
Introduction to
Artificial Intelligence

CS171, Spring Quarter, 2020
Introduction to Artificial Intelligence

Prof. Richard Lathrop

Read Beforehand: All assigned reading so far

Final Review

• Bayesian Networks: R&N Chap 14.1-14.5
• Game Search: R&N Chap 5.1-5.4
• Constraint Satisfaction: R&N Chap 6.1-6.4,

except 6.3.3
• Machine Learning: R&N Chap 18.1-18.12, 20.2

Review Bayesian Networks
Chapter 14.1-5

• Basic concepts and vocabulary of Bayesian networks.
– Nodes represent random variables.
– Directed arcs represent (informally) direct influences.
– Conditional probability tables, P(Xi | Parents(Xi)).

• Given a Bayesian network:
– Write down the full joint distribution it represents.

• Given a full joint distribution in factored form:
– Draw the Bayesian network that represents it.

• Given a variable ordering and background assertions of conditional
independence among the variables:
– Write down the factored form of the full joint distribution, as simplified by the

conditional independence assertions.
• Use the network to find answers to probability questions about it.

Bayesian Networks
• Represent dependence/independence via a directed graph

– Nodes = random variables
– Edges = direct dependence

• Structure of the graph  Conditional independence

• Recall the chain rule of repeated conditioning:

• Requires that graph is acyclic (no directed cycles)
• 2 components to a Bayesian network

– The graph structure (conditional independence assumptions)
– The numerical probabilities (of each variable given its parents)

The full joint distribution The graph-structured approximation

• A Bayesian network specifies a joint distribution in a structured form:

• Dependence/independence represented via a directed graph:
− Node = random variable
− Directed Edge = conditional dependence
− Absence of Edge = conditional independence

•Allows concise view of joint distribution relationships:
− Graph nodes and edges show conditional relationships between variables.
− Tables provide probability data.

Bayesian Network

A B

C

p(A,B,C) = p(C|A,B)p(A|B)p(B)
= p(C|A,B)p(A)p(B)

Full factorization

After applying
conditional
independence
from the graph

Burglar Alarm Example
• Consider the following 5 binary variables:

– B = a burglary occurs at your house
– E = an earthquake occurs at your house
– A = the alarm goes off
– J = John calls to report the alarm
– M = Mary calls to report the alarm

• Sample Query: What is P(B|M, J) ?
• Using full joint distribution to answer this question requires

– 25 - 1= 31 parameters

• Can we use prior domain knowledge to come up with a
Bayesian network that requires fewer probabilities?

The Resulting Bayesian Network

Example of Answering a Simple Query

• What is P(¬j, m, a, ¬e, b) = P(J = false ∧ M=true ∧ A=true ∧ E=false ∧ B=true)

P(J, M, A, E, B) ≈ P(J | A) P(M | A) P(A| E, B) P(E) P(B) ; by conditional independence

P(¬j, m, a, ¬e, b) ≈ P(¬j | a) P(m | a) P(a| ¬e, b) P(¬e) P(b)
= 0.10 x 0.70 x 0.94 x 0.998 x 0.001 ≈ .0000657

EarthquakeBurglary

Alarm

John Mary

B E P(A|B,E)

1 1 0.95

1 0 0.94

0 1 0.29

0 0 0.001

P(B)

0.001
P(E)

0.002

A P(J|A)

1 0.90

0 0.05
A P(M|A)

1 0.70

0 0.01

Given a graph, can we “read off”
conditional independencies?

The “Markov Blanket” of X
(the gray area in the figure)

X is conditionally independent of
everything else, GIVEN the
values of:

* X’s parents
* X’s children
* X’s children’s parents

X is conditionally independent of
its non-descendants, GIVEN the
values of its parents.

Summary

• Bayesian networks represent a joint distribution using a graph

• The graph encodes a set of conditional independence assumptions

• Answering queries (or inference or reasoning) in a Bayesian network
amounts to computation of appropriate conditional probabilities

• Probabilistic inference is intractable in the general case
– Can be done in linear time for certain classes of Bayesian networks (polytrees:

at most one directed path between any two nodes)
– Usually faster and easier than manipulating the full joint distribution

Review Adversarial (Game) Search
Chapter 5.1-5.4

• Minimax Search with Perfect Decisions (5.2)
– Impractical in most cases, but theoretical basis for analysis

• Minimax Search with Cut-off (5.4)
– Replace terminal leaf utility by heuristic evaluation

function
• Alpha-Beta Pruning (5.3)

– The fact of the adversary leads to an advantage in search!
• Practical Considerations (5.4)

– Redundant path elimination, look-up tables, etc.

Games as Search
• Two players: MAX and MIN
• MAX moves first and they take turns until the game is over

– Winner gets reward, loser gets penalty.
– “Zero sum” means the sum of the reward and the penalty is a constant.

• Formal definition as a search problem:
– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess.
– Player(s): Defines which player has the move in a state.
– Actions(s): Returns the set of legal moves in a state.
– Result(s,a): Transition model defines the result of a move.
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.)
– Terminal-Test(s): Is the game finished? True if finished, false otherwise.
– Utility function(s,p): Gives numerical value of terminal state s for player p.

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe.
• E.g., win (+1), lose (0), and draw (1/2) in chess.

• MAX uses search tree to determine “best” next move.

An optimal procedure:
The Min-Max method

Will find the optimal strategy and best next move for Max:

• 1. Generate the whole game tree, down to the leaves.

• 2. Apply utility (payoff) function to each leaf.

• 3. Back-up values from leaves through branch nodes:
– a Max node computes the Max of its child values
– a Min node computes the Min of its child values

• 4. At root: choose move leading to the child of highest value.

Two-ply Game Tree

MIN

MAX

3 12 8 2 4 6 14 5 2

3 2 2

3The minimax decision

Minimax maximizes the utility of the worst-case outcome for MAX

Pseudocode for Minimax
Algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a))

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ← +∞
for a in ACTIONS(state) do

v ← MIN(v,MAX-VALUE(Result(state,a)))
return v

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ← −∞
for a in ACTIONS(state) do

v ← MAX(v,MIN-VALUE(Result(state,a)))
return v

Properties of minimax
• Complete?

– Yes (if tree is finite).

• Optimal?
– Yes (against an optimal opponent).
– Can it be beaten by an opponent playing sub-optimally?

• No. (Why not?)

• Time complexity?
– O(bm)

• Space complexity?
– O(bm) (depth-first search, generate all actions at once)
– O(m) (backtracking search, generate actions one at a time)

Static (Heuristic) Evaluation Functions

• An Evaluation Function:
– Estimates how good the current board configuration is for a player.
– Typically, evaluate how good it is for the player, how good it is for

the opponent, then subtract the opponent’s score from the
player’s.

– Othello: Number of white pieces - Number of black pieces
– Chess: Value of all white pieces - Value of all black pieces

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

• If the board evaluation is X for a player, it’s -X for the opponent
– “Zero-sum game”

General alpha-beta pruning
• Consider a node n in the tree ---

• If player has a better choice at:
– Parent node of n
– Or any choice point further

up

• Then n will never be reached in
play.

• Hence, when that much is
known about n, it can be
pruned.

Alpha-beta Algorithm
• Depth first search

– only considers nodes along a single path from root at any time

α = highest-value choice found at any choice point of path for MAX
(initially, α = −infinity)

β = lowest-value choice found at any choice point of path for MIN
(initially, β = +infinity)

• Pass current values of α and β down to child nodes during search.
• Update values of α and β during search:

– MAX updates α at MAX nodes
– MIN updates β at MIN nodes

• Prune remaining branches at a node when α ≥ β

Recursive α-β pruning:
R&N Fig. 5.7

Simple stub to call recursion functions
Initialize alpha, beta; get best value
Score each action; return best action

If Cutoff reached, return Eval heuristic
Otherwise, find our best child:
If our options become too good, our min

ancestor will never let us come this way,
so prune now & return best value so far

Finally, return the best value we found

If Cutoff reached, return Eval heuristic
Otherwise, find our worst child:
If our options become too bad, our max

ancestor will never let us come this way,
so prune now & return worst value so far

Finally, return the worst value we found

Recursive α-β pruning variant:
Prune when α ≥ β

This variant has a conceptually simpler pruning rule (α ≥ β), but when
pruning occurs it makes one extra call to MAX(). Both variants yield the
same pruning behavior, and both are considered correct on tests.

When to Prune?

• Prune whenever α ≥ β.
– Prune below a Max node whose alpha value becomes greater than or

equal to the beta value of its ancestors.
• Max nodes update alpha based on children’s returned values.

– Prune below a Min node whose beta value becomes less than or equal
to the alpha value of its ancestors.

• Min nodes update beta based on children’s returned values.

α/β Pruning vs. Returned Node Value

• Some students are confused about the use of
α/β pruning vs. the returned value of a node

• α/β are used ONLY FOR PRUNING
– α/β have no effect on anything other than pruning
– IF (α >= β) THEN prune & return current node value

• Returned node value = “best” child seen so far
– Maximum child value seen so far for MAX nodes
– Minimum child value seen so far for MIN nodes
– If you prune, return to parent “best” child so far

• Returned node value is received by parent

Alpha-Beta Example

Max calculates the same
node value, and makes the
same move!

2

Review Detailed Example of Alpha-Beta
Pruning in lecture slides.

Review Constraint Satisfaction
R&N 6.1-6.4 (except 6.3.3)

• What is a CSP?

• Backtracking search for CSPs
• Choose a variable, then choose an order for values
• Minimum Remaining Values (MRV), Degree

Heuristic (DH), Least Constraining Value (LCV)

• Constraint propagation
• Forward Checking (FC), Arc Consistency (AC-3)

• Local search for CSPs
• Min-conflicts heuristic

Constraint Satisfaction Problems
• What is a CSP?

– Finite set of variables, X1, X2, …, Xn

– Nonempty domain of possible values for each: D1, ..., Dn

– Finite set of constraints, C1, ..., Cm
• Each constraint Ci limits the values that variables can take, e.g., X1 ≠ X2

– Each constraint Ci is a pair: Ci = (scope, relation)
• Scope = tuple of variables that participate in the constraint
• Relation = list of allowed combinations of variables

May be an explicit list of allowed combinations
May be an abstract relation allowing membership testing & listing

• CSP benefits
– Standard representation pattern
– Generic goal and successor functions
– Generic heuristics (no domain-specific expertise required)

CSPs --- what is a solution?

• A state is an assignment of values to some variables.
– Complete assignment

• = every variable has a value.
– Partial assignment

• = some variables have no values.
– Consistent assignment

• = assignment does not violate any constraints

• A solution is a complete and consistent assignment.

CSP example: map coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di={red,green,blue}
• Constraints: Adjacent regions must have

different colors, e.g., WA ≠ NT.

(WA)

(NT)

(SA)

(Q)

(NSW)
(V)
(T)

Example: Map coloring solution
All variables assigned, all constraints satisfied.

(WA)

(NT)

(SA)

(Q)

(NSW)

(V)

(T)

Example: Map Coloring
• Constraint graph

– Vertices: variables
– Edges: constraints

(connect involved variables)

• Graphical model
– Abstracts the problem to a canonical form
– Can reason about problem through graph connectivity
– Ex: Tasmania can be solved independently (more later)

• Binary CSP
– Constraints involve at most two variables
– Sometimes called “pairwise”

Backtracking search
• Similar to depth-first search

– At each level, pick a single variable to expand
– Iterate over the domain values of that variable

• Generate children one at a time,
– One child per value
– Backtrack when no legal values left

• Uninformed algorithm
– Poor general performance

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment
result ← RRECURSIVE-BACTRACKING(assignment, csp)
if result ≠ failure then return result
remove {var=value} from assignment

return failure

Backtracking search (Figure 6.5)

Minimum remaining values
(MRV)

var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

• A.k.a. most constrained variable heuristic

• Heuristic Rule: choose variable with the fewest legal moves
– e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial
variable

• Heuristic Rule: select variable that is involved in the largest number of constraints on
other unassigned variables.

• Degree heuristic can be useful as a tie breaker.

• In what order should a variable’s values be tried?

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment
result ← RRECURSIVE-BACTRACKING(assignment, csp)
if result ≠ failure then return result
remove {var=value} from assignment

return failure

Backtracking search (Figure 6.5)

Least constraining value for
value-ordering

• Least constraining value heuristic

• Heuristic Rule: given a variable choose the least constraining value
– leaves the maximum flexibility for subsequent variable assignments

Look-ahead: Constraint propagation
• Intuition:

– Some domains have values that are inconsistent with
the values in some other domains

– Propagate constraints to remove inconsistent values
– Thereby reduce future branching factors

• Forward checking
– Check each unassigned neighbor in constraint graph

• Arc consistency (AC-3 in R&N)
– Full arc-consistency everywhere until quiescence
– Can run as a preprocessor

• Remove obvious inconsistencies
– Can run after each step of backtracking search

• Maintaining Arc Consistency (MAC)
40

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– ONLY check neighbors of most recently assigned variable

41

42

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– ONLY check neighbors of most recently assigned variable

Assign {WA = red}
Effect on other variables (neighbors of WA):

• NT can no longer be red
• SA can no longer be red

Red

Not red

Not red

43

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– Check neighbors of most recently assigned variable

Assign {Q = green}
Effect on other variables (neighbors of Q):

• NT can no longer be green
• SA can no longer be green
• NSW can no longer be green

Red

Not red
Not green

Green

Not red
Not green

Not green

(We already have failure, but FC
is too simple to detect it now)

44

Forward checking
• Idea:

– Keep track of remaining legal values for unassigned variables
– Backtrack when any variable has no legal values
– Check neighbors of most recently assigned variable

Forward checking has detected that this partial assignment is inconsistent
with any complete assignment

Assign {V = blue}
Effect on other variables (neighbors of V):

• NSW can no longer be blue
• SA can no longer be blue (no values possible!)

Red

Not red
Not green

Green

Not red
Not green
Not blue

Not green

Not blue
Blue

Arc consistency (AC-3) algorithm
• An Arc X → Y is consistent iff for every value x of X

there is some value y of Y that is consistent with x
• Put all arcs X → Y on a queue

– Each undirected constraint graph arc is two directed arcs
– Undirected X Y becomes directed X → Y and Y → X
– X → Y and Y → X both go on queue, separately

• Pop one arc X → Y and remove any inconsistent
values from X

• If any change in X, put all arcs Z → X back on queue,
where Z is any neighbor of X that is not equal to Y

• Continue until queue is empty

46

Arc consistency (AC-3)
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff (iff = if and only if)

for every value x of X there is some allowed value y for Y (note: directed!)

• Consider state after WA=red, Q=green
– SA → NSW is consistent because

SA = blue and NSW = red satisfies all constraints on SA and NSW

47

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff

for every value x of X there is some allowed value y for Y (note: directed!)

• Consider state after WA=red, Q=green
– NSW → SA consistent if

NSW = red and SA = blue
NSW = blue and SA = ??? => NSW = blue can be pruned

No current domain value for SA is consistent

If X loses a value,
neighbors of X need to
be rechecked

48

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff

for every value x of X there is some allowed value y for Y (note: directed!)

• Enforce arc consistency:
– arc can be made consistent by removing blue from NSW

• Continue to propagate constraints:
– Check V → NSW : not consistent for V = red; remove red from V

49

Arc consistency
• Simplest form of propagation makes each arc consistent
• X → Y is consistent iff

for every value x of X there is some allowed value y for Y (note: directed!)

• Continue to propagate constraints
• SA → NT not consistent:

– And cannot be made consistent! Failure!

• Arc consistency detects failure earlier than FC
– But requires more computation: is it worth the effort?

Local search: min-conflicts heuristic
• Use complete-state representation

– Initial state = all variables assigned values
– Successor states = change 1 (or more) values

• For CSPs
– allow states with unsatisfied constraints (unlike backtracking)
– operators reassign variable values
– hill-climbing with n-queens is an example

• Variable selection: randomly select any conflicted variable
• Value selection: min-conflicts heuristic

– Select new value that results in a minimum number of conflicts with
the other variables

Local search: min-conflicts heuristic
function MIN-CONFLICTS(csp, max_steps) return solution or failure

inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current ← a (random) initial complete assignment for csp
for i = 1 to max_steps do

if current is a solution for csp then return current
var ← a randomly chosen, conflicted variable from

VARIABLES[csp]
value ← the value v for var that minimize

CONFLICTS(var,v,current,csp)
set var = value in current

return failure

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

Summary
• CSPs

– special kind of problem: states defined by values of a fixed set of variables,
goal test defined by constraints on variable values

• Backtracking = depth-first search, one variable assigned per node

• Heuristics: variable order & value selection heuristics help a lot

• Constraint propagation
– does additional work to constrain values and detect inconsistencies
– Works effectively when combined with heuristics

• Iterative min-conflicts is often effective in practice.

• Graph structure of CSPs determines problem complexity
– e.g., tree structured CSPs can be solved in linear time.

Review Intro Machine Learning
Chapter 18.1-18.4

• Understand Attributes, Target Variable, Error (loss) function,
Classification & Regression, Hypothesis (Predictor) function

• What is Supervised Learning?
• Decision Tree Algorithm
• Entropy & Information Gain
• Tradeoff between train and test with model complexity
• Cross validation

• Use supervised learning – training data is given
with correct output

• We write program to reproduce this output with
new test data

• Eg : face detection
• Classification : face detection, spam email
• Regression : Netflix guesses how much you will

rate the movie

Supervised Learning

Classification Graph Regression Graph

Terminology

• Attributes
– Also known as features, variables, independent

variables, covariates

• Target Variable
– Also known as goal predicate, dependent variable, …

• Classification
– Also known as discrimination, supervised

classification, …

• Error function
– Also known as objective function, loss function, …

Inductive or Supervised learning
• Let x = input vector of attributes (feature vectors)

• Let f(x) = target label
– The implicit mapping from x to f(x) is unknown to us
– We only have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f(x)
• Our hypothesis function is h(x, θ)
• h(x, θ) ≈ f(x) for all training data points x
• θ are the parameters of our predictor function h

• Examples:
– h(x, θ) = sign(θ1x1 + θ 2x2+ θ 3) (perceptron)
– h(x, θ) = θ0 + θ1x1 + θ2x2 (regression)

– ℎ𝑘𝑘(𝑥𝑥) = (𝑥𝑥1 ∧ 𝑥𝑥2) ∨ (𝑥𝑥3 ∧ ¬𝑥𝑥4)

Empirical Error Functions
• E(h) = Σx distance[h(x, θ) , f(x)]
Sum is over all training pairs in the training data D

Examples:
distance = squared error if h and f are real-valued

(regression)
distance = delta-function if h and f are categorical

(classification)

In learning, we get to choose

1. what class of functions h(..) we want to learn
– potentially a huge space! (“hypothesis space”)

2. what error function/distance we want to use
- should be chosen to reflect real “loss” in problem
- but often chosen for mathematical/algorithmic

convenience

Decision Tree Representations
•Decision trees are fully expressive

–Can represent any Boolean function (in DNF)
–Every path in the tree could represent 1 row in the truth table
–Might yield an exponentially large tree

•Truth table is of size 2d, where d is the number of attributes

A xor B = (¬ A ∧ B) ∨ (A ∧ ¬ B) in DNF

Decision Tree Representations

• Decision trees are DNF representations
– often used in practice  often result in compact approximate

representations for complex functions
– E.g., consider a truth table where most of the variables are irrelevant to the

function

– Simple DNF formulae can be easily represented
• E.g., 𝑓𝑓 = (𝐴𝐴 ∧ 𝐵𝐵) ∨ (¬𝐴𝐴 ∧ 𝐷𝐷)
• DNF = disjunction of conjunctions

• Trees can be very inefficient for certain types of functions
– Parity function: 1 only if an even number of 1’s in the input vector

•Trees are very inefficient at representing such functions
– Majority function: 1 if more than ½ the inputs are 1’s

•Also inefficient

Pseudocode for Decision tree learning

Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

• Patrons? is a better choice
– How can we quantify this?
– One approach would be to use the classification error E directly (greedily)

• Empirically it is found that this works poorly
– Much better is to use information gain (next slides)
– Other metrics are also used, e.g., Gini impurity, variance reduction

– Often very similar results to information gain in practice

Entropy and Information
• “Entropy” is a measure of randomness

= amount of disorder

https://www.youtube.com/watch?v=ZsY4WcQOrfk

Low
Entropy

High
Entropy

Entropy, H(p), with only 2 outcomes

Consider 2 class problem:
p = probability of class #1,
1 – p = probability of class #2

In binary case:
H(p) = − p log p − (1−p) log (1−p)

H(p)

0.5 10

1

p

high entropy,
high disorder,
high uncertainty

Low entropy, low disorder, low uncertainty

Entropy and Information

• Entropy H(X) = E[log 1/P(X)] = ∑ x∈X P(x) log 1/P(x)
= −∑ x∈X P(x) log P(x)

– Log base two, units of entropy are “bits”

– If only two outcomes: H(p) = − p log(p) − (1−p) log(1−p)
• Examples:

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 +
.25 log 4 + .25 log 4

= log 4 = 2 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4
= 0.8133 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1
= 0 bits

Max entropy for 4 outcomes Min entropy

Information Gain
• H(P) = current entropy of class distribution P at a particular node,

before further partitioning the data

• H(P | A) = conditional entropy given attribute A
= weighted average entropy of conditional class distribution,
after partitioning the data according to the values in A

• Gain(A) = H(P) – H(P | A)
– Sometimes written IG(A) = InformationGain(A)

• Simple rule in decision tree learning
– At each internal node, split on the node with the largest information gain

[or equivalently, with smallest H(P|A)]

• Note that by definition, conditional entropy can’t be greater than the
entropy, so Information Gain must be non-negative

Choosing an attribute

IG(Patrons) = 0.541 bits IG(Type) = 0 bits

Example of Test Performance

Restaurant problem
- simulate 100 data sets of different sizes
- train on this data, and assess performance on an independent test set
- learning curve = plotting accuracy as a function of training set size
- typical “diminishing returns” effect (some nice theory to explain this)

Overfitting and Underfitting

X

Y

A Complex Model

X

Y

Y = high-order polynomial in X

A Much Simpler Model

X

Y

Y = a X + b + noise

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

OverfittingUnderfitting

Too-Simple Models Too-Complex Models

Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each
model on the
“training data”

and then test
each model’s
accuracy on
the validation data

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

Validation
Data

1st partition 2nd partition

3rd partition 4th partition 5th partition

The k-fold Cross-Validation Method

• Why just choose one particular 90/10 “split” of the data?
– In principle we could do this multiple times

• “k-fold Cross-Validation” (e.g., k=10)
– randomly partition our full data set into k disjoint subsets (each

roughly of size n/k, n = total number of training data points)
•for i = 1:10 (here k = 10)

–train on 90% of data,
–Acc(i) = accuracy on other 10%

•end

•Cross-Validation-Accuracy = 1/k Σi Acc(i)
– choose the method with the highest cross-validation accuracy
– common values for k are 5 and 10
– Can also do “leave-one-out” where k = n

You will be expected to know

 Understand Attributes, Error function, Classification,
Regression, Hypothesis (Predictor function)

 What is Supervised Learning?

 Decision Tree Algorithm

 Entropy

 Information Gain

 Tradeoff between train and test with model complexity

 Cross validation

Review Machine Learning Classifiers
Chapters 18.5-18.12; 20.2.2

• Decision Regions and Decision Boundaries

• Classifiers:
• Decision trees
• K-nearest neighbors
• Perceptrons
• Support vector Machines (SVMs), Neural

Networks
• Naïve Bayes

A Different View on Data
Representation

• Data pairs can be plotted in
“feature space”

• Each axis represents one
feature.
– This is a d dimensional space,

where d is the number of
features.

• Each data case corresponds
to one point in the space.
– In this figure we use color to

represent their class label.

Decision Boundaries
Can we find a boundary that separates the two classes?

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Decision
Boundary Decision

Region 1

Decision
Region 2

Classification in Euclidean Space
• A classifier is a partition of the feature space into

disjoint decision regions
– Each region has a label attached
– Regions with the same label need not be contiguous
– For a new test point, find what decision region it is in, and

predict the corresponding label

• Decision boundaries = boundaries between decision
regions
– The “dual representation” of decision regions

• Learning a classifier  searching for the decision
boundaries that optimize our objective function

Decision Tree Example

t1t3

t2

Income

Debt
Income > t1

Debt > t2

Income > t3
Note: tree boundaries are
linear and axis-parallel

A Simple Classifier:
Minimum Distance Classifier

• Training
– Separate training vectors by class
– Compute the mean for each class, µk, k = 1,… m

• Prediction
– Compute the closest mean to a test vector x’ (using Euclidean

distance)
– Predict the corresponding class

• In the 2-class case, the decision boundary is defined by the
locus of the hyperplane that is halfway between the 2 means
and is orthogonal to the line connecting them

• This is a very simple-minded classifier – easy to think of cases
where it will not work very well

Minimum Distance Classifier

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Another Example: Nearest Neighbor Classifier

• The nearest-neighbor classifier
– Given a test point x’, compute the distance between x’ and each

input data point
– Find the closest neighbor in the training data
– Assign x’ the class label of this neighbor
– (sort of generalizes minimum distance classifier to exemplars)

• The nearest neighbor classifier results in piecewise linear
decision boundaries

Image Courtesy: http://scott.fortmann-roe.com/docs/BiasVariance.html

Overall Boundary = Piecewise Linear

1

1

1

2

2

2

Feature 1

Feature 2

?

Decision Region
for Class 1

Decision Region
for Class 2

Larger K ⟹ Smoother boundary

Linear Classifiers

• Linear classifiers classification decision based on the
value of a linear combination of the characteristics.
– Linear decision boundary (single boundary for 2-class case)

• We can always represent a linear decision boundary by a
linear equation:

• The wi are weights; the xi are feature values

Linear Classifiers

• This equation defines a hyperplane in d dimensions

– A hyperplane is a subspace whose dimension is one less than that of its
ambient space.

– If a space is 3-dimensional, its hyperplanes are the 2-dimensional planes;
– if a space is 2-dimensional, its hyperplanes are the 1-dimensional lines.

Linear Classifiers

• For prediction we simply see if
for new data x.

– If so, predict x to be positive
– If not, predict x to be negative

• Learning consists of searching in the d-dimensional
weight space for the set of weights (the linear boundary)
that minimizes an error measure

• A threshold can be introduced by a “dummy” feature
– The feature value is always 1.0
– Its weight corresponds to (the negative of) the threshold

• Note that a minimum distance classifier is a special case
of a linear classifier

The Perceptron Classifier
(pages 729-731 in text)

Input
Attributes
(Features)

Weights
For Input
Attributes

Bias or
Threshold

Transfer
Function

Output

Θ

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-
neural-networks-d7834f67a4f6

Two different types of perceptron output

o(f)

f

x-axis below is f(x) = f = weighted sum of inputs
y-axis is the perceptron output

σ(f)

Thresholded output,
takes values +1 or -1

Sigmoid output, takes
real values between -1 and +1

The sigmoid is in effect an approximation
to the threshold function above, but
has a gradient that we can use for learning

f

Sigmoid function is defined as
σ[f] = [2 / (1 + exp[- f])] - 1

Multi-Layer Perceptrons
(Artificial Neural Networks)

(sections 18.7.3-18.7.4 in textbook)

• What if we took K perceptrons and trained them in parallel and then took
a weighted sum of their sigmoidal outputs?
– This is a multi-layer neural network with a single “hidden” layer (the outputs

of the first set of perceptrons) What if we hooked them up into a general
Directed Acyclic Graph?

– Can create simple “neural circuits” (but no feedback; not fully general)
– Often called neural networks with hidden units

• How would we train such a model?
– Backpropagation algorithm = clever way to do gradient descent
– Bad news: many local minima and many parameters

• training is hard and slow

– Good news: can learn general non-linear decision boundaries
– Generated much excitement in AI in the late 1980’s and 1990’s
– New current excitement with very large “deep learning” networks

Multi-Layer Perceptrons
(Artificial Neural Networks)

(sections 18.7.3-18.7.4 in textbook)

Which decision boundary is “better”?
• Both have zero training error (perfect

training accuracy).
• But one seems intuitively better, more

robust to error

Support Vector Machines (SVM): “Modern perceptrons”
(section 18.9, R&N)

• A modern linear separator classifier
– Essentially, a perceptron with a few extra wrinkles

• Constructs a “maximum margin separator”
– A linear decision boundary with the largest possible distance from the

decision boundary to the example points it separates
– “Margin” = Distance from decision boundary to closest example
– The “maximum margin” helps SVMs to generalize well

• Can embed the data in a non-linear higher dimension space
– Constructs a linear separating hyperplane in that space

• This can be a non-linear boundary in the original space
– Algorithmic advantages and simplicity of linear classifiers
– Representational advantages of non-linear decision boundaries

• Currently most popular “off-the shelf” supervised classifier.

Constructs a “maximum margin separator”

Can embed the data in a non-linear higher
dimension space

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about
computing the probability of a class from input attributes of an example.

Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally
equivalent expression that involves only P(C) and P(X1,…Xn | C).
Then assume that feature values are conditionally independent given class,
which allows us to turn P(X1,…Xn | C) into Πi P(Xi | C).

P(C | X1,…Xn) = P(C) P(X1,…Xn | C) / P(X1,…Xn) ∝ P(C) Πi P(Xi | C)

We estimate P(C) easily from the frequency with which each class appears
within our training data, and we estimate P(Xi | C) easily from the frequency
with which each Xi appears in each class C within our training data.

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

By Bayes Rule: P(C | X1,…Xn) is proportional to P (C) Πi P(Xi | C)
[note: denominator P(X1,…Xn) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C
• choose the class value ci with the highest P(ci | x1,…, xn)
• simple to implement, often works very well
• e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(Xi | C) can easily be estimated from labeled date
• Problem: Need to avoid zeroes, e.g., from limited training data
• Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Naïve Bayes Model (2)

P(C | X1,…Xn) ≈ α Π P(Xi | C) P (C)

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

P(C = cj) ≈ #(Examples with class label cj) / #(Examples)

P(Xi = xik | C = cj)
≈ #(Examples with Xi value xik and class label cj)

/ #(Examples with class label cj)

Usually easiest to work with logs
log [P(C | X1,…Xn)]

= log α + Σ [log P(Xi | C) + log P (C)]

DANGER: Suppose ZERO examples with Xi value xik and class label cj ?
An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Final Review

• Bayesian Networks: R&N Chap 14.1-14.5
• Game Search: R&N Chap 5.1-5.4
• Constraint Satisfaction: R&N Chap 6.1-6.4,

except 6.3.3
• Machine Learning: R&N Chap 18.1-18.12, 20.2

GOOD LUCK!

	Introduction to �Artificial Intelligence
	Final Review
	Review Bayesian Networks�Chapter 14.1-5
	Bayesian Networks
	Bayesian Network
	Burglar Alarm Example
	The Resulting Bayesian Network
	Example of Answering a Simple Query
	Given a graph, can we “read off” conditional independencies?
	Summary
	Review Adversarial (Game) Search�Chapter 5.1-5.4
	Games as Search
	An optimal procedure:�The Min-Max method
	Two-ply Game Tree
	Pseudocode for Minimax Algorithm
	Properties of minimax
	Slide Number 17
	Static (Heuristic) Evaluation Functions
	Slide Number 19
	General alpha-beta pruning
	Alpha-beta Algorithm
	Recursive α-β pruning:�R&N Fig. 5.7
	Recursive α-β pruning variant:�Prune when α ≥ β
	When to Prune?
	α/β Pruning vs. Returned Node Value
	Alpha-Beta Example
	Review Constraint Satisfaction�R&N 6.1-6.4 (except 6.3.3)
	Constraint Satisfaction Problems
	CSPs --- what is a solution?
	CSP example: map coloring
	Example: Map coloring solution
	Example: Map Coloring
	Backtracking search
	Backtracking search (Figure 6.5)
	Minimum remaining values (MRV)
	Degree heuristic for the initial variable
	Backtracking search (Figure 6.5)
	Least constraining value for value-ordering
	Look-ahead: Constraint propagation
	Forward checking
	Forward checking
	Forward checking
	Forward checking
	Arc consistency (AC-3) algorithm
	Arc consistency (AC-3)
	Arc consistency
	Arc consistency
	Arc consistency
	Local search: min-conflicts heuristic
	Local search: min-conflicts heuristic
	Min-conflicts example 1
	Summary
	Review Intro Machine Learning�Chapter 18.1-18.4
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Decision Tree Representations
	Slide Number 62
	Pseudocode for Decision tree learning
	Slide Number 64
	Entropy and Information
	Slide Number 66
	Entropy and Information
	Information Gain
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Review Machine Learning Classifiers�Chapters 18.5-18.12; 20.2.2
	A Different View on Data Representation
	Decision Boundaries�Can we find a boundary that separates the two classes?
	Classification in Euclidean Space
	Decision Tree Example
	A Simple Classifier:�Minimum Distance Classifier
	Minimum Distance Classifier
	Another Example: Nearest Neighbor Classifier
	Overall Boundary = Piecewise Linear
	Slide Number 88
	Slide Number 90
	Linear Classifiers
	Linear Classifiers
	Linear Classifiers
	The Perceptron Classifier�(pages 729-731 in text)
	Two different types of perceptron output
	Multi-Layer Perceptrons�(Artificial Neural Networks)�(sections 18.7.3-18.7.4 in textbook)
	Multi-Layer Perceptrons�(Artificial Neural Networks)�(sections 18.7.3-18.7.4 in textbook)
	Which decision boundary is “better”?
	Support Vector Machines (SVM): “Modern perceptrons”�(section 18.9, R&N)
	Constructs a “maximum margin separator”
	Can embed the data in a non-linear higher dimension space
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (2)
	Final Review

