
Introduction to Machine Learning:
Improve Performance by Observation

CS171, Winter Quarter, 2019
Introduction to Artificial Intelligence

Surmeet Kaur Jhajj

Read Beforehand: R&N Ch. 18.1-18.4

Deep Learning in Physics:

Searching for Exotic Particles
Thanks to

Pierre Baldi

Daniel Whiteson

Peter Sadowski

Thanks to

Pierre Baldi

Application to Extra-Tropical Cyclones
Gaffney et al, Climate Dynamics, 2007

Thanks to

Padhraic Smyth

Iceland Cluster

Horizontal ClusterGreenland Cluster

Original Data

Thanks to

Padhraic Smyth

Thanks to

Xiaohui Xie

Thanks to

Xiaohui Xie

AI vs ML

• More specific and broadly applied

• Predictions and decisions

• EG : email spam detection

• Difficult to identify and write a set of rules so
need computer to identify

Automated Learning
• Why learn?

– Key hallmark of intelligence
– Take real data get feedback improve performance repeat

– Check out USC Autonomous Flying Vehicle Project!

• Types of learning
– Supervised learning: learn mapping, attributes target

– Classification: target variable is discrete (e.g., spam email)
– Regression: target variable is real-valued (e.g., stock market)

– Unsupervised learning: understand hidden data structure
– Clustering: group data into “similar” groups
– Latent space embedding: learn a simple data representation

– Other types of learning
• Reinforcement learning: e.g., game-playing agent
• Learning to rank, e.g., document ranking in Web search
• And many others….

• Use supervised learning – training data is given
with correct output

• We write program to reproduce this output with
new test data

• Eg : face detection

• Classification : face detection, spam email

• Regression : Netflix guesses how much you will
rate the movie

Supervised Learning

Classification Graph Regression Graph

• To understand data, it’s structure – similarity,
relation to each other etc

• Semisupervised – supervised and then is a
specific signal to predict but some examples do
not have the target that needs to be predicted

• Medical – a lot of data but few outputs

Unsupervised and semi-supervised

Terminology

• Attributes
– Also known as features, variables, independent

variables, covariates

• Target Variable
– Also known as goal predicate, dependent variable, …

• Classification
– Also known as discrimination, supervised

classification, …

• Error function
– Also known as objective function, loss function, …

Inductive or Supervised learning

• Let x = input vector of attributes (feature vectors)

• Let f(x) = target label

– The implicit mapping from x to f(x) is unknown to us

– We only have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f(x)

• Our hypothesis function is h(x,)

• h(x,) ≈ f(x) for all training data points x

• are the parameters of our predictor function h

• Examples:

– h(x,) = sign(1x1 + 2x2+ 3) (perceptron)

– h(x,) = 0 + 1x1 + 2x2 (regression)

– ℎ𝑘(𝑥) = (𝑥1 ∧ 𝑥2) ∨ (𝑥3 ∧ ¬𝑥4)

Thanks to Prof.

Alex Ihler

Empirical Error Functions
• E(h) = x distance[h(x,) , f(x)]

Sum is over all training pairs in the training data D

Examples:
distance = squared error if h and f are real-valued

(regression)

distance = delta-function if h and f are categorical
(classification)

In learning, we get to choose

1. what class of functions h(..) we want to learn
– potentially a huge space! (“hypothesis space”)

2. what error function/distance we want to use
- should be chosen to reflect real “loss” in problem

- but often chosen for mathematical/algorithmic

convenience

Classification Graph Regression Graph

Simple illustrative learning problem

Problem:

Decide whether to wait for a table at a
restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, Full)

6. Price: price range ($, $$, $$$)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Training Data for Supervised Learning

Decision Tree Representations

•Decision trees are fully expressive
–Can represent any Boolean function (in DNF)

–Every path in the tree could represent 1 row in the truth table

–Might yield an exponentially large tree
•Truth table is of size 2d, where d is the number of attributes

A xor B = (A B) (A B) in DNF

Decision Tree Learning

•Constrain h(..) to be a decision tree
–This is the R&N tree for the Restaurant Wait problem:

Decision Tree Representations

• Decision trees are DNF representations
– often used in practice often result in compact approximate

representations for complex functions

– E.g., consider a truth table where most of the variables are irrelevant to the
function

– Simple DNF formulae can be easily represented

• E.g., 𝑓 = (𝐴 ∧ 𝐵) ∨ (¬𝐴 ∧ 𝐷)

• DNF = disjunction of conjunctions

• Trees can be very inefficient for certain types of functions

– Parity function: 1 only if an even number of 1’s in the input vector

• Trees are very inefficient at representing such functions

– Majority function: 1 if more than ½ the inputs are 1’s

• Also inefficient

Decision Tree Learning

• Find the smallest decision tree consistent with the n examples

– Unfortunately this is provably intractable to do optimally

• Greedy heuristic search used in practice:

– Select root node that is “best” in some sense

– Partition data into 2 subsets, depending on root attribute value

– Recursively grow subtrees

– Different termination criteria

• For noiseless data, if all examples at a node have the same label then
declare it a leaf and backup

• For noisy data it might not be possible to find a “pure” leaf using the
given attributes

– we’ll return to this later – but a simple approach is to have a
depth-bound on the tree (or go to max depth) and use majority
vote

• We have talked about binary variables up until now, but we can
trivially extend to multi-valued variables

Pseudocode for Decision tree learning

Decision Tree Learning

•Constrain h(..) to be a decision tree
–This is the R&N tree for the Restaurant Wait problem:

Training Data for Supervised Learning

Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

• Patrons? is a better choice

– How can we quantify this?

– One approach would be to use the classification error E directly (greedily)

• Empirically it is found that this works poorly

– Much better is to use information gain (next slides)

– Other metrics are also used, e.g., Gini impurity, variance reduction

– Often very similar results to information gain in practice

• “Entropy” is a measure of randomness

= amount of disorder

Entropy and Information

https://www.youtube.com/watch?v=ZsY4WcQOrfk

Low

Entropy

High

Entropy

Entropy, H(p), with only 2 outcomes

Consider 2 class problem:
p = probability of class #1,
1 – p = probability of class #2

In binary case:
H(p) = p log p (1p) log (1p)

H(p)

0.5 10

1

p

high entropy,

high disorder,

high uncertainty

Low entropy, low disorder, low uncertainty

Entropy and Information
• “Entropy” is a measure of randomness

– How long a message does it take to communicate a result to you?

– Depends on the probability of the outcomes; more predictable = shorter message

• Communicating fair coin tosses
– Output: H H T H T T T H H H H T …

– Sequence takes n bits – each outcome totally unpredictable

• Communicating my daily lottery results
– Output: 0 0 0 0 0 0 …

– Most likely to take one bit – I lost every day.

– Small chance I’ll have to send more bits (won & when)

• More predictable takes less length to communicate because it’s less random
– Use a few bits for the most likely outcome, more for less likely ones

Lost: 0
Won 1: 1(when)0
Won 2: 1(when)1(when)0

Entropy and Information
• Entropy H(X) = E[log 1/P(X)] = xX P(x) log 1/P(x)

= −xX P(x) log P(x)

– Log base two, units of entropy are “bits”

– If only two outcomes: H(p) = p log(p) (1p) log(1p)

• Examples:

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 +

.25 log 4 + .25 log 4

= log 4 = 2 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4

= 0.8133 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1

= 0 bits

Max entropy for 4 outcomes Min entropy

Information Gain

• H(P) = current entropy of class distribution P at a particular node,

before further partitioning the data

• H(P | A) = conditional entropy given attribute A

= weighted average entropy of conditional class distribution,

after partitioning the data according to the values in A

• Gain(A) = H(P) – H(P | A)

– Sometimes written IG(A) = InformationGain(A)

• Simple rule in decision tree learning

– At each internal node, split on the node with the largest
information gain [or equivalently, with smallest H(P|A)]

• Note that by definition, conditional entropy can’t be greater than
the entropy, so Information Gain must be non-negative

Root Node Example

For the training set, 6 positives, 6 negatives, H(6/12, 6/12) = 1 bit

H(6/12,6/12) = -(6/12)*log2(6/12)-(6/12)*log2(6/12) = 1

Consider the attributes Patrons and Type:

Patrons has the highest IG of all attributes and so is chosen by
the learning algorithm as the root

Information gain is then repeatedly applied at internal nodes until
all leaves contain only examples from one class or the other

positive (p)
negative (1-p)

Choosing an attribute

IG(Patrons) = 0.541 bits IG(Type) = 0 bits

Decision Tree Learned

• Decision tree learned from the 12 examples:

Hungry?

…

R&N Tree (left) versus Learned Tree (right)

Assessing Performance

Training data performance is typically optimistic

e.g., error rate on training data

Reasons?

- classifier may not have enough data to fully learn the concept (but

on training data we don’t know this)

- for noisy data, the classifier may overfit the training data

In practice we want to assess performance “out of sample”

how well will the classifier do on new unseen data? This is the

true test of what we have learned (just like a classroom)

With large data sets we can partition our data into 2 subsets, train and test

- build a model on the training data

- assess performance on the test data

Example of Test Performance

Restaurant problem

- simulate 100 data sets of different sizes

- train on this data, and assess performance on an independent test set

- learning curve = plotting accuracy as a function of training set size

- typical “diminishing returns” effect (some nice theory to explain this)

Overfitting and Underfitting

X

Y

A Complex Model

X

Y

Y = high-order polynomial in X

A Much Simpler Model

X

Y

Y = a X + b + noise

Example 2

My biologist colleagues say,

“Oh, that’s the sample that

we dropped on the floor!”

Example 2

Example 2

Example 2

Example 2

How Overfitting affects Prediction

Predictive

Error

Model Complexity

Error on Training Data

How Overfitting affects Prediction

Predictive

Error

Model Complexity

Error on Training Data

Error on Test Data

How Overfitting affects Prediction

Predictive

Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range

for Model Complexity

OverfittingUnderfitting

Too-Simple Models Too-Complex Models

Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each

model on the

“training data”

and then test

each model’s

accuracy on

the validation data

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

1st partition

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

1st partition 2nd partition

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

Validation

Data

1st partition 2nd partition

3rd partition 4th partition 5th partition

More on Cross-Validation

• Notes

– cross-validation generates an approximate estimate of how well
the learned model will do on “unseen” data

– by averaging over different partitions it is more robust than just a
single train/validate partition of the data

– “k-fold” cross-validation is a generalization

• partition data into disjoint validation subsets of size n/k

• train, validate, and average over the v partitions

• e.g., k=10 is commonly used

– k-fold cross-validation is approximately k times computationally
more expensive than just fitting a model to all of the data

The k-fold Cross-Validation Method

• Why just choose one particular 90/10 “split” of the data?

– In principle we could do this multiple times

• “k-fold Cross-Validation” (e.g., k=10)

– randomly partition our full data set into k disjoint subsets (each
roughly of size n/k, n = total number of training data points)

• for i = 1:10 (here k = 10)

– train on 90% of data,

– Acc(i) = accuracy on other 10%

• end

• Cross-Validation-Accuracy = 1/k i Acc(i)

– choose the method with the highest cross-validation accuracy

– common values for k are 5 and 10

– Can also do “leave-one-out” where k = n

You will be expected to know

 Understand Attributes, Error function, Classification,

Regression, Hypothesis (Predictor function)

 What is Supervised Learning?

 Decision Tree Algorithm

 Entropy

 Information Gain

 Tradeoff between train and test with model complexity

 Cross validation

Summary

• Inductive learning

– Error function, class of hypothesis/models {h}

– Want to minimize E on our training data

– Example: decision tree learning

• Generalization

– Training data error is over-optimistic

– We want to see performance on test data

– Cross-validation is a useful practical approach

• Learning to recognize faces

– Viola-Jones algorithm: state-of-the-art face detector, entirely
learned from data, using boosting+decision-stumps

