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Deep Learning in Physics: E———
Searching for Exotic Particles | Pierre Baldi
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Searching for exotic particles in high-energy  Daniel Whiteson
physics with deep learning

P. Baldi' P. Sadowski' & D. Whiteson?

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle
discoveries. Finding these rare particles requires solving difficult signal-versus-background
classification problems, hence machine-learning approaches are often used. Standard
approaches have relied on ‘shallow’ machine-learning models that have a limited capacity to

learn complex nonlinear functions of the inputs, and rely on a painstaking search through
manually constructed nonlinear features. Progress on this problem has slowed, as a variety of
technigues have shown equivalent performance. Recent advances in the field of deep learni .
make iI:tI possible to learn :'u::re cumF;Tex functions and better discriminate between :gnal arr:i Peter SadOWSkI
background classes. Here, using benchmark data sets, we show that deep-learning methods
need no manually constructed inputs and yet improve the classification metric by as much as
8% over the best current approaches. This demonstrates that deep-learning approaches can

improve the power of collider searches for exotic particles.
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Application to Extra-Tropical Cyclones

Gaffney et al, Climate Dynamics, 2007
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Handwritten Hangul recognition using

deep convolutional neural networks
Thanks to
Xiaohui Xie

In-Jung Kim & Xiaohui Xie
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Fig. 1 Examples of Hangul characters



I

Fig. 4 Edge operators used to initialize convolution masks of the bottom layer
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Fig. 2 The overall architecture of the DCNN used by us, which includes an input layer, multiple alternating convolution and max-pooling layers,
and two fully connected classification layers. ¥ denotes the total number of layers in the network



| Alvs ML

* More specific and broadly applied
* Predictions and decisions
* EG : email spam detection

* Difficult to identify and write a set of rules so
need computer to identify



Automated Learning
o Why learn?

- Key hallmark of intelligence
- Take real data = get feedback - improve performance - repeat
— Check out USC Autonomous Flying Vehicle Project!

» Types of learning
- Supervised learning: learn mapping, attributes — target

— Classification: target variable is discrete (e.g., spam email)
— Regression: target variable is real-valued (e.g., stock market)

- Unsupervised learning: understand hidden data structure
— Clustering: group data into “similar” groups
— Latent space embedding: learn a simple data representation

- Other types of learning
» Reinforcement learning: e.g., game-playing agent
e Learning to rank, e.g., document ranking in Web search
* And many others....



! Supervised Learning

* Use supervised learning — training data is given
with correct output

* We write program to reproduce this output with
new test data

* Eg : face detection
* Classification : face detection, spam email

* Regression : Netflix guesses how much you will
rate the movie
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| Unsupervised and semi-supervised
|

* To understand data, it’s structure — similarity,
relation to each other etc

* Semisupervised — supervised and then is a
specific signal to predict but some examples do
not have the target that needs to be predicted

* Medical — a lot of data but few outputs



Terminology

e Attributes

- Also known as features, variables, independent
variables, covariates

e Target Variable
— Also known as goal predicate, dependent variable, ...

e Classification

— Also known as discrimination, supervised
classification, ...

e Error function
— Also known as objective function, loss function, ...



Inductive or Supervised learning

e Let X = input vector of attributes (feature vectors)

o Let f(x) = target label
— The implicit mapping from x to f(x) is unknown to us
— We only have training data pairs, D = {x, f(x)} available

e We want to learn a mapping from x to f(x)
e Our hypothesis function is h(x, 0)
e h(x, 0) = f(x) for all training data points x
e 0 are the parameters of our predictor function h

e Examples:
- h(x, 6) = sign(6;x; + 6 5X,+ 6 5) (perceptron)
- h(x, 6) = 0o + 01Xy + 65X, (regression)
= he(x) = (1 Ax2) V (3 A —xy)



— Targets

Y

— Predictions y =f(x; 6)
— Parameters &

Program (“Learner™)

Training data
(examples)

Features

Characterized by
some “parameters” @

> Procedure (using &)
that outputs a prediction

Feedback /
Target values

Thanks to Prof.
Alex Ihler

Learning algorithm

Change @
Improve performance

“predict” J’
\ Score performance
(*“cost function™)




Empirical Error Functions
e E(h) = X, distance[h(Xx, 6) , f(X)]

Sum is over all training pairs in the training data D

Examples:
distance = squared error if h and f are real-valued
(regression)

distance = delta-function if h and f are categorical
(classification)

In learning, we get to choose

1. what class of functions h(..) we want to learn
- potentially a huge space! (“hypothesis space”)

2. what error function/distance we want to use
- should be chosen to reflect real “loss” in problem
- but often chosen for mathematical/algorithmic
convenience
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Simple illustrative learning problem

Problem:

Decide whether to wait for a table at a
restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$%)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)



Training Data for Supervised Learning

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | T'ype | Est | Wait
X, T F F T |Some| %$%% F T | French| 0-10 T
Xo T F F T Full $ F F Thai | 30-60 F
Xg F T F F Some $ F F Burger | 0—-10 T
Xy T F T T Full $ F F Thai | 10-30 T
X5 T F T F Full $39% F T French | =60 F
X5 F T F T |Some| %% T T | ltalian | 0-10 T
X7 F T F F Mone $ T F Burger | 0-10 F
Xs F F F T |Some| %% T T Thai | 0-10 T
X, F| T | T /| F | Ful $ T F |Burger| =60 F
X0 T T T T Full $%% F T Italian | 10-30 F
X1 F F F F None $ F F Thai 0-10 F
X190 T T T T Full $ F F Burger | 30-60 T




Decision Tree Representations

*Decision trees are fully expressive
—Can represent any Boolean function (in DNF)
—Every path in the tree could represent 1 row in the truth table

—Might yield an exponentially large tree
*Truth table is of size 29, where d is the number of attributes

A

A B AxorB y\
F F F
F B B
= F F
F

AxorB=(—-AAB)Vv(AA—=B) inDNF




Decision Tree Learning

*Constrain h(..) to be a decision tree
—This is the R&N tree for the Restaurant Wait problem:

Mone B0 M Full

| WaitEstimate? |

20 -—60

Mo Yas

0-10




Decision Tree Representations

e Decision trees are DNF representations

- often used in practice - often result in compact approximate
representations for complex functions

- E.g., consider a truth table where most of the variables are irrelevant to the
function

- Simple DNF formulae can be easily represented
e E.g., f=(AAB)V(-AAD)
e DNF = disjunction of conjunctions

e Trees can be very inefficient for certain types of functions
— Parity function: 1 only if an even number of 1’s in the input vector
e Trees are very inefficient at representing such functions
- Majority function: 1 if more than 2 the inputs are 1’s
e Also inefficient



Decision Tree Learning

e Find the smallest decision tree consistent with the n examples
- Unfortunately this is provably intractable to do optimally

e Greedy heuristic search used in practice:
— Select root node that is "best” in some sense
— Partition data into 2 subsets, depending on root attribute value
- Recursively grow subtrees
- Different termination criteria

e For noiseless data, if all examples at a node have the same label then
declare it a leaf and backup

e For noisy data it might not be possible to find a “pure” leaf using the
given attributes

- we’ll return to this later — but a simple approach is to have a

depth-bound on the tree (or go to max depth) and use majority
vote

e We have talked about binary variables up until now, but we can
trivially extend to multi-valued variables



Pseudocode for Decision tree learning

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all ezamples have the same classification then return the classification
else if attributes is empty then return MoDE(ezamples)
else
best <— CHOOSE- ATTRIBUTE( attributes, examples)
tree «— a new decision tree with root test best
for each value v; of best do
examples; +— {elements of examples with best = v;}
subtree +— DTL(examples;, attributes — best, MODE(examples))
add a branch to tree with label v; and subtree subtree
return tree




Decision Tree Learning

*Constrain h(..) to be a decision tree
—This is the R&N tree for the Restaurant Wait problem:

Mone B0 M Full

| WaitEstimate? |

20 -—60

Mo Yas
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Training Data for Supervised Learning

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | T'ype | Est | Wait
X, T F F T |Some| %$%% F T | French| 0-10 T
Xo T F F T Full $ F F Thai | 30-60 F
Xg F T F F Some $ F F Burger | 0—-10 T
Xy T F T T Full $ F F Thai | 10-30 T
X5 T F T F Full $39% F T French | =60 F
X5 F T F T |Some| %% T T | ltalian | 0-10 T
X7 F T F F Mone $ T F Burger | 0-10 F
Xs F F F T |Some| %% T T Thai | 0-10 T
X, F| T | T /| F | Ful $ T F |Burger| =60 F
X0 T T T T Full $%% F T Italian | 10-30 F
X1 F F F F None $ F F Thai 0-10 F
X190 T T T T Full $ F F Burger | 30-60 T




Choosing an attribute

e Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

000000 00000
200000 00000
Fatrons? Type?
Nﬂmull e ncm rger
000 00 O © 00 o0
o0 o000 o ® 00 o0

e Patrons? is a better choice
- How can we quantify this?
- One approach would be to use the classification error E directly (greedily)
e Empirically it is found that this works poorly
— Much better is to use information gain (next slides)
- Other metrics are also used, e.g., Gini impurity, variance reduction
- Often very similar results to information gain in practice



|Entropy and Information

| .
- “Entropy” is a measure of randomness
= amount of disorder

If the particles represent gas molecules at normal temperatures
inside a closed container, which of the illustrated configurations

came first?
eee
eee . .
*ee Time's .
arrow . *
/ ) ’ \
.
.
Low ¢ High
Entropy Entropy

If you tossed bricks off a truck, which kind of pile of bricks
would you more likely produce?
Disorder is
I_;_I more probable
C T 1 1 than order.
C T T 1 1
C 1T 1T 1T 1T 1

https://www.youtube.com/watch?v=ZsY4WcQOrfk




Entropy, H(p), with only 2 outcomes

Consider 2 class problem:
p = probability of class #1,
1 — p = probability of class #2

In binary case:
H(p) =-plogp - (1-p) log (1-p)

) high entropy,

< — high disorder,
high uncertainty

"N ¥/

Low entropy, low disorder, low uncertainty



|Entropy and Information

- “Entropy’ is a measure of randomness
— How long a message does it take to communicate a result to you?
— Depends on the probability of the outcomes; more predictable = shorter message

* Communicating fair coin tosses
— OQOutput: HHTHTTTHHHHT ...
— Sequence takes n bits — each outcome totally unpredictable

* Communicating my daily lottery results
— QOutput:000000... Lost: O
— Most likely to take one bit — | lost every day. Won 1: 1(when)0
— Small chance I'll have to send more bits (won & when) \yon 2: 1(when)1(when)0

* More predictable takes less length to communicate because it’s less random
— Use a few bits for the most likely outcome, more for less likely ones



|Entropy and Information

I- Entropy H(X) = E[ log 1/P(X) ] = 2.
= =2 ,x P(X) log P(x)

— Log base two, units of entropy are “bits”
— If only two outcomes: H(p) = - p log(p) — (1-p) log(1-p)

- Examples:

P(x) log 1/P(x)

XxeX

06 J

05 1

04 1

03 1

02 1

01 1
0 1 2 3 4

H(x) =.25log 4 + .25 log 4 + H(x) =.75 log 4/3 + .25 log 4 H(x)=1log 1
251log 4 +.25log 4 = 0.8133 bits =0 bits
= log 4 = 2 bits

Max entropy for 4 outcomes Min entropy



Information Gain

e H(P) = current entropy of class distribution P at a particular node,
before further partitioning the data

e H(P | A) = conditional entropy given attribute A
= weighted average entropy of conditional class distribution,
after partitioning the data according to the values in A

e Gain(A) = H(P) —= H(P | A)
- Sometimes written IG(A) = InformationGain(A)

e Simple rule in decision tree learning

— At each internal node, split on the node with the largest
information gain [or equivalently, with smallest H(P|A) ]

e Note that by definition, conditional entropy can’t be greater than
the entropy, so Information Gain must be non-negative



000000
200000 o000 0OO
Type?
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For the training set, 6 positives, 6 negatives, H(6/12, 6/12) = 1 bit

positivep) negative (1-p)

H(6/12,6/12) = -(6/12)*log2(6/12)-(6/12)*log2(6/12) =1

Consider the attributes Patrons and Type:

2 4 6 2 4
IG(Patrons) =1 — [EH(O, 1)+ EH(LO) + EH(E, 6)] = (.541 bits

2 1 1, 2 L1, 4 22 4 2 2
IG(Type)=1— | =H(z,2)+—=H(z,z)+—=H )+—H(=,-)] = 0bits

127°'2°27 712772727712 (E’Z 1277471

Patrons has the highest IG of all attributes and so is chosen by
the learning algorithm as the root

Information gain is then repeatedly applied at internal nodes until
all leaves contain only examples from one class or the other



Choosing an attribute

000000 00000
200000 00000
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IG(Patrons) = 0.541 bits IG(Type) = 0 bits



Decision Tree Learned

e Decision tree learned from the 12 examples:

Patrons?
Q00000
000000 MNone m Full
Patrons?
Nnmun
000 Q0
o0 . 9000
. Hungry?

ZON



R&N Tree (left) versus Learned Tree (right)

None BO M Full I

[ WaitEstimate? |

| Reservation? || Fri'Sat? ]

Nn;\‘:’n-.s,




Assessing Performance

Training data performance is typically optimistic
e.g., error rate on training data

Reasons?
- classifier may not have enough data to fully learn the concept (but
on training data we don’t know this)
- for noisy data, the classifier may overfit the training data

In practice we want to assess performance “out of sample”
how well will the classifier do on new unseen data? This is the
true test of what we have learned (just like a classroom)

With large data sets we can partition our data into 2 subsets, train and test
- build a model on the training data
- assess performance on the test data



Example of Test Performance

Restaurant problem
- simulate 100 data sets of different sizes
- train on this data, and assess performance on an independent test set
- learning curve = plotting accuracy as a function of training set size
- typical “diminishing returns” effect (some nice theory to explain this)
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Overfitting and Underfitting

v



A Complex Model

Y = high-order polynomial in X

v




A Much Simpler Model

Y=aX +b + noise

v



Example 2

fix

Lot |

T

My biologist colleagues say,
“Oh, that’s the sample that
we dropped on the floor!”
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How Overfitting affects Prediction

Predictive
Error

Error on Training Data

———— >

»

Model Complexity



How Overfitting affects Prediction

Predictive
Error

Error on Test Data

-

Error on Training Data
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Model Complexity



How Overfitting affects Prediction

<
<

. Underfitting Overfitting

v

[

Predictive
Error

Error on Test Data

Error on Training Data

——— »

»

Model Complexity

—>

Ideal Range
for Model Complexity

Too-Simple Models Too-Complex Models



Training and Validation Data

Full Data Set

Idea: train each

/ Training Data model on the
“——*“training data”

and then test

\ each model’s

- Validation Data accura(_:y o_n
+— the validation data




Disjoint Validation Data Sets

Validation Data (aka Test Data)

Full Data Set

15t partition

Training Data



Disjoint Validation Data Sets

Validation Data (aka Test Data)

Full Data Set

15t partition 2" partition

Training Data



Disjoint Validation Data Sets

Validation Data (aka Test Data)

Full Data Set

Validation
Data

15t partition 2" partition

Training Data

3d partition 4™ partition 5t partition



More on Cross-Validation

e Notes

— cross-validation generates an approximate estimate of how well
the learned model will do on “unseen” data

- by averaging over different partitions it is more robust than just a
single train/validate partition of the data

- “k-fold” cross-validation is a generalization
e partition data into disjoint validation subsets of size n/k
e train, validate, and average over the v partitions
e e.g., k=10 is commonly used

— k-fold cross-validation is approximately k times computationally
more expensive than just fitting a model to all of the data



The k-fold Cross-Validation Method

e Why just choose one particular 90/10 “split” of the data?
— In principle we could do this multiple times

e “k-fold Cross-Validation” (e.g., k=10)
— randomly partition our full data set into k_disjoint subsets (each
roughly of size n/k, n = total number of training data points)
o for i = 1:10 (here k = 10)
— train on 90% of data,
— Acc(i) = accuracy on other 10%
e end

e Cross-Validation-Accuracy = 1/k 2. Acc(i)
— choose the method with the highest cross-validation accuracy
— common values for k are 5 and 10
— Can also do “leave-one-out” where k = n



You will be expected to know

. Understand Attributes, Error function, Classification,
Regression, Hypothesis (Predictor function)

« What is Supervised Learning?

« Decision Tree Algorithm

« Entropy

o Information Gain

. Tradeoff between train and test with model complexity

« Cross validation



Summary

e Inductive learning
— Error function, class of hypothesis/models {h}
— Want to minimize E on our training data
— Example: decision tree learning

e Generalization
— Training data error is over-optimistic
- We want to see performance on test data
— Cross-validation is a useful practical approach

e Learning to recognize faces

— Viola-Jones algorithm: state-of-the-art face detector, entirely
learned from data, using boosting+decision-stumps



