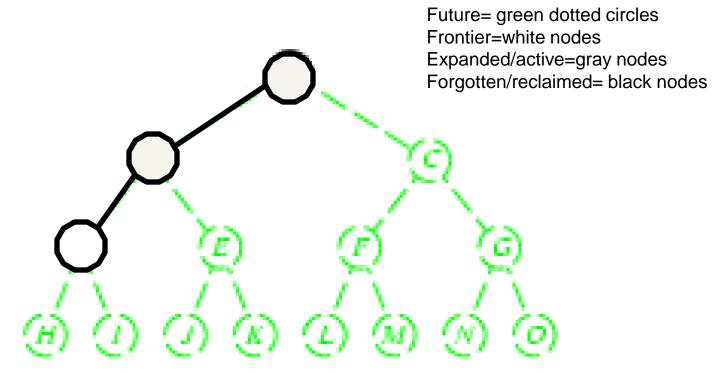
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



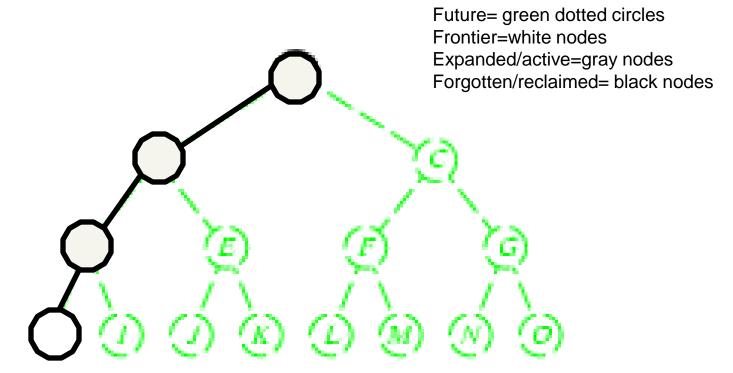
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



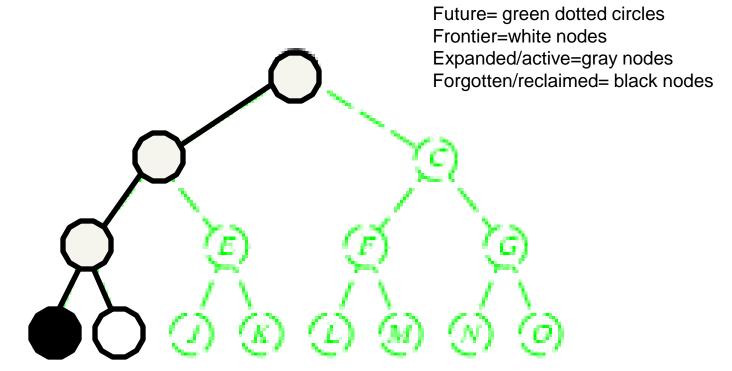
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



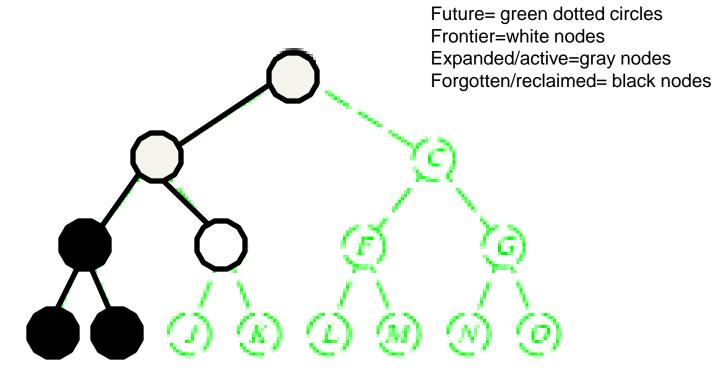
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



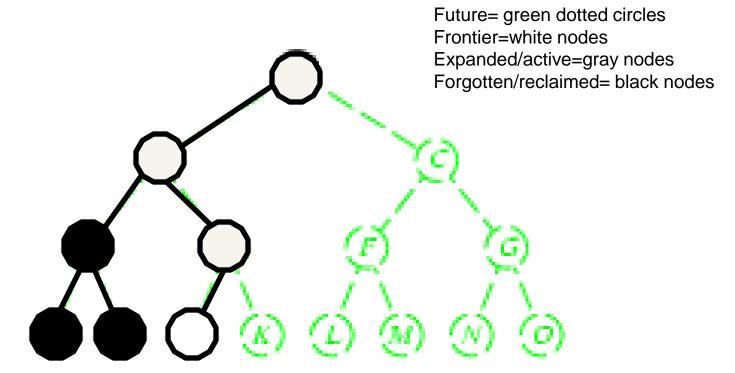
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



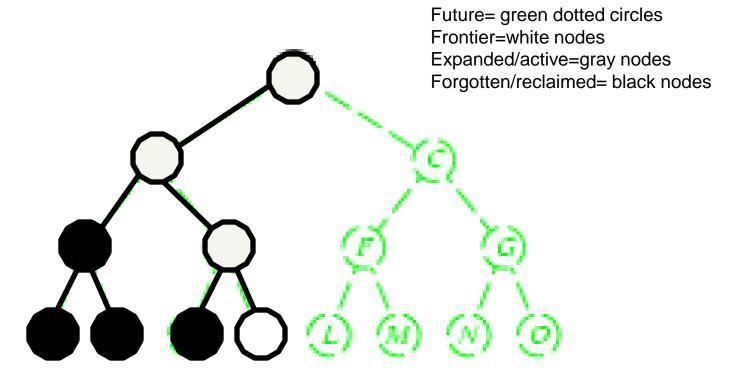
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



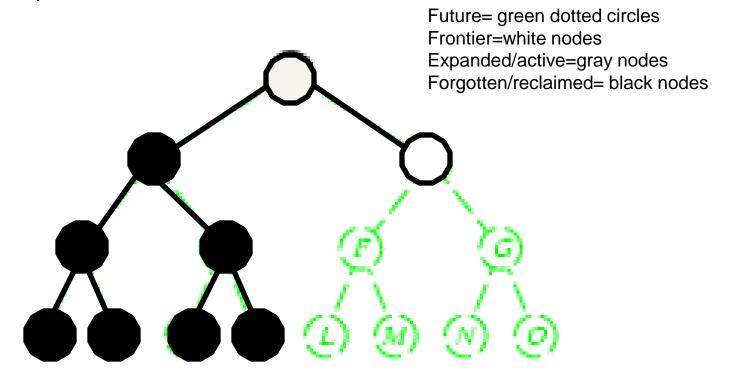
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



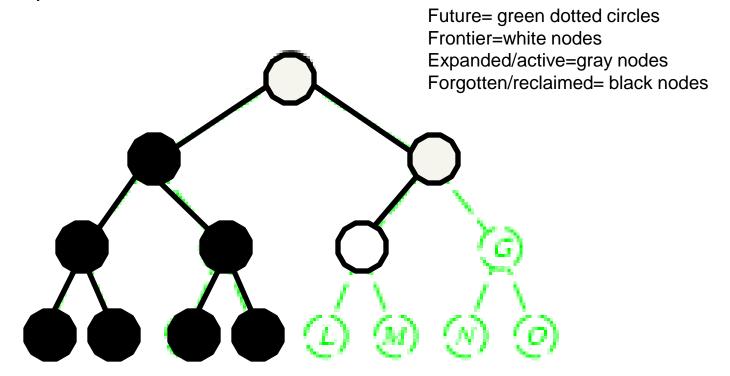
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



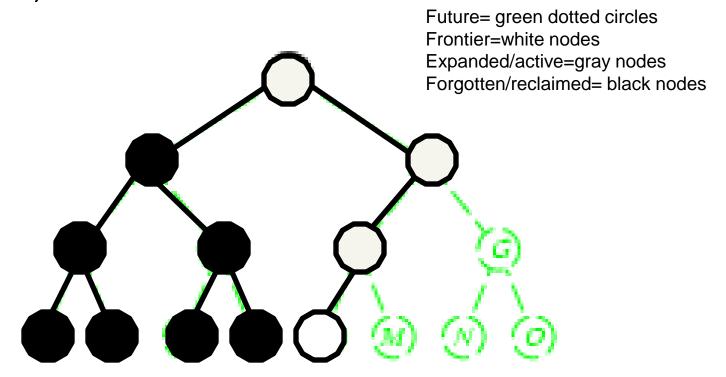
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



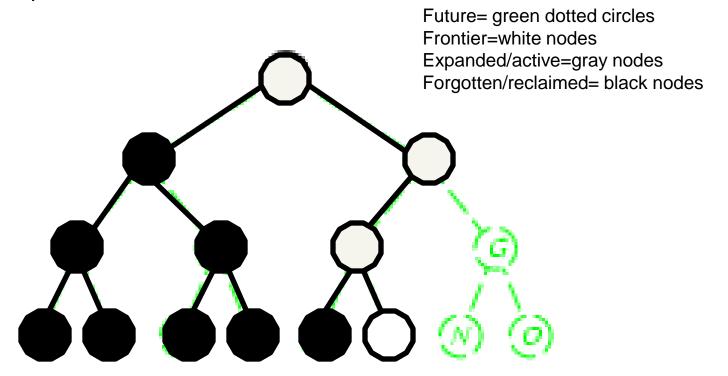
- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



- Expand deepest unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom



Improving Backtracking O(exp(n))

- Make our search more "informed" (e.g. heuristics)
 - General purpose methods can give large speed gains
 - CSPs are a generic formulation; hence heuristics are more "generic" as well

Before search:

- Reduce the search space
- Arc-consistency, path-consistency, i-consistency
- Variable ordering (fixed)

• During search:

- Look-ahead schemes:
 - Detecting failure early; reduce the search space if possible
 - Which variable should be assigned next?
 - Which value should we explore first?

– Look-back schemes:

- Backjumping
- Constraint recording
- Dependency-directed backtracking

Look-ahead: Variable and value orderings

Intuition:

- Apply propagation at each node in the search tree (reduce future branching)
- Choose a variable that will detect failures early

(low branching factor)

Choose value least likely to yield a dead-end

(find solution early if possible)

- Forward-checking
 - (check each unassigned variable separately)
- Maintaining arc-consistency (MAC)
 - (apply full arc-consistency)

Backtracking search (Figure 6.5)

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) **return** a solution or failure **if** assignment is complete **then return** assignment

 $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then

add {var=value} to assignment

 $result \leftarrow RRECURSIVE-BACTRACKING(assignment, csp)$

if result \neq failure then return result

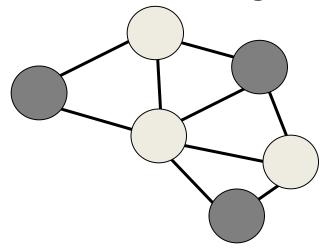
remove {var=value} from assignment

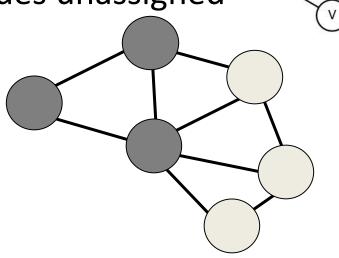
return failure

Dependence on variable ordering

Example: coloring

Dark nodes assigned, light nodes unassigned



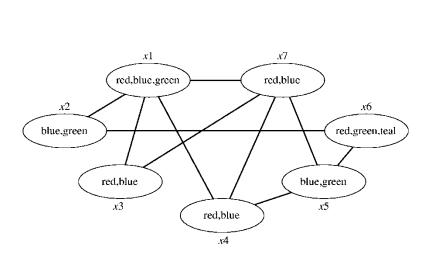


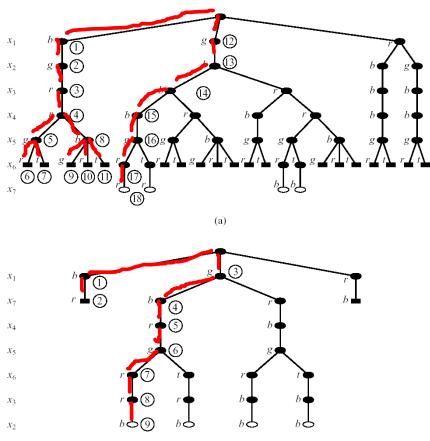
- (1) Assign WA, Q, V first:
- 27 = 3³ ways to color assigned nodes consistently
- none inconsistent (yet)
- only 3 lead to solutions...

- (2) Assign WA, SA, NT first:
- 6 = 3! ways to color assigned nodes consistently
- all lead to solutions
- no backtracking

Dependence on variable ordering

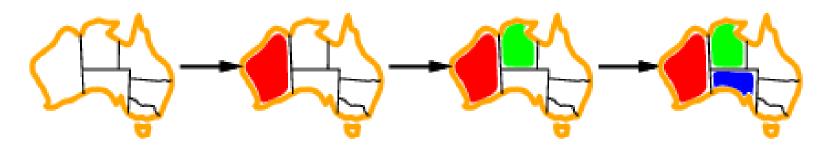
Another graph coloring example:





Minimum remaining values (MRV)

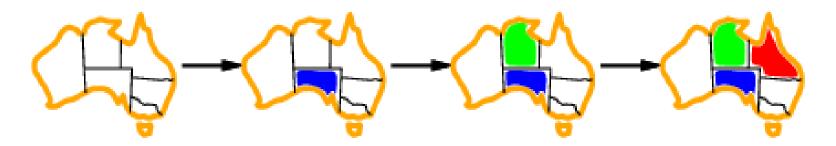
- A heuristic for selecting the next variable
 - a.k.a. most constrained variable (MCV) heuristic



- choose the variable with the fewest legal values
- will immediately detect failure if X has no legal values
- (Related to forward checking, later)

Degree heuristic

- Another heuristic for selecting the next variable
 - a.k.a. most constraining variable heuristic



- Select variable involved in the most constraints on other unassigned variables
- Useful as a tie-breaker among most constrained variables

Backtracking search (Figure 6.5)

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure

if assignment is complete **then** return assignment

 $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then

add {var=value} to assignment

 $result \leftarrow RRECURSIVE-BACTRACKING(assignment, csp)$

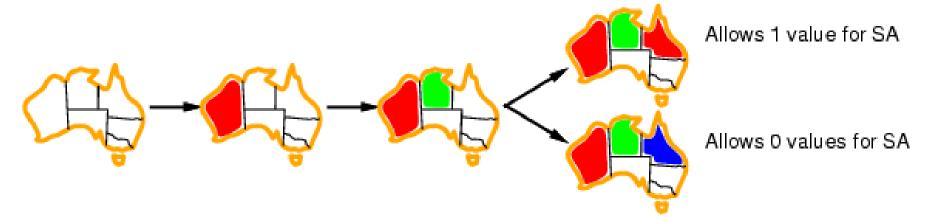
if result ≠ failure **then** return result

remove {var=value} from assignment

return failure

Least Constraining Value

- Heuristic for selecting what value to try next
- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables



Makes it more likely to find a solution early

Variable and value orderings

- Minimum remaining values for variable ordering
- Least constraining value for value ordering
 - Why do we want these? <u>Is there a contradiction?</u>

• Intuition:

- Choose a variable that will detect failures early (low branching factor)
- Choose value least likely to yield a dead-end (find solution early if possible)
- MRV for variable selection reduces current branching factor
 - Low branching factor throughout tree = fast search
 - Hopefully, when we get to variables with currently many values, forward checking or arc consistency will have reduced their domains & they'll have low branching too
- LCV for value selection increases the chance of success
 - If we're going to fail at this node, we'll have to examine every value anyway
 - If we're going to succeed, the earlier we do, the sooner we can stop searching

Summary

- CSPs
 - special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Heuristics
 - Variable ordering and value selection heuristics help significantly
- Variable ordering (selection) heuristics
 - Choose variable with Minimum Remaining Values (MRV)
 - Degree Heuristic break ties after applying MRV
- Value ordering (selection) heuristic
 - Choose Least Constraining Value