
Games & Adversarial Search B:
Alpha-Beta Pruning and MCTS

Introduction to Artificial Intelligence
Prof. Richard Lathrop

Read Beforehand: R&N 5.3; Optional: 5.5+



Alpha-Beta pruning
• Exploit the “fact” of an adversary

• Bad = not better than we already know we can get elsewhere
• If a position is provably bad

– It’s NO USE expending search effort to find out just how bad it is
• If the adversary can force a bad position

– It’s NO USE searching to find the good positions the adversary won’t 
let you achieve anyway

• Contrast normal search:
– ANY node might be a winner, so ALL nodes must be considered.
– A* avoids this through heuristics that transmit your knowledge.
– Alpha-Beta pruning avoids this through exploiting the adversary.



Pruning with Alpha/Beta

Do these nodes matter?
If they = +1 million?
If they = −1 million?



??

Alpha-Beta Example

MAX

Initially, possibilities are unknown: range (α =-∞, β=+∞)

α = −∞
β = +∞

?? ?? MIN

Do a depth-first search to the first leaf.

α = −∞
β = +∞

Child inherits 
current α and β

?? ??



® = -1
¯ = +1

Alpha-Beta Example

MIN

MAX

3

α = −∞
β = +∞

See the first leaf, after MIN’s move: MIN updates β

?? ??

?? ??

α = −∞
β = 3 3

α < β so
no pruning3



Alpha-Beta Example

MIN

MAX

3 12 8

® = -1
¯ = +1

α = −∞
β = 3 ?? ??

See remaining leaves; value is known

3

Pass outcome to caller; MAX updates α
α = 3
β = +∞

≥ 3

3



Alpha-Beta Example

MIN

MAX

3 12 8

α = 3
β = +∞

≥3

α = −∞
β = 3 3

Pass α, β to descendants
α = 3
β = +∞

Continue depth-first search to next leaf.

Child inherits 
current α and β

??

?? ??



α = 3
β = 2  .    

Alpha-Beta Example

MIN

MAX

3 12 8 2

≥ 3

α = −∞
β = 3 3

α = 3
β = +∞

Observe leaf value; MIN’s level; MIN updates β

??

?? ??

α ≥ β !!!
(what does this mean?)

2
(This node is 
worse for MAX)

Prune!!!X X

Prune – play will never reach the other nodes!

2



Alpha-Beta Example

MIN

MAX

3 12 8 2

α = 3
β = +∞

α =  −∞
β = 3

X X

α = 3
β = 2 2

≥ 3

MAX level, 3 > 2 
α no change

??

Pass outcome to caller & update caller:

2



Alpha-Beta Example

MIN

MAX

3 12 8 2

α = 3
β = +∞

α =  −∞
β = 3

X X

α = 3
β = 2 · 2

≥ 3

Continue depth-first exploration…

14 5 2

α = 3
β = +∞

Child inherits 
current α and β

No pruning here; value is not resolved until final leaf.

2



Alpha-Beta Example

MIN

MAX

3 12 8 2

α =  −∞
β = 3

X X

α = 3
β = 2 · 2

3

Pass outcome to caller & update caller.
Value at the root is resolved.

14 5 2

α = 3
β = 2 2

α = 3
β = +∞

2

MAX level, 3 > 2 
α no change



General alpha-beta pruning

• Consider a node n in the tree:

• If player has a better choice at
– Parent node of n
– Or, any choice further up!

• Then n is never reached in play

• So:
– When that much is known about n, it can be pruned



Recursive α-β pruning:
R&N Fig. 5.7

Simple stub to call recursion functions
Initialize alpha, beta; get best value
Score each action; return best action

If Cutoff reached, return Eval heuristic
Otherwise, find our best child:
If our options become too good, our min

ancestor will never let us come this way,
so prune now & return best value so far

Finally, return the best value we found

If Cutoff reached, return Eval heuristic
Otherwise, find our worst child:
If our options become too bad, our max

ancestor will never let us come this way,
so prune now & return worst value so far

Finally, return the worst value we found



Recursive α-β pruning variant:
Prune when α ≥ β

This variant has a conceptually simpler pruning rule (α ≥ β), but when 
pruning occurs it makes one extra call to MAX(). Both variants yield the 
same pruning behavior, and both are considered correct on tests.



Effectiveness of α-β Search
• Worst-Case

– Branches are ordered so that no pruning takes place. In this case alpha-beta 
gives no improvement over exhaustive search

• Best-Case
– Each player’s best move is the left-most alternative (i.e., evaluated first)
– In practice, performance is closer to best rather than worst-case

• In practice often get O(b(d/2)) rather than O(bd) 
– This is the same as having a branching factor of sqrt(b), 

• since (sqrt(b))d =  b(d/2) (i.e., we have effectively gone from b to square root of b)
– In chess go from b ~ 35  to  b ~ 6

• permiting much deeper search in the same amount of time



Iterative deepening
• In real games, there is usually a time limit T to make a move

• How do we take this into account?
• Minimax cannot use “partial” results with any confidence, unless 

the full tree has been searched
– Conservative: set small depth limit to guarantee finding a move in time < T
– But, we may finish early – could do more search!

• Added benefit with Alpha-Beta Pruning:
– Remember node values found at the previous depth limit
– Sort current nodes so that each player’s best move is left-most child
– Likely to yield good Alpha-Beta Pruning  => better, faster search
– Only a heuristic: node values will change with the deeper search
– Usually works well in practice



Comments on alpha-beta pruning

• Pruning does not affect final results

• Entire subtrees can be pruned

• Good move ordering improves pruning
– Order nodes so player’s best moves are checked first

• Repeated states are still possible
– Store them in memory = transposition table



Iterative deepening reordering

MIN

MAX

3 4

Which leaves can be pruned?

1 2 7 8 5 6

None!  
because the most 
favorable nodes 
are explored 
last…



Iterative deepening reordering

MIN

MAX

6 5

Different exploration order: now which leaves can be pruned?

8 7 2 1 3 4

Lots!  
because the most 
favorable nodes 
are explored first!



Iterative deepening reordering

MIN

MAX

3 4

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

1 2 7 8 5 6

L=0 4.5



Iterative deepening reordering

MIN

MAX

3 4

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

1 2 7 8 5 6

6.5

L=1 2.5 6.5

For L=2, 
switch the order of 
these nodes! 



Iterative deepening reordering

MIN

MAX

7 8

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

5 6 3 4 1 2

6.5

L=1 6.5 2.5

For L=2, 
switch the order of 
these nodes! 



Iterative deepening reordering

MIN

MAX

7 8

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

5 6 3 4 1 2

5.5

L=2

5.5 3.5

Alpha-Beta pruning 
would prune this node 
at L=2

7.5 5.5 3.5

For L=3, switch the 
order of these nodes!



Iterative deepening reordering

MIN

MAX

5 6

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

7 8 3 4 1 2

5.5

L=2

5.5 3.5

Alpha-Beta pruning 
would prune this node 
at L=2

5.5 7.5 3.5

For L=3, switch the 
order of these nodes!



Iterative deepening reordering

MIN

MAX

5 6

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

7 8 3 4 1 2

6

L=3

6 4

Lots of pruning!
The most favorable 
nodes are explored 
earlier.

6 7 4



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

MAX

MIN

MAX

α=−∞
β=+∞

α, β, initial values
Branch nodes are labeled A..K for easy discussion

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

α=−∞
β=+∞current α, β,

passed to kids

MAX

MIN

MAX
α=−∞
β=+∞
kid=A

α=−∞
β=+∞
kid=E

Longer Alpha-Beta Example
Note that cut-off occurs at different depths…



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

4

α=−∞
β=+∞

see first leaf,
MAX updates α

4

MAX

MIN

MAX
α=−∞
β=+∞
kid=A

α=4
β=+∞
kid=E

We also are running MiniMax search and recording node values within the triangles, without explicit comment.

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

5

α=−∞
β =+∞

see next leaf,
MAX updates α

5

MAX

MIN

MAX
α=−∞
β=+∞
kid=A

α=5
β=+∞
kid=E

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

α=−∞
β =+∞

see next leaf,
MAX updates α

6

MAX

MIN

MAX
α=−∞
β=+∞
kid=A

α=6
β=+∞
kid=E

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

return node value,
MIN updates β

6

MAX

MIN

MAX
α=−∞
β=6
kid=A

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

current α, β,
passed to kid F

MAX

MIN

MAX
α=−∞
β=6
kid=A

α=−∞
β=6
kid=F

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

see first leaf,
MAX updates α

6

6 MAX

MIN

MAX
α=−∞
β=6
kid=A

α=6
β=6
kid=F

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

6 MAX

MIN

MAX

α ≥ β !!
Prune!!

XX

α=−∞
β=6
kid=A

α=6
β=6
kid=F

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

6 MAX

MIN

MAX

XX

return node value,
MIN updates β,
no change to β

6

If we had continued searching at node F, we would see the 9 from its third leaf. Our returned value would be 9 instead of 6. But
at A, MIN would choose E(=6) instead of F(=9). Internal values may change; root values do not.

α=−∞
β=6
kid=A

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

6 MAX

MIN

MAX

XX

9

see next leaf,
MIN updates β,
no change to β

α=−∞
β=6
kid=A

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

6

α=6
β =+∞

6 MAX

MIN

MAX

XX

6

return node value,
MAX updates α

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

6

α=6
β =+∞

6 MAX

MIN

MAX

XX

α=6
β=+∞
kid=B

α=6
β=+∞
kid=G

current α, β,
passed to kids

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

6 5

α=6
β =+∞

6 MAX

MIN

MAX

XX

α=6
β=+∞
kid=B

α=6
β=+∞
kid=G

see first leaf,
MAX updates α,
no change to α

5

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

6 5

α=6
β =+∞

6 MAX

MIN

MAX

XX

α=6
β=+∞
kid=B

α=6
β=+∞
kid=G

see next leaf,
MAX updates α,
no change to α

4

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5

6

6 5

α=6
β =+∞

6 MAX

MIN

MAX

XX

α=6
β=5
kid=B

return node value,
MIN updates β

5

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X X

α=6
β=5
kid=B

α ≥ β !!
Prune!!

X

X

X
Note that we never find out, what is the node value of H? But we have proven it doesn’t matter, so we don’t care.

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

5

return node value,
MAX updates α,
no change to α

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=+∞
kid=C

current α, β,
passed to kid=C

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 9

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=9
kid=C

see first leaf,
MIN updates β

9

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 9

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=9
kid=C

α=6
β=9
kid=I

current α, β,
passed to kid I

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 9

6

6 5 ? 2

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=9
kid=C

α=6
β=9
kid=I

see first leaf,
MAX updates α,
no change to α

2

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 9

6

6 5 ? 6

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=9
kid=C

α=6
β=9
kid=I

see next leaf,
MAX updates α,
no change to α

6

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6

6

6 5 ? 6

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=6
kid=C

6

return node value,
MIN updates β

Longer Alpha-Beta Example



α=6
β=6
kid=C

4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6

6

6 5 ? 6 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α ≥ β !!
Prune!!

X X X

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6

6

6 5 ? 6 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X

6

return node value,
MAX updates α,
no change to α

Longer Alpha-Beta Example



α=6
β=+∞
kid=D

4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6

6

6 5 ? 6 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X

current α, β,
passed to kid=D

Longer Alpha-Beta Example



α=6
β=6
kid=D

4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6 6

6

6 5 ? 6 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X

see first leaf,
MIN updates β

6

Longer Alpha-Beta Example



α=6
β=6
kid=D

4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6 6

6

6 5 ? 6 ? ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X

α ≥ β !!
Prune!!

X X X

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6 6

6

6 5 ? 6 ? ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X X X X

6

return node value,
MAX updates α,
no change to α

Alpha-Beta Example #2



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6 6

6

6 5 ? 6 ? ?6 MAX

MIN

MAX

X XX

X

X X X X X X X

MAX’s
move

MAX moves to A,
and expects to get 6

Although we may have changed some internal branch node return values, the final root action and expected outcome are 
identical to if we had not done alpha-beta pruning. Internal values may change; root values do not.

Alpha-Beta Example #2



Nondeterministic games

• Ex: Backgammon
– Roll dice to determine how far to move  (random)
– Player selects which checkers to move    (strategy)

https://commons.wikimedia.org/wiki/File:Backgammon_lg.jpg



Nondeterministic games

• Chance (random effects) due to dice, card shuffle, …
• Chance nodes: expectation (weighted average) of successors
• Simplified example: coin flips

MIN

MAX

2 4

3 -1

3

7 4 6 0 5 -2

Chance

2 4 0 -2

0.5 0.5 0.5 0.5

MAX’s
move

“Expectiminimax”



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3 -1

3

7 4 6 0 5 -2

Chance

2 4 0 -2

0.5 0.5 0.5 0.5



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4 7 4 6 0 5 -2

Chance

(−∞, +∞)

0.5 0.5 0.5 0.5

(−∞, +∞) (−∞, +∞) (−∞, +∞)

(−∞, +∞) (−∞, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4 7 4 6 0 5 -2

Chance

(−∞, 2)

0.5 0.5 0.5 0.5

(−∞, +∞) (−∞, +∞) (−∞, +∞)

(−∞, +∞) (−∞, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4 7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(−∞, +∞) (−∞, +∞) (−∞, +∞)

(−∞, +∞) (−∞, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4 7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(−∞, 7) (−∞, +∞) (−∞, +∞)

(−∞, 4.5) (−∞, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3

7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(4, 4) (3, +∞) (3, +∞)

(3, 3)

(3, +∞)

(3, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3

7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(4, 4) (3, 6) (3, +∞)

(3, 3) (3, +∞)

(3, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3

3

7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(4, 4) (0, 0) (−∞, +∞)

(3, 3)

(3, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3 2.5

3

7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(4, 4) (0, 0) (−∞, 5)

(3, 3) (−∞, 2.5)

(3, +∞)

X Prune!



Partially observable games
• R&N Chapter 5.6 – “The fog of war”
• Background: R&N, Chapter 4.3-4

– Searching with Nondeterministic Actions/Partial Observations

• Search through Belief States (see Fig. 4.14)
– Agent’s current belief about which states it might be in,

given the sequence of actions & percepts to that point
• Actions(b) = ??  Union?  Intersection?

– Tricky: an action legal in one state may be illegal in another
– Is an illegal action a NO-OP?  or the end of the world?

• Transition Model:
– Result(b,a) = { s’ : s’ = Result(s, a) and s is a state in b }

• Goaltest(b) = every state in b is a goal state



72

Belief States for Unobservable Vacuum World



Partially observable games
• R&N Chapter 5.6
• Player’s current node is a belief state
• Player’s move (action) generates child belief state
• Opponent’s move is replaced by Percepts(s)

– Each possible percept leads to the belief state that is consistent with that 
percept

• Strategy = a move for every possible percept sequence
• Minimax returns the worst state in the belief state

• Many more complications and possibilities!!
– Opponent may select a move that is not optimal, but instead minimizes 

the information transmitted, or confuses the opponent
– May not be reasonable to consider ALL moves; open P-QR3??

• See R&N, Chapter 5.6, for more info



The State of Play
• Checkers: 

– Chinook ended 40-year-reign of human world champion Marion Tinsley in 
1994. 

• Chess: 
– Deep Blue defeated human world champion Garry Kasparov in a six-game 

match in 1997. 

• Othello: 
– human champions refuse to compete against computers: 

they are too good.

• Go: 
– AlphaGo recently (3/2016) beat 9th dan Lee Sedol
– b > 300 (!); full game tree has > 10^760 leaf nodes (!!)

• See (e.g.) http://www.cs.ualberta.ca/~games/ for more info

http://www.cs.ualberta.ca/%7Egames/


High branching factors
• What can we do when the search tree is too large?

– Example: Go  ( b = 50 to 300+ moves per state)
– Heuristic state evaluation (score a partial game)

• Where does this heuristic come from?
– Hand designed
– Machine learning on historical game patterns
– Monte Carlo methods – play random games



Monte Carlo heuristic scoring
• Idea: play out the game randomly, and use the 

results as a score
– Easy to generate & score lots of random games
– May use 1000s of games for a node

• The basis of Monte Carlo tree search algorithms…

Image from www.mcts.ai



Monte Carlo Tree Search

• Should we explore the whole (top of) the tree?
– Some moves are obviously not good…
– Should spend time exploring / scoring promising ones

• This is a multi-armed bandit (MAB) problem:
• Want to spend our time on good moves
• Which moves have high payout?

– Hard to tell – random…

• Explore vs. exploit tradeoff

Image from Microsoft Research



Visualizing MCTS
• At each level of the tree, keep track of

– Number of times we’ve explored a path
– Number of times we won

• Follow winning (from max/min perspective) strategies more 
often, but also explore others 



MCTS
1/1

1/1
MAB strategy

Default / random 
strategy

Terminal state

Score consists of 
(1) % wins
(2) # times tried
(3) # of steps total

UCT:



MCTS
1/2

1/1 0/1
MAB strategy

Default / random 
strategy

Terminal state

Score consists of 
(1) % wins
(2) # times tried
(3) # of steps total

UCT:



MCTS
1/3

1/2 0/1

0/1

MAB strategy

Default / random 
strategy

Terminal state

Score consists of 
(1) % wins
(2) # times tried
(3) # of steps total

UCT:



Summary
• Game playing is best modeled as a search problem

• Game trees represent alternate computer/opponent moves

• Evaluation functions estimate the quality of a given board configuration 
for the Max player. 

• Minimax is a procedure which chooses moves by assuming that the 
opponent will always choose the move which is best for them

• Alpha-Beta is a procedure which can prune large parts of the search tree 
and allow search to go deeper 

• For many well-known games, computer algorithms based on heuristic 
search match or out-perform human world experts.


	Games & Adversarial Search B:�Alpha-Beta Pruning and MCTS
	Alpha-Beta pruning
	Pruning with Alpha/Beta
	Alpha-Beta Example
	Alpha-Beta Example
	Alpha-Beta Example
	Alpha-Beta Example
	Alpha-Beta Example
	Alpha-Beta Example
	Alpha-Beta Example
	Alpha-Beta Example
	General alpha-beta pruning
	Recursive α-β pruning:�R&N Fig. 5.7
	Recursive α-β pruning variant:�Prune when α ≥ β
	Effectiveness of α-β Search
	Iterative deepening
	Comments on alpha-beta pruning
	Iterative deepening reordering
	Iterative deepening reordering
	Iterative deepening reordering
	Iterative deepening reordering
	Iterative deepening reordering
	Iterative deepening reordering
	Iterative deepening reordering
	Iterative deepening reordering
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Longer Alpha-Beta Example
	Alpha-Beta Example #2
	Alpha-Beta Example #2
	Nondeterministic games
	Nondeterministic games
	Pruning in nondeterministic games
	Pruning in nondeterministic games
	Pruning in nondeterministic games
	Pruning in nondeterministic games
	Pruning in nondeterministic games
	Pruning in nondeterministic games
	Pruning in nondeterministic games
	Pruning in nondeterministic games
	Pruning in nondeterministic games
	Partially observable games
	Slide Number 72
	Partially observable games
	The State of Play
	High branching factors
	Monte Carlo heuristic scoring
	Monte Carlo Tree Search
	Visualizing MCTS
	MCTS
	MCTS
	MCTS
	Summary

