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Outline 
• Representing uncertainty is useful in knowledge bases 

– Probability provides a coherent framework for uncertainty 
 

• Review of basic concepts in probability 
– Emphasis on conditional probability & conditional independence 

 

• Full joint distributions are intractable to work with 
– Conditional independence assumptions allow much simpler models 

 

• Bayesian networks (next lecture) 
– A useful type of structured probability distribution 
– Exploit structure for parsimony, computational efficiency 

 

• Rational agents cannot violate probability theory 



Uncertainty 
 

Let action At = leave for airport t minutes before flight 
Will At get me there on time? 
 
Problems: 
 1. partial observability (road state, etc.) 
 2. multi-agent problem (other drivers' plans) 
 3. noisy sensors (uncertain traffic reports) 
 4. uncertainty in action outcomes (flat tire, etc.) 
 5. immense complexity of modeling and predicting traffic 

 
Hence a purely logical approach either 
 1. risks falsehood: “A25 will get me there on time”, or 
 2. leads to conclusions that are too weak for decision making: 

 
“A25 will get me there on time if there's no accident on the bridge and it doesn't 

rain and my tires remain intact, etc., etc.” 
 
“A1440 should get me there on time but I'd have to stay overnight in the airport.” 



Uncertainty in the world 
• Uncertainty due to 

– Randomness 
– Overwhelming complexity 
– Lack of knowledge 
– … 

 

• Probability gives  
– natural way to describe our assumptions  
– rules for how to combine information 

 

• Subjective probability 
– Relate to agent’s own state of knowledge:  P(A25|no accidents)= 0.05 
– Not assertions about the world; indicate degrees of belief 
– Change with new evidence:  P(A25 | no accidents, 5am) = 0.20 
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Propositional Logic and Probability 

• Their ontological commitments are the same 
– The world is a set of facts that do or do not hold 
 
 

• Their epistemological commitments differ 
– Logic agent believes true, false, or no opinion 
– Probabilistic agent has a numerical degree of 

belief between 0 (false) and 1 (true) 

Ontology is the philosophical study of the nature of being, 
becoming, existence, or reality; what exists in the world? 

Epistemology is the philosophical study of the nature and scope of 
knowledge; how, and in what way, do we know about the world? 



Making decisions under uncertainty 
• Suppose I believe the following: 

– P(A25  gets me there on time | …) = 0.04  
– P(A90  gets me there on time | …) = 0.70  
– P(A120  gets me there on time | …) = 0.95  
– P(A1440  gets me there on time | …) = 0.9999  

 
• Which action to choose? 
• Depends on my preferences for missing flight vs. time spent 

waiting, etc. 
– Utility theory is used to represent and infer preferences 
– Decision theory= probability theory + utility theory 

 
• Expected utility of action a in state s 
   = ∑outcome in Results(s,a) P(outcome) * Utility(outcome) 

 

• A rational agent acts to maximize expected utility 
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Example: Airport 
• Suppose I believe the following: 

– P(A25  gets me there on time | …) = 0.04  
– P(A90  gets me there on time | …) = 0.70  
– P(A120  gets me there on time | …) = 0.95  
– P(A1440  gets me there on time | …) = 0.9999  
– Utility(on time) = $1,000 
– Utility(not on time) = −$10,000 

• Expected utility of action a in state s 
   = ∑outcome in Results(s,a) P(outcome) * Utility(outcome) 

 
E(Utility(A25)) = 0.04*$1,000 + 0.96*(−$10,000) = −$9,560 
E(Utility(A90)) = 0.7*$1,000 + 0.3*(−$10,000) = −$2,300 
E(Utility(A120)) = 0.95*$1,000 + 0.05*(−$10,000) = $450 
E(Utility(A1440)) = 0.9999*$1,000 + 0.0001*(−$10,000) = $998.90 

 
– Have not yet accounted for disutility of staying overnight at the airport, etc. 
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Random variables 
• Random Variable:  

─ Basic element of probability assertions 
─ Similar to CSP variable, but values reflect probabilities not constraints. 

 Variable:  A   
 Domain:  {a1, a2, a3} <-- events / outcomes 
 
 

• Types of Random Variables: 
– Boolean random variables  :  { true, false }  

 e.g., Cavity (= do I have a cavity?) 
 

– Discrete random variables  :  one value from a set of values 
 e.g., Weather is one of  {sunny, rainy, cloudy ,snow} 
 

– Continuous random variables  :  a value from within constraints 
 e.g., Current temperature is bounded by (10°, 200°) 

 
 
• Domain values must be exhaustive and mutually exclusive: 

– One of the values must  always be the case (Exhaustive) 
– Two of the values cannot both be the case  (Mutually Exclusive) 

 
 
 
 

 



Random variables 
• Example: Coin flip 

– Variable = R, the result of the coin flip 
– Domain = {heads, tails, edge}  <-- must be exhaustive 
– P(R = heads) = 0.4999  } 
– P(R = tails) = 0.4999   } <-- must be exclusive 
– P(R = edge) = 0.0002   } 

 

• Shorthand is often used for simplicity: 
– Upper-case letters for variables, lower-case letters for values. 
– E.g.,     P(A)  ≡ <P(A=a1), P(A=a2), …, P(A=an)> for all n values in 

Domain(A) 
• Note: P(A) is a vector giving the probability that A takes on each of its n values in Domain (A) 

– E.g.,  P(a)  ≡ P(A = a)   
    P(a|b)  ≡ P(A = a | B = b) 
   P(a, b)   ≡ P(A = a ∧ B = b) 

 
• Two kinds of probability propositions: 

– Elementary propositions are an assignment of a value to a random variable: 
 e.g., Weather = sunny; e.g., Cavity = false (abbreviated as ¬cavity) 
 

– Complex propositions are formed from elementary propositions and standard 
logical connectives : 
 e.g., Cavity = false ∨  Weather = sunny 



Probability 
• P(a) is the probability of proposition “a” 

– E.g., P(it will rain in London tomorrow) 
– The proposition “a” is actually true or false in the real world 
– P(a) is our degree of belief that proposition “a” is true in the real world 
– P(a) = “prior” or marginal or unconditional probability 
– Assumes no other information is available 
 

• Axioms of probability: 
– 0  <= P(a)  <= 1 
– P(NOT(a))  = 1 – P(a) 
– P(true)  =  1 
– P(false) =  0 
– P(a OR b) = P(a) + P(b) – P(a AND b) 

 
• Any agent that holds degrees of beliefs that contradict these axioms will 

act sub-optimally in some cases 
– e.g., de Finetti (R&N pp. 489-490) proved that there will be some combination of bets 

that forces such an unhappy agent to lose money every time. 
 

• Rational agents cannot violate probability theory. 
 

 
 

 
 
 
 
 
 

 



Interpretations of probability 
• Relative Frequency:   Usually taught in school 

– P(a) represents the frequency that event a will happen in repeated trials. 
– Requires event a to have happened enough times for data to be collected. 

 

• Degree of Belief:   A more general view of probability 
– P(a) represents an agent’s degree of belief that event a is true. 
– Can predict probabilities of events that occur rarely or have not yet occurred. 
– Does not require new or different rules, just a different interpretation. 

 

• Examples: 
– a = “life exists on another planet” 

• What is P(a)?  We all will assign different probabilities 
– a = “California will secede from the US” 

• What is P(a)? 
– a = “over 50% of the students in this class will get A’s” 

• What is P(a)? 



Concepts of probability 
• Unconditional Probability 

─ P(a), the probability of “a” being true, or P(a=True) 
─ Does not depend on anything else to be true (unconditional) 
─ Represents the probability prior to further information that may adjust it (prior) 
─ Also sometimes “marginal” probability (vs. joint probability) 

 
• Conditional Probability  

─ P(a|b), the probability of “a” being true, given that “b” is true 
─ Relies on “b” =  true (conditional) 
─ Represents the prior probability adjusted based upon new information “b” 

(posterior) 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a|b, c, d) 
 

• Joint Probability  
─ P(a, b) = P(a ˄ b), the probability of “a” and “b” both being true 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a, b, c, d) 
 

 
 

 
 
 
 
 

 

We often use comma to abbreviate AND. 



Probability Space 

Area = Probability of Event 

P(A) + P(¬A) = 1 



AND Probability 

Area = Probability of Event 

P(A, B) = P(A ˄ B) = P(A) + P(B) − P(A ˅ B) 

P(A ˄ B) 
= P(A) + P(B) 
   − P(A ˅ B) 



OR Probability 

Area = Probability of Event 

P(A ˅ B) = P(A) + P(B) − P(A ˄ B) 

P(A ˅ B)  
= P(A) + P(B) 
   − P(A ˄ B) 



Conditional Probability 

Area = Probability of Event 

P(A | B) = P(A, B) / P(B) = P(A ∧ B) / P(B) 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Product Rule 

Area = Probability of Event 

P(A,B) = P(A|B) P(B) 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Using the Product Rule 

• Applies to any number of variables: 
– P(a, b, c) = P(a, b|c) P(c) = P(a|b, c) P(b, c) 
– P(a, b, c|d, e)  = P(a|b, c, d, e) P(b, c|d, e) 

 
• Factoring: (AKA Chain Rule for probabilities) 

– By the product rule, we can always write: 
  P(a, b, c, … y, z) = P(a | b, c, ... y, z) P(b, c, … y, z) 
 

– Repeating this idea, we can completely factor P(a, b, …, z): 
   P(a, b, c, … y, z) 
   = P(a | b, c, … y, z) P(b | c, ... y, z) P(c| ... y, z) ... P(y|z)P(z) 
 

– These relationships hold for any ordering of the variables 

We often use comma 
to abbreviate AND. 



Examples of complete Factoring 
Using the Product Rule 

(can use any variable ordering) 
• P(a, b) = P(a|b)(b)  
 
• P(a, b, c) = P(a|b, c)P(b, c) 

 = P(a|b, c)P(b|c)P(c) <= complete factoring 
 
• P(a, b, c, d) = P(a|b, c, d)P(b, c, d) 

 = P(a|b, c, d)P(b|c, d)P(c, d) 
 = P(a|b, c, d)P(b|c, d)P(c| d)P(d) <= complete factoring 
 
• P(a, b, c, d, e) = P(a|b, c, d, e)P(b, c, d, e) 

 = P(a|b, c, d, e)P(b|c, d, e)P(c, d, e) 
 = P(a|b, c, d, e)P(b|c, d, e)P(c| d, e)P(d, e) 

 = P(a|b, c, d, e)P(b|c, d, e)P(c| d, e)P(d|e)P(e)   <= complete 
 
 
 
 



Sum Rule 

Area = Probability of Event 

P(A) =  ΣB,C P(A,B,C) =  Σb∈B,c∈C P(A,b,c) 
 



Using the Sum Rule 

• We can marginalize variables out of any joint distribution by simply 
summing over that variable: 
–  P(b)  = Σa Σc Σd P(a, b, c, d)  
– P(a, d) = Σb Σc  P(a, b, c, d)  
 

• For Example: Determine probability of catching a fish 
– Given a set of probabilities P(CatchFish, Day, Lake) 
– Where: 

 CatchFish =  {true, false} 
 Day =   {mon, tues, wed, thurs, fri, sat, sun} 
 Lake =   {blue lake, ralph lake, crystal lake} 

 
– Need to find P(CatchFish = True): 

 P(CatchFish = true)  = Σday Σlake P(CatchFish = true, day, lake) 
                                        

 
 

 

 
 

We often use comma 
to abbreviate AND. 



Bayes’ Rule 
P(B|A) =  P(A|B) P(B)  / P(A) 

Area = Probability of Event 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Derivation of Bayes’ Rule 

• Start from Product Rule: 
– P(a, b) = P(a|b) P(b)  = P(b|a) P(a) 
 

• Isolate Equality on Right Side: 
– P(a|b) P(b)  = P(b|a) P(a) 

 
• Divide through by P(b): 

– P(a|b) = P(b|a) P(a) / P(b) <-- Bayes’ Rule 
 

• “Bayes’ rule underlies most modern approaches to 
uncertain reasoning in AI systems.”  R&N p. 9 



Who’s Bayes? 
• Reverend Thomas Bayes (c. 1701 – 1761) 

was an English minister and mathematician. 
His ideas have created much controversy 
and debate among statisticians…. 
 

• The paper that describes Bayes’ Theorem 
(or Bayes’ Rule) was discovered in his office 
after his death. Allegedly, he was trying to 
prove the existence of God by mathematics; 
though this is not certain and other motives 
also are alleged. His paper was sent to the 
Royal Society with a note, “Some of your 
members may be interested in this.” It was 
published by, and read to, the Royal Society. 
Nowadays, it has given rise to an immense 
body of statistical and probabilistic work. 

Portrait purportedly of Bayes 
used in a 1936 book, but it is 
doubtful the portrait is 
actually of him. No earlier 
claimed portrait survives. 



Summary of probability rules 
• Product Rule:  (aka Chain Rule) 

– P(a, b) = P(a|b) P(b)  = P(b|a) P(a)Probability of “a” and “b” occurring is the 
same as probability of “a” occurring given “b” is true, times the probability of 
“b” occurring. 

– e.g., P( rain, cloudy ) = P(rain | cloudy) * P(cloudy) 
– P(a, b, c, …, y, z) = P(a|b, c, …, y, z) P(b|c, …, y, z) … P(y|z)P(z) 
 

• Sum Rule:  (aka Law of Total Probability) 
– P(a) =  Σb P(a, b) =  Σb  P(a|b) P(b),   where B is any random variable 
– Probability of “a” occurring is the same as the sum of all joint probabilities 

including the event, provided the joint probabilities represent all possible 
events. 

– Can be used to “marginalize” out other variables from probabilities, resulting 
in prior probabilities also being called marginal probabilities. 
 e.g., P(rain) = ΣWindspeed P(rain, Windspeed) 
  where Windspeed = {0-10mph, 10-20mph, 20-30mph, etc.} 

 
• Bayes’ Rule: 

- P(b|a) =  P(a|b) P(b)  / P(a) 
- Acquired from rearranging the product rule. 
- Allows conversion between conditionals, from  P(b|a) to P(a|b). 

 e.g.,  b = disease, a = symptoms 
         More natural to encode knowledge as P(a|b) than as P(b|a). 

 
 



Full Joint Distribution 
• We can fully specify a probability space by a full joint distribution: 

 

– A full joint distribution contains a probability for 
      every possible combination of variable values. This requires:  

 

    Πvars (nvar) probabilities 
 

 where nvar is the number of values in the domain of variable var 
 

– E.g. P(A, B, C), where A,B,C have 4 values each; 
   Full joint distribution specified by 43 values = 64 values 
 
– For n variables each with m values, requires mn probabilities 
– E.g., a realistic problem of 100 Boolean variables requires > 1030 probabilities (intractable) 

 
• Using a full joint distribution, we can use the product rule, sum rule, and Bayes’ 

rule to create any combination of joint, marginal, and conditional probabilities. 



• Can fully specify a probability space by constructing a full joint distribution  
• Example: dentist 

– T: have a toothache 
– D: dental probe catches 
– C: have a cavity 

• Joint distribution 
– Assigns each event (T=t, D=d, C=c) a probability 
– Probabilities sum to 1.0 

• Law of total probability: 

 
 
          =  0.008 + 0.072 + 0.012 + 0.108       = 0.20 
– Some value of (T,D) must occur; values are disjoint 
– “Marginal probability” of C;  “marginalize” or “sum over” T,D 
– Early actuaries wrote row & column totals in their probability table margins 

Marginal Probability 
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T D C P(T,D,C) 

0 0 0 0.576 

0 0 1 0.008 

0 1 0 0.144 

0 1 1 0.072 

1 0 0 0.064 

1 0 1 0.012 

1 1 0 0.016 

1 1 1 0.108 

Example from Russell & Norvig 

t,d 



T D C P(T,D,C) 

0 0 0 0.576 

0 0 1 0.008 

0 1 0 0.144 

0 1 1 0.072 

1 0 0 0.064 

1 0 1 0.012 

1 1 0 0.016 

1 1 1 0.108 

The effect of evidence 

• Example: dentist 
– T: have a toothache 
– D: dental probe catches 
– C: have a cavity 

 
• Recall   p(C=1) = 0.20 
• Suppose we observe D=0, T=0? 

 
 
 
 
 

• Observe D=1, T=1? 
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Example from Russell & Norvig 

= 0.012 = 
0.008 

0.576 + 0.008 

= 0.871 = 
0.108 

0.016 + 0.108 

Called posterior probabilities 
or conditional probabilities 

T D C P(T,D,C) 

0 0 0 0.576 

0 0 1 0.008 

0 1 0 0.144 

0 1 1 0.072 

1 0 0 0.064 

1 0 1 0.012 

1 1 0 0.016 

1 1 1 0.108 

p(C = 1 | D = 1, T = 1) 



The effect of evidence 
• Example: dentist 

– T: have a toothache 
– D: dental probe catches 
– C: have a cavity 

 
• Combining these rules: 
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T D C P(T,D,C) 

0 0 0 0.576 

0 0 1 0.008 

0 1 0 0.144 

0 1 1 0.072 

1 0 0 0.064 

1 0 1 0.012 

1 1 0 0.016 

1 1 1 0.108 = 0.60 

Example from Russell & Norvig 

= 
0.012 + 0.108 

0.064 + 0.012 + 0.016 + 0.108 

Called the probability of evidence 0.20 

{ 



Computing posteriors 
• Sometimes it is easiest to normalize last 

 
 
 
 
 
 
 
 
 

• The normalizing constant α is used to abbreviate normalization 

31 

T D C P(T,D,C) 

0 0 0 0.576 

0 0 1 0.008 

0 1 0 0.144 

0 1 1 0.072 

1 0 0 0.064 

1 0 1 0.012 

1 1 0 0.016 

1 1 1 0.108 

D C F(D,C) 
0 0 0.064 

0 1 0.012 

1 0 0.016 

1 1 0.108 

C G(C) 

0 0.08 

1 0.120 

C P(C|T=1) 

0 0.40 

1 0.60 

Assign T=1 
Sum over D Normalize 

p(C|T = 1) = α Σd p(C, d, T = 1)= Σd p(C, d, T = 1) / p(T = 1) 



Independence 
• X, Y independent: 

– p(X=x,Y=y) = p(X=x) p(Y=y)     for all x,y 
– Shorthand: p(X,Y) = P(X) P(Y) 
– Equivalent:  p(X|Y) = p(X)   or  p(Y|X) = p(Y)          (if p(Y), p(X) > 0) 
– Intuition:  knowing X has no information about Y (or vice versa) 
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A B C P(A,B,C) 

0 0 0 .4 * .7 * .1 =  .028 

0 0 1 .4 * .7 * .9 = .252 

0 1 0 .4 * .3 * .1 = .012 

0 1 1 .4 * .3 * .9 = .108 

1 0 0  .6 * .7 * .1 = .042 

1 0 1   .6 * .7 * .9 = .378 

1 1 0   .6 * .3 * .1 = .018 

1 1 1  .6 *  .3 * .9 = .162 

Joint: A P(A) 

0 0.4 

1 0.6 

B P(B) 

0 0.7 

1 0.3 

C P(C) 

0 0.1 

1 0.9 

Independent probability distributions: 
P(A,B,C) = P(A) * P(B) * P(C) 

This property can greatly reduce representation size! 
 
Note: it is hard to “read” independence  
    from the joint distribution. 
We can “test” for it,  but to do so requires a number 
    of tests equal to the size of the joint distribution. 

We may omit leading zeroes 
to save space and effort. 



Conditional Independence 
• X, Y independent given Z 

– p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z)     for all x,y,z 
– Equivalent:  p(X|Y,Z) = p(X|Z)   or  p(Y|X,Z) = p(Y|Z)      (if all > 

0) 
– Intuition: X has no additional info about Y beyond Z’s 

 

• Example 
 

X = height                        p(height|reading, age) = p(height|age) 
Y = reading ability          p(reading|height, age) = p(reading|age) 
Z = age 
 

Height and reading ability are dependent (not independent), but are 
conditionally independent given age 
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Conditional Independence 

Symptom 1 

Symptom 2 

Different values of C (condition variable) 
correspond to different groups/colors 

Symptom 1 and symptom 2 are conditionally independent, given group. 
 
But clearly, symptom 1 and 2 are marginally dependent, unconditionally.  



Conditional Independence Example:  
• X, Y independent given Z 

– p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z)     for all x,y,z 

• A box contains two coins: one regular coin, P(heads) = .5, and one 
fake two-headed coin, P(heads)=1. I choose a coin at random and 
toss it twice. Define the following events. 
– A = First coin toss results in heads 
– B= Second coin toss results in heads 
– C= Coin 1 (regular) has been selected 

• P(A∧B) = 5/8 ≠ P(A) P(B) = 9/16, so A and B are not independent 
– Event A makes it more likely I selected the two-headed coin, which makes 

Event B more likely. Knowing Event A gives information about Event B. 

• P(A∧B|C) = 1/4 = P(A|C) P(B|C), so A and B are independent given C 
– Given C, knowing Event A gives no information about Event B. 
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Conditional Independence Example:  
• X, Y independent given Z 

– p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z)     for all x,y,z 

 
• Consider two brothers John and Joseph, both having a genetic 

disease. These two events are dependent as they are brothers.  
 

• However, given the condition that Joseph is an adopted son of the 
family makes the events conditionally independent. 
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Conditional Independence Example:  
• X, Y independent given Z 

– p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z)     for all x,y,z 

 
• Rain causes both increased umbrella usage and worsened road 

conditions.  These events are not independent because seeing lots 
of umbrellas makes worsened road conditions more likely. 
 

• However, given the condition that it is raining makes the events 
conditionally independent. Once you know it is raining, seeing 
umbrellas tells you nothing more about road conditions. 
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Conditional Independence 
• X, Y independent given Z 

– p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z)     for all x,y,z 
– Equivalent:  p(X|Y,Z) = p(X|Z)   or  p(Y|X,Z) = p(Y|Z) 
– Intuition: X has no additional info about Y beyond Z’s 

 

• Example: Dentist 
– P(T,D|C) = P(T|C) * P(D|C) 
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T D C P(T,D,C) 

0 0 0 0.576 

0 0 1 0.008 

0 1 0 0.144 

0 1 1 0.072 

1 0 0 0.064 

1 0 1 0.012 

1 1 0 0.016 

1 1 1 0.108 

Conditional probabilities: 

Again, hard to “read” from the  
    joint probabilities; only from 
    the conditional probabilities. 
 
Like independence, can greatly 
    reduce representation size! 

T C P(T|C) 

0 0 .9 

0 1 .4 

1 0 .1 

1 1 .6 

D C P(D|C) 

0 0 .8 

0 1 .1 

1 0 .2 

1 1 .9 

T D C P(T,D|C) 

0 0 0 .9 * .8 = .72 

0 0 1 .4 * .1 = .04 

0 1 0 .9 * .2 = .18 

0 1 1 .4 * .9 = .36 

1 0 0 .1 * .8 = .08 

1 0 1 .6 * .1 = .06 

1 1 0 .1 * .2 = .02 

1 1 1 .6 * .9 = .54 

Conditionally independent distributions: 

Joint: 

We may omit leading zeroes 
to save space and effort. 



Conditional Independence 
• Formal Definition: 

– 2 random variables A and B are conditionally independent given C iff: 
  P(a, b|c) = P(a|c) P(b|c),     for all values a, b, c 
 

• Informal Definition: 
– 2 random variables A and B are conditionally independent given C iff: 
  P(a|b, c) = P(a|c)     OR   P(b|a, c) = P(b|c),   for all values a, b, c 
– P(a|b, c) = P(a|c) tells us that learning about b, given that we already know c, 

provides no change in our probability for a, and thus b contains no 
information about a beyond what c provides. 
 

• Naïve Bayes Model: 
– Often a single variable can directly influence a number of other variables, all 

of which are conditionally independent, given the single variable. 
– E.g., k different symptom variables X1, X2, … Xk, and C = disease, reducing to: 
  P(C | X1, X2,…. XK) = α P(C) Π  P(Xi | C) 

 

 The normalizing constant α is used to abbreviate normalization 



Full Joint vs Conditional Independence 

• Example : 4 Binary Random Variable (A,B,C,D) 
– Full Joint Probability Table 

• 1 Table with 16 rows 
– Conditional Independence 

• P(A,B,C,D) = P(A) P(B|A) P(C |A, B) P(D| A,B,C) (no saving yet..) 
• if… P(D|A, B) = P(C |A), P(D|A,B,C) = P(D|A) [Naïve Bayes Model] 

– P(A,B,C,D) = P(A) P(B|A) P(C |A) P(D|A) 
– 4 Tables. With at most 4 rows 

• If we had N Binary Random Variables 
– Full Joint Probability Table 

• 1 Table with 2^(N) Rows; N = 100, 2^100 ~= 10^30 
– Naïve Bayes Model (Conditional Independence) 

• N tables with at most 4 rows! 



Conclusions… 
• Representing uncertainty is useful in knowledge bases. 

 
• Probability provides a framework for managing uncertainty. 

 
• Using a full joint distribution and probability rules, we can derive any 

probability relationship in a probability space. 
 

• Number of required probabilities can be reduced through 
independence and conditional independence relationships 
 

• Probabilities allow us to make better decisions by using decision 
theory and expected utilities. 
 

• Rational agents cannot violate probability theory. 
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