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Alpha-Beta pruning
• Exploit the “fact” of an adversary

• Bad = not better than we already know we can get elsewhere
• If a position is provably bad

– It’s NO USE expending search effort to find out just how bad it is
• If the adversary can force a bad position

– It’s NO USE searching to find the good positions the adversary won’t 
let you achieve anyway

• Contrast normal search:
– ANY node might be a winner, so ALL nodes must be considered.
– A* avoids this through heuristics that transmit your knowledge.
– Alpha-Beta pruning avoids this through exploiting the adversary.



Pruning with Alpha/Beta

Do these nodes matter?
If they = +1 million?
If they = −1 million?



??

Alpha-Beta Example

MAX

Initially, possibilities are unknown: range (α =-∞, β=+∞)

α = −∞
β = +∞

?? ?? MIN

Do a depth-first search to the first leaf.

α = −∞
β = +∞

Child inherits 
current α and β

?? ??



® = -1
¯ = +1

Alpha-Beta Example

MIN

MAX

3

α = −∞
β = +∞

See the first leaf, after MIN’s move: MIN updates β

?? ??

?? ??

α = −∞
β = 3 3

α < β so
no pruning3



Alpha-Beta Example

MIN

MAX

3 12 8

® = -1
¯ = +1

α = −∞
β = 3 ?? ??

See remaining leaves; value is known

3

Pass outcome to caller; MAX updates α
α = 3
β = +∞

≥ 3

3



Alpha-Beta Example

MIN

MAX

3 12 8

α = 3
β = +∞

≥3

α = −∞
β = 3 3

Pass α, β to descendants
α = 3
β = +∞

Continue depth-first search to next leaf.

Child inherits 
current α and β

??

?? ??



α = 3
β = 2  .    

Alpha-Beta Example

MIN

MAX

3 12 8 2

≥ 3

α = −∞
β = 3 3

α = 3
β = +∞

Observe leaf value; MIN’s level; MIN updates β

??

?? ??

α ≥ β !!!
(what does this mean?)

2
(This node is 
worse for MAX)

Prune!!!X X

Prune – play will never reach the other nodes!

2



Alpha-Beta Example

MIN

MAX

3 12 8 2

α = 3
β = +∞

α =  −∞
β = 3

X X

α = 3
β = 2 2

≥ 3

MAX level, 3 > 2 
α no change

??

Pass outcome to caller & update caller:

2



Alpha-Beta Example

MIN

MAX

3 12 8 2

α = 3
β = +∞

α =  −∞
β = 3

X X

α = 3
β = 2 · 2

≥ 3

Continue depth-first exploration…

14 5 2

α = 3
β = +∞

Child inherits 
current α and β

No pruning here; value is not resolved until final leaf.

2



Alpha-Beta Example

MIN

MAX

3 12 8 2

α =  −∞
β = 3

X X

α = 3
β = 2 · 2

3

Pass outcome to caller & update caller.
Value at the root is resolved.

14 5 2

α = 3
β = 2 2

α = 3
β = +∞

2

MAX level, 3 > 2 
α no change



General alpha-beta pruning

• Consider a node n in the tree:

• If player has a better choice at
– Parent node of n
– Or, any choice further up!

• Then n is never reached in play

• So:
– When that much is known about n, it can be pruned



Recursive α-β pruning:
R&N Fig. 5.7

Simple stub to call recursion functions
Initialize alpha, beta; get best value
Score each action; return best action

If Cutoff reached, return Eval heuristic
Otherwise, find our best child:
If our options become too good, our min

ancestor will never let us come this way,
so prune now & return best value so far

Finally, return the best value we found

If Cutoff reached, return Eval heuristic
Otherwise, find our worst child:
If our options become too bad, our max

ancestor will never let us come this way,
so prune now & return worst value so far

Finally, return the worst value we found



Recursive α-β pruning variant:
Prune when α ≥ β

This variant has a conceptually simpler pruning rule (α ≥ β), but when 
pruning occurs it makes one extra call to MAX(). Both variants yield the 
same pruning behavior, and both are considered correct on tests.



Effectiveness of α-β Search
• Worst-Case

– Branches are ordered so that no pruning takes place. In this case alpha-beta 
gives no improvement over exhaustive search

• Best-Case
– Each player’s best move is the left-most alternative (i.e., evaluated first)
– In practice, performance is closer to best rather than worst-case

• In practice often get O(b(d/2)) rather than O(bd) 
– This is the same as having a branching factor of sqrt(b), 

• since (sqrt(b))d =  b(d/2) (i.e., we have effectively gone from b to square root of b)
– In chess go from b ~ 35  to  b ~ 6

• permiting much deeper search in the same amount of time



Iterative deepening
• In real games, there is usually a time limit T to make a move

• How do we take this into account?
• Minimax cannot use “partial” results with any confidence, unless 

the full tree has been searched
– Conservative: set small depth limit to guarantee finding a move in time < T
– But, we may finish early – could do more search!

• Added benefit with Alpha-Beta Pruning:
– Remember node values found at the previous depth limit
– Sort current nodes so that each player’s best move is left-most child
– Likely to yield good Alpha-Beta Pruning  => better, faster search
– Only a heuristic: node values will change with the deeper search
– Usually works well in practice



Comments on alpha-beta pruning

• Pruning does not affect final results

• Entire subtrees can be pruned

• Good move ordering improves pruning
– Order nodes so player’s best moves are checked first

• Repeated states are still possible
– Store them in memory = transposition table



Iterative deepening reordering

MIN

MAX

3 4

Which leaves can be pruned?

1 2 7 8 5 6

None!  
because the most 
favorable nodes 
are explored 
last…



Iterative deepening reordering

MIN

MAX

6 5

Different exploration order: now which leaves can be pruned?

8 7 2 1 3 4

Lots!  
because the most 
favorable nodes 
are explored first!



Iterative deepening reordering

MIN

MAX

3 4

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

1 2 7 8 5 6

L=0 4.5



Iterative deepening reordering

MIN

MAX

3 4

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

1 2 7 8 5 6

6.5

L=1 2.5 6.5

For L=2, 
switch the order of 
these nodes! 



Iterative deepening reordering

MIN

MAX

7 8

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

5 6 3 4 1 2

6.5

L=1 6.5 2.5

For L=2, 
switch the order of 
these nodes! 



Iterative deepening reordering

MIN

MAX

7 8

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

5 6 3 4 1 2

5.5

L=2

5.5 3.5

Alpha-Beta pruning 
would prune this node 
at L=2

7.5 5.5 3.5

For L=3, switch the 
order of these nodes!



Iterative deepening reordering

MIN

MAX

5 6

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

7 8 3 4 1 2

5.5

L=2

5.5 3.5

Alpha-Beta pruning 
would prune this node 
at L=2

5.5 7.5 3.5

For L=3, switch the 
order of these nodes!



Iterative deepening reordering

MIN

MAX

5 6

Order with no pruning; use iterative deepening approach.
Assume node score is the average of leaf values below. 

7 8 3 4 1 2

6

L=3

6 4

Lots of pruning!
The most favorable 
nodes are explored 
earlier.

6 7 4



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

MAX

MIN

MAX

α=−∞
β=+∞

α, β, initial values
Branch nodes are labeled A..K for easy discussion

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

α=−∞
β=+∞current α, β,

passed to kids

MAX

MIN

MAX
α=−∞
β=+∞
kid=A

α=−∞
β=+∞
kid=E

Longer Alpha-Beta Example
Note that cut-off occurs at different depths…



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

4

α=−∞
β=+∞

see first leaf,
MAX updates α

4

MAX

MIN

MAX
α=−∞
β=+∞
kid=A

α=4
β=+∞
kid=E

We also are running MiniMax search and recording node values within the triangles, without explicit comment.

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

5

α=−∞
β =+∞

see next leaf,
MAX updates α

5

MAX

MIN

MAX
α=−∞
β=+∞
kid=A

α=5
β=+∞
kid=E

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

α=−∞
β =+∞

see next leaf,
MAX updates α

6

MAX

MIN

MAX
α=−∞
β=+∞
kid=A

α=6
β=+∞
kid=E

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

return node value,
MIN updates β

6

MAX

MIN

MAX
α=−∞
β=6
kid=A

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

current α, β,
passed to kid F

MAX

MIN

MAX
α=−∞
β=6
kid=A

α=−∞
β=6
kid=F

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

see first leaf,
MAX updates α

6

6 MAX

MIN

MAX
α=−∞
β=6
kid=A

α=6
β=6
kid=F

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

6 MAX

MIN

MAX

α ≥ β !!
Prune!!

XX

α=−∞
β=6
kid=A

α=6
β=6
kid=F

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

6 MAX

MIN

MAX

XX

return node value,
MIN updates β,
no change to β

6

If we had continued searching at node F, we would see the 9 from its third leaf. Our returned value would be 9 instead of 6. But
at A, MIN would choose E(=6) instead of F(=9). Internal values may change; root values do not.

α=−∞
β=6
kid=A

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

α=−∞
β =+∞

6 MAX

MIN

MAX

XX

9

see next leaf,
MIN updates β,
no change to β

α=−∞
β=6
kid=A

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

6

α=6
β =+∞

6 MAX

MIN

MAX

XX

6

return node value,
MAX updates α

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

6

α=6
β =+∞

6 MAX

MIN

MAX

XX

α=6
β=+∞
kid=B

α=6
β=+∞
kid=G

current α, β,
passed to kids

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

6 5

α=6
β =+∞

6 MAX

MIN

MAX

XX

α=6
β=+∞
kid=B

α=6
β=+∞
kid=G

see first leaf,
MAX updates α,
no change to α

5

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6

6

6 5

α=6
β =+∞

6 MAX

MIN

MAX

XX

α=6
β=+∞
kid=B

α=6
β=+∞
kid=G

see next leaf,
MAX updates α,
no change to α

4

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5

6

6 5

α=6
β =+∞

6 MAX

MIN

MAX

XX

α=6
β=5
kid=B

return node value,
MIN updates β

5

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X X

α=6
β=5
kid=B

α ≥ β !!
Prune!!

X

X

X
Note that we never find out, what is the node value of H? But we have proven it doesn’t matter, so we don’t care.

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

5

return node value,
MAX updates α,
no change to α

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=+∞
kid=C

current α, β,
passed to kid=C

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 9

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=9
kid=C

see first leaf,
MIN updates β

9

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 9

6

6 5 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=9
kid=C

α=6
β=9
kid=I

current α, β,
passed to kid I

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 9

6

6 5 ? 2

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=9
kid=C

α=6
β=9
kid=I

see first leaf,
MAX updates α,
no change to α

2

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 9

6

6 5 ? 6

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=9
kid=C

α=6
β=9
kid=I

see next leaf,
MAX updates α,
no change to α

6

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6

6

6 5 ? 6

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α=6
β=6
kid=C

6

return node value,
MIN updates β

Longer Alpha-Beta Example



α=6
β=6
kid=C

4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6

6

6 5 ? 6 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X

α ≥ β !!
Prune!!

X X X

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6

6

6 5 ? 6 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X

6

return node value,
MAX updates α,
no change to α

Longer Alpha-Beta Example



α=6
β=+∞
kid=D

4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6

6

6 5 ? 6 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X

current α, β,
passed to kid=D

Longer Alpha-Beta Example



α=6
β=6
kid=D

4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6 6

6

6 5 ? 6 ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X

see first leaf,
MIN updates β

6

Longer Alpha-Beta Example



α=6
β=6
kid=D

4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6 6

6

6 5 ? 6 ? ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X

α ≥ β !!
Prune!!

X X X

Longer Alpha-Beta Example



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6 6

6

6 5 ? 6 ? ?

α=6
β =+∞

6 MAX

MIN

MAX

X XX

X

X X X X X X X

6

return node value,
MAX updates α,
no change to α

Alpha-Beta Example #2



4

A B C D

E F J KG H I

9 94 6

6 6 1 9 5 4 1 3 2 6 1 3 6 8 6 35

6 5 6 6

6

6 5 ? 6 ? ?6 MAX

MIN

MAX

X XX

X

X X X X X X X

MAX’s
move

MAX moves to A,
and expects to get 6

Although we may have changed some internal branch node return values, the final root action and expected outcome are 
identical to if we had not done alpha-beta pruning. Internal values may change; root values do not.

Alpha-Beta Example #2



Nondeterministic games

• Ex: Backgammon
– Roll dice to determine how far to move  (random)
– Player selects which checkers to move    (strategy)

https://commons.wikimedia.org/wiki/File:Backgammon_lg.jpg



Nondeterministic games

• Chance (random effects) due to dice, card shuffle, …
• Chance nodes: expectation (weighted average) of successors
• Simplified example: coin flips

MIN

MAX

2 4

3 -1

3

7 4 6 0 5 -2

Chance

2 4 0 -2

0.5 0.5 0.5 0.5

MAX’s
move

“Expectiminimax”



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3 -1

3

7 4 6 0 5 -2

Chance

2 4 0 -2

0.5 0.5 0.5 0.5



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4 7 4 6 0 5 -2

Chance

(−∞, +∞)

0.5 0.5 0.5 0.5

(−∞, +∞) (−∞, +∞) (−∞, +∞)

(−∞, +∞) (−∞, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4 7 4 6 0 5 -2

Chance

(−∞, 2)

0.5 0.5 0.5 0.5

(−∞, +∞) (−∞, +∞) (−∞, +∞)

(−∞, +∞) (−∞, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4 7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(−∞, +∞) (−∞, +∞) (−∞, +∞)

(−∞, +∞) (−∞, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4 7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(−∞, 7) (−∞, +∞) (−∞, +∞)

(−∞, 4.5) (−∞, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3

7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(4, 4) (3, +∞) (3, +∞)

(3, 3)

(3, +∞)

(3, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3

7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(4, 4) (3, 6) (3, +∞)

(3, 3) (3, +∞)

(3, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3

3

7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(4, 4) (0, 0) (−∞, +∞)

(3, 3)

(3, +∞)

(−∞, +∞)



Pruning in nondeterministic games

• Can still apply a form of alpha-beta pruning 

MIN

MAX

2 4

3 2.5

3

7 4 6 0 5 -2

Chance

(2, 2)

0.5 0.5 0.5 0.5

(4, 4) (0, 0) (−∞, 5)

(3, 3) (−∞, 2.5)

(3, +∞)

X Prune!



Partially observable games
• R&N Chapter 5.6 – “The fog of war”
• Background: R&N, Chapter 4.3-4

– Searching with Nondeterministic Actions/Partial Observations

• Search through Belief States (see Fig. 4.14)
– Agent’s current belief about which states it might be in,

given the sequence of actions & percepts to that point
• Actions(b) = ??  Union?  Intersection?

– Tricky: an action legal in one state may be illegal in another
– Is an illegal action a NO-OP?  or the end of the world?

• Transition Model:
– Result(b,a) = { s’ : s’ = Result(s, a) and s is a state in b }

• Goaltest(b) = every state in b is a goal state



72

Belief States for Unobservable Vacuum World



Partially observable games
• R&N Chapter 5.6
• Player’s current node is a belief state
• Player’s move (action) generates child belief state
• Opponent’s move is replaced by Percepts(s)

– Each possible percept leads to the belief state that is consistent with that 
percept

• Strategy = a move for every possible percept sequence
• Minimax returns the worst state in the belief state

• Many more complications and possibilities!!
– Opponent may select a move that is not optimal, but instead minimizes 

the information transmitted, or confuses the opponent
– May not be reasonable to consider ALL moves; open P-QR3??

• See R&N, Chapter 5.6, for more info



The State of Play
• Checkers: 

– Chinook ended 40-year-reign of human world champion Marion Tinsley in 
1994. 

• Chess: 
– Deep Blue defeated human world champion Garry Kasparov in a six-game 

match in 1997. 

• Othello: 
– human champions refuse to compete against computers: 

they are too good.

• Go: 
– AlphaGo recently (3/2016) beat 9th dan Lee Sedol
– b > 300 (!); full game tree has > 10^760 leaf nodes (!!)

• See (e.g.) http://www.cs.ualberta.ca/~games/ for more info

http://www.cs.ualberta.ca/%7Egames/


High branching factors
• What can we do when the search tree is too large?

– Example: Go  ( b = 50 to 300+ moves per state)
– Heuristic state evaluation (score a partial game)

• Where does this heuristic come from?
– Hand designed
– Machine learning on historical game patterns
– Monte Carlo methods – play random games



Monte Carlo heuristic scoring
• Idea: play out the game randomly, and use the 

results as a score
– Easy to generate & score lots of random games
– May use 1000s of games for a node

• The basis of Monte Carlo tree search algorithms…

Image from www.mcts.ai



Monte Carlo Tree Search

• Should we explore the whole (top of) the tree?
– Some moves are obviously not good…
– Should spend time exploring / scoring promising ones

• This is a multi-armed bandit (MAB) problem:
• Want to spend our time on good moves
• Which moves have high payout?

– Hard to tell – random…

• Explore vs. exploit tradeoff

Image from Microsoft Research



Visualizing MCTS
• At each level of the tree, keep track of

– Number of times we’ve explored a path
– Number of times we won

• Follow winning (from max/min perspective) strategies more 
often, but also explore others 



MCTS
1/1

1/1
MAB strategy

Default / random 
strategy

Terminal state

Score consists of 
(1) % wins
(2) # times tried
(3) # of steps total

UCT:



MCTS
1/2

1/1 0/1
MAB strategy

Default / random 
strategy

Terminal state

Score consists of 
(1) % wins
(2) # times tried
(3) # of steps total

UCT:



MCTS
1/3

1/2 0/1

0/1

MAB strategy

Default / random 
strategy

Terminal state

Score consists of 
(1) % wins
(2) # times tried
(3) # of steps total

UCT:



Summary
• Game playing is best modeled as a search problem

• Game trees represent alternate computer/opponent moves

• Evaluation functions estimate the quality of a given board configuration 
for the Max player. 

• Minimax is a procedure which chooses moves by assuming that the 
opponent will always choose the move which is best for them

• Alpha-Beta is a procedure which can prune large parts of the search tree 
and allow search to go deeper 

• For many well-known games, computer algorithms based on heuristic 
search match or out-perform human world experts.
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