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Semantics: Worlds

The world consists of objects that have properties.
There are relations and functions between these objects

Objects in the world, individuals: people, houses, numbers,
colors, baseball games, wars, centuries

Clock A, John, 7, the-house in the corner, Tel-Aviv

Functions on individuals:
father-of, best friend, third inning of, one more than
a function returns an object

Relations (terminology: same thing as a predicate):
brother-of, bigger than, inside, part-of, has color, occurred after
a relation/predicate returns a truth value

Properties (a relation of arity 1):

red, round, bogus, prime, multistoried, beautiful



Semantics: Interpretation

An interpretation of a sentence is an assignment that maps
Object constants to objects in the worlds,
n-ary function symbols to n-ary functions in the world,
n-ary relation symbols to n-ary relations in the world

Given an interpretation, an atomic sentence has the value
“true” if it denotes a relation that holds for those individuals
denoted in the terms. Otherwise it has the value “false.”

Example: Block world:

B

A, B, C, Floor, On, Clear A

World: C
On(A,B) is false, Clear(B) is true, On(C,Floor) is true... Floor

Under an interpretation that maps symbol A to block A,
symbol B to block B, symbol C to block C, symbol Floor to the Floor
Some other interpretation might result in different truth values.



Truth in first-order logic

Sentences are true with respect to a model and an interpretation

I\(I]odel contains objects (domain elements) and relations among
them

Interpretation specifies referents for

constant symbols - objects
predicate symbols - relations (a relation yields a truth value)
function symbols - functions (a function yields an object)

An atomic sentence predicate(term,,...,term ) is true
iff the objects referred to by term,,...,term_
are in the relation referred to by predicate



Review: Models (and in FOL,
Interpretations)

Models are formal worlds within which truth can be evaluated
Interpretations map symbols in the logic to the world

Constant symbols in the logic map to objects in the world

n-ary functions/predicates map to n-ary functions/predicates in the world

We say m is a model given an interpretation i of a sentence a if and only if a
is true in the world m under the mapping I.

M(a) is the set of all models of a

Then KB [ iff M(KB) = M(a)
E.g. KB, = “Mary is Sue’s sister and Amy is Sue’s daughter.”
a = “Mary is Amy’s aunt.” (Must Tell it about mothers/daughters)

Think of KB and a as constraints, and models as states.
M(KB) are the solutions to KB and M(a) the solutions to a.
Then, KB |=OL, i.e., |=(KB = a),

when all solutions to KB are also solutions to a.




Semantics: Models and Definitions

An interpretation and possible world satisfies a wff (sentence) if the
wff has the value “true” under that interpretation in that possible
world.

Model: A domain and an interpretation that satisfies a wff is a model
of that wff

Validity: Any wff that has the value “true” in all possible worlds and
under all interpretations is valid.

Any wff that does not have a model under any interpretation is
inconsistent or unsatisfiable.

Any wff that is true in at least one possible world under at least one
interpretation is satisfiable.

If 2 wff w has a value true under all the models of a set of sentences
KB then KB logically entails w.



Models for FOL: Example

All possible interpretations will map all of crown
these symbols in the logic onto symbols
in the domain in all possible ways.

brother

on head

person
erson

ing

{ leftleg

An interpretation maps all symbols in KB onto matching symbols in a possible
world. All possible interpretations gives a combinatorial explosion of mappings.
Your job, as a Knowledge Engineer, is to write the axioms in KB so they are
satisfied only under the intended interpretation in your own real world.




Summary of FOL Semantics

A well-formed formula (“wff”) FOL is true or false with respect to a
world and an interpretation (a model).

The world has objects, relations, functions, and predicates.
The interpretation maps symbols in the logic to the world.

The wff is true if and only if (iff) its assertion holds among the
objects in the world under the mapping by the interpretation.

Your job, as a Knowledge Engineer, is to write sufficient KB axioms
that ensure that KB is true in your own real world under your own
intended interpretation.

The KB axioms must rule out other worlds and interpretations.




Conversion to CNF

Everyone who loves all animals is loved by someone:

Vx [Vy Animal(y) = Loves(x,y)] = [3Jy Loves(y,x)]

Eliminate biconditionals and implications:

Vx =[Vy Animal(y) = Loves(x,y)] v [3y Loves(y,x)]
Vx =[Vy —Animal(y) v Loves(x,y)] v [y Loves(y,x)]

2. Move — inwards:
[Recall: =Vx P(x) = dx —P(x); — 3Ix P(x) = Vx —P(x) ]

Vx [=Vy —Animal(y) v Loves(x,y)] v [y Loves(y,x)]
Vx [y —(—=Animal(y) v Loves(x,y))] v [3y Loves(y,x)]
Vx [dy ——Animal(y) A —Loves(x,y)] v [Ty Loves(y,x)]
Vx [dy Animal(y) A —Loves(x,y)] v [Ty Loves(y,x)]



Conversion to CNF contd.

Standardize variables: each quantifier should use a different variable

Vx [y Animal(y) A —=Loves(x,y)] v [Jz Loves(z,x)]

Skolemize: a more general form of existential instantiation. Each existential

variable is replaced by a Skolem function of the enclosing universally quantified
variables:

Vx [Animal(F(x)) A —Loves(x,F(x))] v Loves(G(x),x)
Drop universal quantifiers:

[Animal(F(x)) A —Loves(x,F(x))] v Loves(G(x),x)
Distribute v over A :

[Animal(F(x)) v Loves(G(x),x)] A [—Loves(x,F(x)) v Loves(G(x),x)]



A note on Skolem functions
Consider the statement: Vx 3y P(x, y)

The statement asserts that, for all x, there is (at least) one y such that P(x,y).
Recall that each x may have a different y, and so y depends on x.

So, at least abstractly, there is a list that pairs each x to a y that satisfies P(x,y):
{(x1,y1), (x2,y2), (x3,y3), (x4, y4) ... }
where P(x1, y1) = TRUE; P(x2, y2) = TRUE; P(x3, y3) = TRUE; and so on.

So, at least abstractly, there is a function that maps xi to yi. Call that function F(),

where F(x1) = y1; F(x2) = y2; F(x3) = y3; and so on. (We don’t know what that function
is, but we do know that it must exist --- even if we can’t write it down.)

So P(x1, F(x1) ) = TRUE; P(x2, F(x2) ) = TRUE; P(x3, F(x3) ) = TRUE; and so on.

In other words, Vx 3y P(x, y) = Vx P(x, F(x) ), where F() is as described above.



Simple FOL Resolution Example

V¥ x Person(x) => HasHead(x) “Every person has a head.”
Person(John) “John is a person.”
Query Sentence: HasHead(John) “John has a head.”

Resulting KB plus negated goal in CNF:
( —=Person(x) v HasHead(x) )
Person(John)

— HasHead(John)

Resolve ( =Person(x) v HasHead(x) ) with Person(John) and
substitution {x/John} to yield HasHead(John)

Note that after the substitution, the first clause becomes

( —Person(x) v HasHead(x) )
Resolve HasHead(John) with = HasHead(John) to yield ()




Unification

Recall: Subst(8, p) = result of substituting 6 into sentence p

Unify algorithm: takes 2 sentences p and g and returns a unifier if
one exists

Unify(p,q) =0 where Subst(8, p) = Subst(0, q)

where 0 is a list of variable/substitution pairs
that will make p and g syntactically identical

Example:

p = Knows(John,x)
q = Knows(John, Jane)

Unify(p,q) = {x/Jane}



Unification examples

simple example: query = Knows(John,x), i.e., who does John know?

p
Knows(John,x)

Knows(John,x)
Knows(John,x)
Knows(John,x)

q
Knows(John,Jane)

Knows(y,0J)
Knows(y,Mother(y))
Knows(x,0))

{x/Jane}

{x/0J,y/John}
{y/John,x/Mother(John)}
{fail}

Last unification fails: only because x can’t take values John and OJ at the same time
But we know that if John knows x, and everyone (x) knows OJ, we should be able to infer that

John knows OJ

Problem is due to use of same variable x in both sentences

Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,0))



Unification examples

UNIFY( Knows( John, x ), Knows( John, Jane ) )
UNIFY( Knows( John, x ), Knows( y, Jane ) )
UNIFY( Knows( y, x ), Knows( John, Jane ) )
UNIFY( Knows( John, x ), Knows( y, Father (y) ) )
UNIFY( Knows( John, F(x) ), Knows(y, F(F(z)) ) )
UNIFY( Knows( John, F(x) ), Knows(y, G(z) ) )

UNIFY( Knows( John, F(x) ), Knows(y, F(G(y)) ) )

{x/Jane}

{x/Jane,y/John}

{x/Jane,y/John}

{y /John, x / Father (John) }

{y/lJohn,x/F(z)}

None

{y/John, x/ G (John) }



Unification

To unify Knows(John,x) and Knows(y,z),

0 = {y/John, x/z } or 8 = {y/John, x/John, z/John}

The first unifier is more general than the second.

There is a single most general unifier (MGU) that is unique up
to renaming of variables.

MGU ={y/John, x/z }

General algorithm in Figure 9.1 in the text



Unification Algorithm

function UNIFY(z, y.#) returns a substitution to make x and y identical
inputs: x, a variable, constant, list, or compound expression
y. a variable, constant, list, or compound expression
#, the substitution built up so far (optional, defaults to empty)

if & = failure then return failure
else if =z = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y.8)
else if VARIABLE?(y) then return UNIFY-VAR(y, z.8)
else if COMPOUND?(z) and COMPOUND?(y) then
return UNIFY(z . ARGS, y. ARGS, UNIFY(z.0P, y.OP,8))
else if L1ST?(z) and L15T?(y) then
return UNIFY(z . REST, y.REST, UNIFY(z.FIRST, y.FIRST, &))
else return failure

function UNIFY-VAR(var, z.#) returns a substitution

if {var/val} € @ then return UNIFY(val, z,8)

else if {z/val} £ @ then return UNIFY(var, val,#)
else if OCCUR-CHECK M var, ) then return failure
else return add {var/z} to &

Figure 9.1  The unification algorithm. The algorithm works by comparing the structures
of the inputs, element by element. The substitution # that 1s the argument to UNIFY 1s built
up along the way and is used to make sure that later comparisons are consistent with bindings
that were established earlier. In a compound expression such as F(A, B), the OP field picks
out the function symbol F and the ARGS field picks out the argument list (A, B).
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Unification Algorithm

function UNIFY(z, y.#) returns a substitution to make x and y identical
inputs: x, a variable, constant, list, or compound expression
y. a variable, constant, list, or compound expression
#, the substitution built up so far (optional, defaults to empty)

if & = failure then return failure
else if =z = y then return ¢
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else if L1ST?(z) and L15T?(y) then
return UNIFY(z . REST, y.REST, UNIFY(z.FIRST, y.FIRST, &))
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upalo SUcceeds, binds val to the value that allowed it to succeed,
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out the function symbol F and the ARGS field picks out the argument list (A, B).
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Unification Algorithm

function UNIFY(z, y.#) returns a substitution to make x and y identical
inputs: x, a variable, constant, list, or compound expression
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Figure 9.1  The unification algorithm. The algorithm works by comparing the structures
of the inputs, element by element. The substitution # that 1s the argument to UNIFY 1s built
up along the way and is used to make sure that later comparisons are consistent with bindings
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Unification Algorithm

function UNIFY(z, v, #) returns a substitution to make = and y identical
inputs: x, a variable, constant, list, or compound expression
y. a variable, constant, list, or compound expression
#, the substitution built up so far (optional, defaults to empty)

if & = failure then return failure
else if =z = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y.#)

else if CoMm PDLIND':I'[I} and COMPOUND?(y) then

If a predicate/function,
| relurn UT'-II Hf :&E\tiqulm,a UNIFY(z.0P, y.OP, &) unify the arguments.

LR LS Uu SEp ey § \Ij’_{ LB L= b

return UhII Y(x.REST, y.REST, UNIFY(z.FIRST, y.FIRST. #))
else return failure
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else if {z/val} € ¢ then return UNIFY(var, val,#)
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Figure 9.1  The unification algorithm. The algorithm works by comparing the structures
of the inputs, element by element. The substitution # that is the argument to UNIFY 1s built
up along the way and is used to make sure that later comparisons are consistent with bindings
that were established earlier. In a compound expression such as F(A, B), the OP field picks
out the function symbol F and the ARGS field picks out the argument hist (A, B).
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Unification Algorithm

function UNIFY(z, v, #) returns a substitution to make = and y identical
inputs: x, a variable, constant, list, or compound expression
y. a variable, constant, list, or compound expression
#, the substitution built up so far (optional, defaults to empty)

if & = failure then return failure
else if =z = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y.#)
else if VARIABLE?(y) then return UNIFY-VAR(y, z.0)
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Hard matching example

Diff(wa,nt) A Diff(wa,sa) A Diff(nt,q) A
Diff(nt,sa) A Diff(q,nsw) A Diff(g,sa) A

@ o Diff(nsw,v) A Diff(nsw,sa) A Diff(v,sa) =
@" Colorable()

Diff(Red,Blue) Diff (Red,Green)
Diff(Green,Red) Diff(Green,Blue)
Diff(Blue,Red) Diff(Blue,Green)

To unify the grounded propositions with premises of the implication you need to solve a
CSP!

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard



Resolution: brief summary

Full first-order version:
4\/---\/4’ ml\/---vmn

(GNV VLV LV VLN my v v m oy Vo v om0
where Unify(4, —m) = 0.

The two clauses are assumed to be standardized apart so that they
share no variables.

For example,
—Rich(x) v Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with 6 = {x/Ken}

Apply resolution steps to CNF(KB A —a); complete for FOL



Example knowledge base

The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an
enemy of America, has some missiles, and all of its

missiles were sold to it by Colonel West, who is
American.

Prove that Col. West is a criminal



Example knowledge base (Horn clauses)

... it is a crime for an American to sell weapons to hostile nations:
American(x) A Weapon(y) » Sells(x,y,z) A Hostile(z) = Criminal(x)

Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M,) A Missile(M,)

... all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

Missiles are weapons:
Missile(x) = Weapon(x)

An enemy of America counts as "hostile”:
Enemy(x,America) = Hostile(x)

West, who is American ...
American(West)

The country Nono, an enemy of America ...
Enemy(Nono,America)



Resolution proof:

S American(x) v o Weapon(y) v - Sellsix,y,z) v - Hostile(z) v Criminalix) = Criminali West)
—______‘_\_-—\_—_-—__\_ -//_/"'_
American West) | 1V American{ West) v 0 Weapor(v) v Sells{ West,v,z) v 1 Hostile(z)
______________—_-—-—-_-_
- Missile(x) v Weaponix) - Weaponiv) v - SellsfWest,v.z) v — Hosnila z)
_-—\_"—\—\—-_\_\______
Missilei M1 ) - Missile{y) v - Sells{ Wesr,v,z) v — Hosrile(z)
‘—__h‘—q—‘_h‘——_
-1 Missileix) v - OwnsiNono.x) v Sells{West,x, Norno ) | - Sellsf West.Ml,z) v — Hostile(z)

e

MissilefM 1) | - MissilefM 1) v 2 OwnsiNoro M) v — Hostile!Nornao)

Cwis Moro, M 1) = Owns{Noro, M) v — Hosrilei Noro)

e

-1 Enemvix,America) W Hostile{x) -1 Hostilel Nomo )

T

Enemw Nono, America) —~|- Ernemw Noro,Amie rica )

=] =




Forward chaining proof: (Horn clauses)

Americani West)

Missile(M 1)

Chensi Normo, M1 )

Enemw Nono America )




Forward chaining proof (Horn clauses)

WeapornM1 )

Sellsf West, M I Nono)

Americani West)

MissileiM 1)

Chensi Normo, M1 )

Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

Missile(x) = Weapon(Xx)

Haostile{ Nano )

Enemw Nono America )

Enemy(x,America) = Hostile(x)



Forward chaining proof (Horn clauses)

Criminali Wesr)

WeapornM1 )

Sellsf West, M I Nono)

Americani West)

MissileiM 1)

Chensi Normo, M1 )

Haostile{ Nano )

Enemw Nono America )

American(x) A Weapon(y) » Sells(x,y,z) A Hostile(z) = Criminal(x)




Forward chaining proof (Horn clauses)

Criminali Wesr)

WeapornM1 )

Sellsf West, M I Nono)

Americani West)

MissileiM 1)

Chensi Normo, M1 )

Haostile{ Nano )

Enemw Nono America )

*American(x) A Weapon(y) » Sells(x,y,z) A Hostile(z) = Criminal(x)
*Owns(Nono,M1) and Missile(M1)
*Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
*Missile(x) = Weapon(x)

*Enemy(x,America) = Hostile(x)
*American(West)
*Enemy(Nono,America)
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Criminalf West) {x/West ]

Americanx) Weapon{ v) Sellsix,v.z) Hosrile( z)
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Criminalf West) {x/West ]

American West) Weapon{ v) Sellsix,v.z) Hosrile( z)

|




Backward chaining example (Horn clauses)

Criminalf West) {x/West ]

American West) Weapon{ v) Sellsix,v.z) Hosrile( z)

|

Missileiy)




Backward chaining example (Horn clauses)

Criminalf Wesrt) {x/West, wMI [

American West) Weapon{ v) Sellsix,v.z) Hosrile( z)

|

Missileiy)
| wM i}




Backward chaining example (Horn clauses)

Criminalf West) {x/West, wMI, z/Nono |

Amierican West) Weaponi vi Sellsi West M1 ,z) Hostilei 7)

|

Missile(v) MissileiM 1) Cwrisi Moo, M1 )
| wM i}




Backward chaining example (Horn clauses)

Criminalf West)

{x/West, wM1, z/Nono |

Amierican West) Weaponi vi Sellsi West M1 ,z) Hostilei Noro )
|} | z/NVono |
Missile(v) MissileiM 1) Owns{ Nono, M1 ) | | Enemw Nono, America)
| w1} L) |l |




Summary

First-order logic:
Much more expressive than propositional logic
Allows objects and relations as semantic primitives
Universal and existential quantifiers

Syntax: constants, functions, predicates, equality, quantifiers

Nested quantifiers
Translate simple English sentences to FOPC and back
Semantics: correct under any interpretation and in any world

Unification: Making terms identical by substitution
The terms are universally quantified, so substitutions are justified.
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