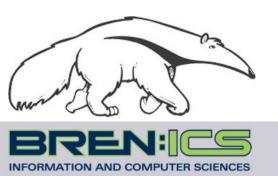
First-Order Logic A: Syntax

Introduction to Artificial Intelligence Prof. Richard Lathrop



Read Beforehand: R&N 8, 9.1-9.2, 9.5.1-9.5.5

Common Sense Reasoning Example, adapted from Lenat

You are told: John drove to the grocery store and bought a pound of noodles, a pound of ground beef, and two pounds of tomatoes.

- Is John 3 years old?
- Is John a child?
- What will John do with the purchases?
- Did John have any money?
- Does John have less money after going to the store?
- Did John buy at least two tomatoes?
- Were the tomatoes made in the supermarket?
- Did John buy any meat?
- Is John a vegetarian?
- Will the tomatoes fit in John's car?
- Can Propositional Logic support these inferences?

Outline for First-Order Logic (FOL, also called FOPC)

- Propositional Logic is **Useful** --- but **Limited Expressive Power**
- First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
 - FOPC has expanded expressive power, though still limited.
- New Ontology
 - The world consists of OBJECTS.
 - OBJECTS have PROPERTIES, RELATIONS, and FUNCTIONS.
- New Syntax
 - Constants, Predicates, Functions, Properties, Quantifiers.
- New Semantics
 - Meaning of new syntax.
- Unification and Inference in FOL
- Knowledge engineering in FOL

FOL Syntax: You will be expected to know

- FOPC syntax
 - Syntax: Sentences, predicate symbols, function symbols, constant symbols, variables, quantifiers
- De Morgan's rules for quantifiers
 - connections between \forall and \exists
- Nested quantifiers
 - Difference between " $\forall x \exists y P(x, y)$ " and " $\exists x \forall y P(x, y)$ "
 - − \forall x \exists y Likes(x, y) --- "Everybody likes somebody."
 - − $\exists x \forall y Likes(x, y) --- "Somebody likes everybody."$
- Translate simple English sentences to FOPC and back
 - \forall x ∃ y Likes(x, y) \Leftrightarrow "Everyone has someone that they like."
 - − $\exists x \forall y \text{ Likes}(x, y) \Leftrightarrow$ "There is someone who likes every person."

Pros and cons of propositional logic

- © Propositional logic is declarative
 - Knowledge and inference are separate
- © Propositional logic allows partial/disjunctive/negated information
 - unlike most programming languages and databases
- © Propositional logic is compositional:
 - meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- ^(C) Meaning in propositional logic is context-independent
 - unlike natural language, where meaning depends on context
- ☺ Propositional logic has limited expressive power
 - E.g., cannot say "Pits cause breezes in adjacent squares."
 - except by writing one sentence for each square
 - Needs to refer to objects in the world,
 - Needs to express general rules

First-Order Logic (FOL), also called First-Order Predicate Calculus (FOPC)

- Propositional logic assumes the world contains facts.
- First-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Functions: father of, best friend, one more than, plus, ...
 - Function arguments are objects; function returns an object
 - Objects generally correspond to English NOUNS
 - Predicates/Relations/Properties: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Predicate arguments are objects; predicate returns a truth value
 - Predicates generally correspond to English VERBS
 - First argument is generally the subject, the second the object
 - Hit(Bill, Ball) usually means "Bill hit the ball."
 - Likes(Bill, IceCream) usually means "Bill likes IceCream."
 - Verb(Noun1, Noun2) usually means "Noun1 verb noun2."

Aside: First-Order Logic (FOL) vs. Second-Order Logic

- First Order Logic (FOL) allows variables and general rules
 - "First order" because quantified variables represent objects.
 - "Predicate Calculus" because it quantifies over predicates on objects.
 - E.g., "Integral Calculus" quantifies over functions on numbers.
- Aside: Second Order logic
 - "Second order" because quantified variables can also represent predicates and functions.
 - E.g., can define "Transitive Relation," which is beyond FOPC.
- Aside: In FOL we can state that a relationship is transitive
 - E.g., BrotherOf is a transitive relationship
 - \forall x, y, z BrotherOf(x,y) \land BrotherOf(y,z) => BrotherOf(x,z)
- Aside: In Second Order logic we can define "Transitive"
 - \forall P, x, y, z Transitive(P) ⇔ (P(x,y) ∧ P(y,z) => P(x,z))
 - Then we can state directly, Transitive(BrotherOf)

Syntax of FOL: Basic elements

- Constants KingJohn, 2, UCI,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Quantifiers \forall, \exists
- Connectives \neg , \land , \lor , \Rightarrow , \Leftrightarrow (standard)
- Equality = (but causes difficulties....)

Syntax of FOL: Basic syntax elements are symbols

- **Constant** Symbols (correspond to English nouns)
 - Stand for objects in the world.
 - E.g., KingJohn, 2, UCI, ...
- Predicate Symbols (correspond to English verbs)
 - Stand for relations (maps a tuple of objects to a truth-value)
 - E.g., Brother(Richard, John), greater_than(3,2), ...
 - P(x, y) is usually read as "x is P of y."
 - E.g., Mother(Ann, Sue) is usually "Ann is Mother of Sue."
- Function Symbols (correspond to English nouns)
 - Stand for functions (maps a tuple of objects to an object)
 - E.g., Sqrt(3), LeftLegOf(John), ...
- **Model** (world) = set of domain objects, relations, functions
- Interpretation maps symbols onto the model (world)
 - Very many interpretations are possible for each KB and world!
 - The KB is to rule out those inconsistent with our knowledge.

Syntax of FOL: Terms

- Term = logical expression that refers to an object
- There are two kinds of terms:
 - **Constant Symbols** stand for (or name) objects:
 - E.g., KingJohn, 2, UCI, Wumpus, ...
 - Function Symbols map tuples of objects to an object:
 - E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
 - This is nothing but a complicated kind of name
 - No "subroutine" call, no "return value"

Syntax of FOL: Atomic Sentences

- Atomic Sentences state facts (logical truth values).
 - An atomic sentence is a Predicate symbol, optionally followed by a parenthesized list of any argument terms
 - E.g., Married(Father(Richard), Mother(John))
 - An atomic sentence asserts that some relationship (some predicate) holds among the objects that are its arguments.
- An Atomic Sentence is true in a given model if the relation referred to by the predicate symbol holds among the objects (terms) referred to by the arguments.

Syntax of FOL: Atomic Sentences

- Atomic sentences in logic state facts that are true or false.
- Properties and *m*-ary relations do just that:

LargerThan(2, 3) is false.

BrotherOf(Mary, Pete) is false.

Married(Father(Richard), Mother(John)) could be true or false.

Properties and *m*-ary relations are Predicates that are true or false.

- Note: Functions refer to objects, do not state facts, and form no sentence:
 - Brother(Pete) refers to John (his brother) and is neither true nor false.
 - Plus(2, 3) refers to the number 5 and is neither true nor false.
- BrotherOf(Pete, Brother(Pete)) is True.

Binary relation is a truth value.

Function refers to John, an object in the world, i.e., John is Pete's brother. (Works well iff John is Pete's only brother.)

Syntax of FOL:

Connectives & Complex Sentences

- **Complex Sentences** are formed in the same way, using the same logical connectives, as in propositional logic
- The Logical Connectives:
 - \Leftrightarrow biconditional
 - \Rightarrow implication
 - \wedge and
 - \vee or
 - \neg negation
- Semantics for these logical connectives are the same as we already know from propositional logic.

Examples

- Brother(Richard, John) \land Brother(John, Richard)
- King(Richard) \vee King(John)
- King(John) => ¬ King(Richard)
- LessThan(Plus(1,2),4) \land GreaterThan(1,2)

(Semantics of complex sentences are the same as in propositional logic)

Syntax of FOL: Variables

- Variables range over objects in the world.
- A variable is like a term because it represents an object.
- A variable may be used wherever a term may be used.
 Variables may be arguments to functions and predicates.
- (A term with NO variables is called a ground term.)
- (A variable not bound by a quantifier is called free.)
 - All variables we will use are bound by a quantifier.

Syntax of FOL: Logical Quantifiers

- There are two Logical Quantifiers:
 - Universal: $\forall x P(x)$ means "For all x, P(x)."
 - The "upside-down A" reminds you of "ALL."
 - Some texts put a comma after the variable: $\forall x, P(x)$
 - **Existential:** $\exists x P(x)$ means "There exists x such that, P(x)."
 - The "backward E" reminds you of "EXISTS."
 - Some texts put a comma after the variable: $\exists x, P(x)$
- You can ALWAYS convert one quantifier to the other.
 - $\forall x P(x) \equiv \neg \exists x \neg P(x)$
 - $\exists x P(x) \equiv \neg \forall x \neg P(x)$
 - RULES: $\forall \equiv \neg \exists \neg$ and $\exists \equiv \neg \forall \neg$
- **RULES:** To move negation "in" across a quantifier,
 - Change the quantifier to "the other quantifier" and negate the predicate on "the other side."

$$- \neg \forall x P(x) \equiv \neg \neg \exists x \neg P(x) \equiv \exists x \neg P(x)$$

 $- \neg \exists x P(x) \equiv \neg \neg \forall x \neg P(x) \equiv \forall x \neg P(x)$

Universal Quantification \forall

- ∀ x means "for all x it is true that..."
- Allows us to make statements about all objects that have certain properties
- Can now state general rules:

∀ x King(x) => Person(x) "All kings are persons."
∀ x, y DaughterOf(x, y) ⇔ ChildOf(x, y) ∧ Female(x) "A daughter is a female child."
∀ x Person(x) => HasHead(x) "Every person has a head."
∀ i Integer(i) => Integer(plus(i,1)) "If i is an integer then i+1 is an integer."

• Note: $\forall x \text{ King}(x) \land \text{Person}(x)$ is not correct!

This would imply that all objects x are Kings and are People (!)

 $\forall x \text{ King}(x) \Rightarrow \text{Person}(x) \text{ is the correct way to say this}$

• Note: => or \Leftrightarrow is the natural connective to use with \forall .

Universal Quantification \forall

- Universal quantification is <u>conceptually</u> equivalent to:
 - Conjunction of all sentences obtained by substitution of an object for the quantified variable.
 - Not a sentence in the logic --- all logic sentences must be finite.
- Example: All Cats are Mammals.
 - \forall x Cat(x) ⇒ Mammal(x)
- Conjunction of all sentences obtained by substitution of an object for the quantified variable:

 $Cat(Spot) \Rightarrow Mammal(Spot) \land$ $Cat(Rebecca) \Rightarrow Mammal(Rebecca) \land$ $Cat(LAX) \Rightarrow Mammal(LAX) \land$ $Cat(Shayama) \Rightarrow Mammal(Shayama) \land$ $Cat(France) \Rightarrow Mammal(France) \land$ $Cat(Felix) \Rightarrow Mammal(Felix) \land$

•••

Existential Quantification \exists

- ∃ x means "there exists an x such that...."
 - There is in the world at least one such object x
- Allows us to make statements about some object without naming it, or even knowing what that object is:
 - $\exists x \text{ King}(x)$ "Some object is a king."
 - ∃ x Lives_in(John, Castle(x)) "John lives in somebody's castle." Or "John lives in something's castle" --- trust, company, foundation may own it
 - \exists i Integer(i) \land Greater(i,0) "Some integer is greater than zero."
- Note: \exists i Integer(i) \Rightarrow Greater(i,0) is not correct!

It is vacuously true if anything in the world were not an integer (!)

 \exists i Integer(i) \land Greater(i,0) is the correct way to say this

• Note that \wedge is the natural connective to use with \exists .

Existential Quantification \exists

- Existential quantification is <u>conceptually</u> equivalent to:
 - Disjunction of all sentences obtained by substitution of an object for the quantified variable.
 - Not a sentence in the logic --- all logic sentences must be finite.
- Spot has a sister who is a cat.
 - − $\exists x \text{ Sister}(x, \text{ Spot}) \land \text{Cat}(x)$
- Disjunction of all sentences obtained by substitution of an object for the quantified variable:

Sister(Spot, Spot) \land Cat(Spot) \lor Sister(Rebecca, Spot) \land Cat(Rebecca) \lor Sister(LAX, Spot) \land Cat(LAX) \lor Sister(Shayama, Spot) \land Cat(Shayama) \lor Sister(France, Spot) \land Cat(France) \lor Sister(Felix, Spot) \land Cat(Felix) \lor

Combining Quantifiers --- Order (Scope)

The order of "unlike" quantifiers is important.

Like nested variable scopes in a programming language. Like nested ANDs and ORs in a logical sentence.

 $\forall x \exists y Loves(x,y)$

- For everyone ("all x") there is someone ("exists y") whom they love.
- There might be a different y for each x (y is inside the scope of x)

 $\exists y \forall x Loves(x,y)$

- There is someone ("exists y") whom everyone loves ("all x").
- Every x loves the same y (x is inside the scope of y)

<u>Clearer with parentheses:</u> \exists y (\forall x Loves(x,y))

The order of "like" quantifiers does not matter.Like nested ANDs and ANDs in a logical sentence $\forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y)$ $\exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)$

Connections between Quantifiers

 Asserting that all x have property P is the same as asserting that does not exist any x that does not have the property P

 $\forall x \text{ Likes}(x, \text{CS-171 class}) \Leftrightarrow \neg \exists x \neg \text{Likes}(x, \text{CS-171 class})$

 Asserting that there exists an x with property P is the same as asserting that not all x do not have the property P

 $\exists x \text{ Likes}(x, \text{IceCream}) \Leftrightarrow \neg \forall x \neg \text{Likes}(x, \text{IceCream})$

In effect:

- \forall is a conjunction over the universe of objects
- \exists is a disjunction over the universe of objects

Thus, DeMorgan's rules can be applied

De Morgan's Law for Quantifiers

De Morgan's Rule	Generalized De Morgan's Rule
$P \land Q \equiv \neg (\neg P \lor \neg Q)$	$\forall x P \equiv \neg \exists x (\neg P)$
$P \lor Q \equiv \neg (\neg P \land \neg Q)$	$\exists x P \equiv \neg \forall x (\neg P)$
$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg \forall x P \equiv \exists x (\neg P)$
$\neg (P \lor Q) \equiv \neg P \land \neg Q$	$\neg \exists x P \equiv \forall x (\neg P)$

<u>AND/OR Rule is simple</u>: if you bring a negation inside a disjunction or a conjunction, always switch between them (\neg OR \rightarrow AND \neg ; \neg AND \rightarrow OR \neg).

QUANTIFIER Rule is similar: if you bring a negation inside a universal or existential, always switch between them $(\neg \exists \rightarrow \forall \neg; \neg \forall \rightarrow \exists \neg)$.

De Morgan's Law for Quantifiers

De Morgan's Rule Generalized De Morgan's Rule

 $P \land Q \equiv \neg (\neg P \lor \neg Q) \qquad \forall x P(x) \equiv \neg \exists x \neg P(x) \\ \exists x P(x) \equiv \neg \forall x \neg P(x) \\ \neg (P \land Q) \equiv (\neg P \lor \neg Q) \qquad \neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg (P \lor Q) \equiv (\neg P \land \neg Q) \qquad \neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x) \\ \neg \forall x P(x) \neg P(x) \\ \neg P(x) \neg P(x) \neg P(x) \\ \neg P(x) \neg P(x) \neg P(x) \neg P(x))$

<u>AND/OR Rule is simple</u>: if you bring a negation inside a disjunction or a conjunction, always switch between them (\neg OR \rightarrow AND \neg ; \neg AND \rightarrow OR \neg).

QUANTIFIER Rule is similar: if you bring a negation inside a universal or existential, always switch between them $(\neg \exists \rightarrow \forall \neg; \neg \forall \rightarrow \exists \neg)$.

Aside: More syntactic sugar --- uniqueness

- ∃! x is "syntactic sugar" for "There exists a unique x"
 - "There exists one and only one x"
 - "There exists exactly one x"
 - Sometimes $\exists !$ is written as \exists^1
- For example, ∃! x PresidentOfTheUSA(x)
 - "There is exactly one PresidentOfTheUSA."
- This is just syntactic sugar:
 - ∃! x P(x) is the same as \exists x P(x) ∧ (\forall y P(y) => (x = y))
 - "Syntactic sugar" = a convenient syntax abbreviation/extension

Equality

- term₁ = term₂ is true under a given interpretation
 if and only if term₁ and term₂ refer to the same object
- E.g., definition of *Sibling* in terms of *Parent*, using = is:

$$\forall x, y \ Sibling(x, y) \Leftrightarrow \\ [\neg(x = y) \land \\ \exists m, f \neg (m = f) \land Parent(m, x) \land Parent(f, x) \\ \land Parent(m, y) \land Parent(f, y)]$$

- Equality can make reasoning much more difficult!
 - (See R&N, section 9.5.5, page 353)
 - You may not know when two objects are equal.
 - E.g., Ancients did not know (MorningStar = EveningStar = Venus)
 - You may have to prove x = y before proceeding
 - E.g., a resolution prover may not know 2+1 is the same as 1+2 or 4–1

Syntactic Ambiguity

- FOPC provides many ways to represent the same thing.
- E.g., "Ball-5 is red."
 - HasColor(Ball-5, Red)
 - Ball-5 and Red are objects related by HasColor.
 - Red(Ball-5)
 - Red is a unary predicate applied to the Ball-5 object.
 - HasProperty(Ball-5, Color, Red)
 - Ball-5, Color, and Red are objects related by HasProperty.
 - ColorOf(Ball-5) = Red
 - Ball-5 and Red are objects, and ColorOf() is a function.
 - HasColor(Ball-5(), Red())
 - Ball-5() and Red() are functions of zero arguments that both return an object, which objects are related by HasColor.
 - ...
- This can GREATLY confuse a pattern-matching reasoner.
 - Especially if multiple people collaborate to build the KB, and they all have different representational conventions.

Syntactic Ambiguity --- Partial Solution

- FOL can be TOO expressive, can offer TOO MANY choices
- Likely confusion, especially for **teams** of Knowledge Engineers
- Different team members can make different representation choices
 - E.g., represent "Ball43 is Red." as:
 - a predicate (= verb)? E.g., "Red(Ball43)"?
 - an object (= noun)? E.g., "Red = Color(Ball43))" ?
 - a property (= adjective)? E.g., "HasProperty(Ball43, Red)" ?
- PARTIAL SOLUTION:
 - An upon-agreed **ontology** that settles these questions
 - Ontology = what exists in the world & how it is represented
 - The Knowledge Engineering teams agrees upon an ontology BEFORE they begin encoding knowledge

Brothers are siblings

Brothers are siblings

 $\forall \, x,y \; Brother(x,y) \; \Rightarrow \; Sibling(x,y).$

"Sibling" is symmetric

Brothers are siblings

 $\forall \, x,y \; Brother(x,y) \, \Rightarrow \, Sibling(x,y).$

"Sibling" is symmetric

 $\forall \, x,y \ Sibling(x,y) \ \Leftrightarrow \ Sibling(y,x).$

One's mother is one's female parent

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall \, x,y \;\; Sibling(x,y) \; \Leftrightarrow \; Sibling(y,x).$

One's mother is one's female parent

 $\forall \, x,y \;\; Mother(x,y) \; \Leftrightarrow \; (Female(x) \wedge Parent(x,y)).$

A first cousin is a child of a parent's sibling

Brothers are siblings

 $\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall \, x,y \;\; Sibling(x,y) \; \Leftrightarrow \; Sibling(y,x).$

One's mother is one's female parent

 $\forall x,y \ Mother(x,y) \ \Leftrightarrow \ (Female(x) \land Parent(x,y)).$

A first cousin is a child of a parent's sibling

 $\begin{array}{lll} \forall x,y \ \ FirstCousin(x,y) \ \Leftrightarrow \ \exists \, p,ps \ \ Parent(p,x) \land Sibling(ps,p) \land Parent(ps,y) \end{array}$

More fun with sentences

- "All persons are mortal."
- [Use: Person(x), Mortal (x)]

More fun with sentences

• "All persons are mortal."

[Use: Person(x), Mortal (x)]

- $\forall x \operatorname{Person}(x) \Rightarrow \operatorname{Mortal}(x)$
- Equivalent Forms:
- $\forall x \neg Person(x) \lor Mortal(x)$
- Common Mistakes:
- ∀x Person(x) ∧ Mortal(x)

More fun with sentences

- "Fifi has a sister who is a cat."
- [Use: Sister(Fifi, x), Cat(x)]
- •

- "Fifi has a sister who is a cat."
- [Use: Sister(Fifi, x), Cat(x)]

• $\exists x \operatorname{Sister}(\operatorname{Fifi}, x) \land \operatorname{Cat}(x)$

- Common Mistakes:
- $\exists x \text{ Sister}(\text{Fifi}, x) \Rightarrow \text{Cat}(x)$

 "For every food, there is a person who eats that food."

[Use: Food(x), Person(y), Eats(y, x)]

• "For every food, there is a person who eats that food."

[Use: Food(x), Person(y), Eats(y, x)]

- $\forall x \exists y Food(x) \Rightarrow [Person(y) \land Eats(y, x)]$
- Equivalent Forms:
- $\forall x \operatorname{Food}(x) \Rightarrow \exists y [\operatorname{Person}(y) \land \operatorname{Eats}(y, x)]$
- $\forall x \exists y \neg Food(x) \lor [Person(y) \land Eats(y, x)]$
- $\forall x \exists y [\neg Food(x) \lor Person(y)] \land [\neg Food(x) \lor Eats(y, x)]$
- $\forall x \exists y [Food(x) \Rightarrow Person(y)] \land [Food(x) \Rightarrow Eats(y, x)]$
- Common Mistakes:
- $\forall x \exists y [Food(x) \land Person(y)] \Rightarrow Eats(y, x)$
- $\forall x \exists y Food(x) \land Person(y) \land Eats(y, x)$

• "Every person eats every food."

[Use: Person (x), Food (y), Eats(x, y)]

• "Every person eats every food."

```
[Use: Person (x), Food (y), Eats(x, y) ]
```

• $\forall x \forall y [Person(x) \land Food(y)] \Longrightarrow Eats(x, y)$

• Equivalent Forms:

- $\forall x \forall y \neg Person(x) \lor \neg Food(y) \lor Eats(x, y)$
- $\forall x \forall y \operatorname{Person}(x) \Rightarrow [\operatorname{Food}(y) \Rightarrow \operatorname{Eats}(x, y)]$
- $\forall x \forall y \operatorname{Person}(x) \Rightarrow [\neg \operatorname{Food}(y) \lor \operatorname{Eats}(x, y)]$
- $\forall x \forall y \neg Person(x) \lor [Food(y) \Longrightarrow Eats(x, y)]$
- Common Mistakes:
- $\forall x \forall y \operatorname{Person}(x) \Rightarrow [\operatorname{Food}(y) \land \operatorname{Eats}(x, y)]$
- $\forall x \forall y \operatorname{Person}(x) \land \operatorname{Food}(y) \land \operatorname{Eats}(x, y)$

• "All greedy kings are evil."

[Use: King(x), Greedy(x), Evil(x)]

• "All greedy kings are evil."

[Use: King(x), Greedy(x), Evil(x)]

- $\forall x [Greedy(x) \land King(x)] \Rightarrow Evil(x)$
- Equivalent Forms:
- $\forall x \neg Greedy(x) \lor \neg King(x) \lor Evil(x)$
- $\forall x \text{ Greedy}(x) \Rightarrow [\text{ King}(x) \Rightarrow \text{Evil}(x)]$
- Common Mistakes:
- $\forall x \text{ Greedy}(x) \land \text{King}(x) \land \text{Evil}(x)$

• "Everyone has a favorite food."

[Use: Person(x), Food(y), Favorite(y, x)]

• "Everyone has a favorite food."

[Use: Person(x), Food(y), Favorite(y, x)]

- Equivalent Forms:
- $\forall x \exists y Person(x) \Rightarrow [Food(y) \land Favorite(y, x)]$
- $\forall x \operatorname{Person}(x) \Rightarrow \exists y [\operatorname{Food}(y) \land \operatorname{Favorite}(y, x)]$
- ∀x ∃y ¬Person(x) ∨ [Food(y) ∧ Favorite(y, x)]
- $\forall x \exists y [\neg Person(x) \lor Food(y)] \land [\neg Person(x)$

```
∨ Favorite(y, x) ]
```

- $\forall x \exists y [Person(x) \Rightarrow Food(y)] \land [Person(x) \Rightarrow Favorite(y, x)]$
- Common Mistakes:
- $\forall x \exists y [Person(x) \land Food(y)] \Rightarrow Favorite(y, x)$
- ∀x ∃y Person(x) ∧ Food(y) ∧ Favorite(y, x)

• "There is someone at UCI who is smart."

[Use: Person(x), At(x, UCI), Smart(x)]

• **"There is someone at UCI who is smart."** [Use: Person(x), At(x, UCI), Smart(x)]

• $\exists x \operatorname{Person}(x) \land \operatorname{At}(x, \operatorname{UCI}) \land \operatorname{Smart}(x)$

- Common Mistakes:
- $\exists x [Person(x) \land At(x, UCI)] \Rightarrow Smart(x)$

• "Everyone at UCI is smart."

[Use: Person(x), At(x, UCI), Smart(x)]

• "Everyone at UCI is smart."

[Use: Person(x), At(x, UCI), Smart(x)]

- $\forall x [Person(x) \land At(x, UCI)] \Rightarrow Smart(x)$
- Equivalent Forms:
- ∀x ¬[Person(x) ∧ At(x, UCI)] ∨ Smart(x)
- $\forall x \neg Person(x) \lor \neg At(x, UCI) \lor Smart(x)$
- Common Mistakes:
- $\forall x \operatorname{Person}(x) \land \operatorname{At}(x, \operatorname{UCI}) \land \operatorname{Smart}(x)$
- $\forall x \operatorname{Person}(x) \Longrightarrow [\operatorname{At}(x, \operatorname{UCI}) \land \operatorname{Smart}(x)]$
- •

• "Every person eats some food."

[Use: Person (x), Food (y), Eats(x, y)]

• "Every person eats some food."

[Use: Person (x), Food (y), Eats(x, y)]

- $\forall x \exists y \operatorname{Person}(x) \Longrightarrow [\operatorname{Food}(y) \land \operatorname{Eats}(x, y)]$
- •
- Equivalent Forms:
- $\forall x \operatorname{Person}(x) \Rightarrow \exists y [\operatorname{Food}(y) \land \operatorname{Eats}(x, y)]$
- $\forall x \exists y \neg Person(x) \lor [Food(y) \land Eats(x, y)]$
- $\forall x \exists y [\neg Person(x) \lor Food(y)] \land [\neg Person(x) \lor Eats(x, y)]$
- Common Mistakes:
- $\forall x \exists y [Person(x) \land Food(y)] \Rightarrow Eats(x, y)$
- $\forall x \exists y \operatorname{Person}(x) \land \operatorname{Food}(y) \land \operatorname{Eats}(x, y)$
- •

• "Some person eats some food."

[Use: Person (x), Food (y), Eats(x, y)]

"Some person eats some food."
 [Use: Person (x), Food (y), Eats(x, y)]

■ ∃x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y)

- Common Mistakes:
- $\exists x \exists y [Person(x) \land Food(y)] \Longrightarrow Eats(x, y)$

Summary

- First-order logic:
 - Much more expressive than propositional logic
 - Allows objects and relations as semantic primitives
 - Universal and existential quantifiers
- Syntax: constants, functions, predicates, equality, quantifiers
- Nested quantifiers
 - Order of unlike quantifiers matters (the outer scopes the inner)
 - Like nested ANDs and ORs
 - Order of like quantifiers does not matter
 - like nested ANDS and ANDs
- Translate simple English sentences to FOPC and back