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Semantics: Worlds

• The world consists of objects that have properties.
• There are relations and functions between these objects
• Objects  in the world, individuals: people, houses, numbers, 

colors, baseball games, wars, centuries
• Clock A, John, 7, the-house in the corner, Tel-Aviv

• Functions on individuals:
• father-of, best friend, third inning of, one more than
• a function returns an object

• Relations (terminology: same thing as a predicate):
• brother-of, bigger than, inside, part-of, has color, occurred after
• a relation/predicate returns a truth value

• Properties (a relation of arity 1):
• red, round, bogus, prime, multistoried, beautiful



Semantics: Interpretation
• An interpretation of a sentence is an assignment that maps 

• Object constants to objects in the worlds, 
• n-ary function symbols to n-ary functions in the world,
• n-ary relation symbols to n-ary relations in the world

• Given an interpretation, an atomic sentence has the value 
“true” if it denotes a relation that holds for those individuals 
denoted in the terms. Otherwise it has the value “false.”
• Example: Block world:

• A, B, C, Floor, On, Clear
• World:
• On(A,B) is false, Clear(B) is true, On(C,Floor) is true…

• Under an interpretation that maps symbol A to block A,
symbol B to block B, symbol C to block C, symbol Floor to the Floor

• Some other interpretation might result in different truth values.



Truth in first-order logic
• Sentences are true with respect to a model and an interpretation

• Model contains objects (domain elements) and relations among 
them

• Interpretation specifies referents for
constant symbols → objects

predicate symbols → relations (a relation yields a truth value)

function symbols → functions (a function yields an object)

• An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate



Review: Models (and in FOL, 
Interpretations)
• Models are formal worlds within which truth can be evaluated
• Interpretations map symbols in the logic to the world

• Constant symbols in the logic map to objects in the world
• n-ary functions/predicates map to n-ary functions/predicates in the world

• We say m is a model given an interpretation i of a sentence α if and only if α 
is true in the world m under the mapping i.

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)
• E.g. KB, = “Mary is Sue’s sister and Amy is Sue’s daughter.”
• α = “Mary is Amy’s aunt.” (Must Tell it about mothers/daughters)

• Think of KB and α as constraints, and models as states.
• M(KB) are the solutions to KB and M(α) the solutions to α.
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) ,

when all solutions to KB are also solutions to α. 



Semantics: Models and Definitions
• An interpretation and possible world satisfies a wff (sentence) if the 

wff has the value “true” under that interpretation in that possible 
world.

• Model: A domain and an interpretation that satisfies a wff is a model
of that wff

• Validity: Any wff that has the value “true” in all possible worlds and 
under all interpretations is valid.

• Any wff that does not have a model under any interpretation is 
inconsistent or unsatisfiable.

• Any wff that is true in at least one possible world under at least one 
interpretation is satisfiable.

• If a wff w has a value true under all the models of a set of sentences 
KB then KB logically entails w.



Models for FOL: Example

An interpretation maps all symbols in KB onto matching symbols in a possible 
world.  All possible interpretations gives a combinatorial explosion of mappings.  
Your job, as a Knowledge Engineer, is to write the axioms in KB so they are 
satisfied only under the intended interpretation in your own real world.

All possible interpretations will map all of 
these symbols in the logic onto symbols 
in the domain in all possible ways.



Summary of FOL Semantics
• A well-formed formula (“wff”) FOL is true or false with respect to a 

world and an interpretation (a model).

• The world has objects, relations, functions, and predicates.

• The interpretation maps symbols in the logic to the world.

• The wff is true if and only if (iff) its assertion holds among the 
objects in the world under the mapping by the interpretation.

• Your job, as a Knowledge Engineer, is to write sufficient KB axioms 
that ensure that KB is true in your own real world under your own 
intended interpretation.
• The KB axioms must rule out other worlds and interpretations.



Conversion to CNF
• Everyone who loves all animals is loved by someone:

∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

1. Eliminate biconditionals and implications:

∀x ¬[∀y Animal(y) ⇒ Loves(x,y)] ∨ [∃y Loves(y,x)]
∀x ¬[∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]

2. Move ¬ inwards:
[Recall: ¬∀x P(x) ≡ ∃x ¬P(x); ¬ ∃x P(x) ≡ ∀x ¬P(x) ]

∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]
∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)] 
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)] 
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)] 



Conversion to CNF contd.
3. Standardize variables: each quantifier should use a different variable

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation. Each existential 
variable is replaced by a Skolem function of the enclosing universally quantified 
variables:

∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

5. Drop universal quantifiers:

[Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :

[Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]



A note on Skolem functions
Consider the statement: ∀x ∃y P(x, y)

The statement asserts that, for all x, there is (at least) one y such that P(x,y).
Recall that each x may have a different y, and so y depends on x.

So, at least abstractly, there is a list that pairs each x to a y that satisfies P(x,y): 
{ (x1, y1), (x2, y2), (x3, y3), (x4, y4) … }

where P(x1, y1) = TRUE; P(x2, y2) = TRUE; P(x3, y3) = TRUE; and so on.

So, at least abstractly, there is a function that maps xi to yi.  Call that function F(),
where F(x1) = y1; F(x2) = y2; F(x3) = y3; and so on. (We don’t know what that function 
is, but we do know that it must exist --- even if we can’t write it down.)

So P(x1, F(x1) ) = TRUE; P(x2, F(x2) ) = TRUE; P(x3, F(x3) ) = TRUE; and so on.

In other words, ∀x ∃y P(x, y) ≡ ∀x P(x, F(x) ), where F() is as described above.



Simple FOL Resolution Example
• ∀ x  Person(x) => HasHead(x)   “Every person has a head.”
• Person(John) “John is a person.”
• Query Sentence: HasHead(John) “John has a head.”
• Resulting KB plus negated goal in CNF:

• ( ¬Person(x) ∨ HasHead(x) )
• Person(John)
• ¬ HasHead(John)

• Resolve ( ¬Person(x) ∨ HasHead(x) ) with Person(John) and 
substitution {x/John} to yield HasHead(John)

• Note that after the substitution, the first clause becomes
( ¬Person(x) ∨ HasHead(x) )

• Resolve HasHead(John) with ¬ HasHead(John) to yield ( )



Unification
• Recall: Subst(θ, p) = result of substituting θ into sentence p

• Unify algorithm: takes 2 sentences p and q and returns a unifier if 
one exists

Unify(p,q) = θ where Subst(θ, p) = Subst(θ, q)

where θ is a list of variable/substitution pairs
that will make p and q syntactically identical

• Example:
p = Knows(John,x)
q = Knows(John, Jane)

Unify(p,q) = {x/Jane}



Unification examples
• simple example: query = Knows(John,x), i.e., who does John know?

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) Knows(x,OJ) {fail}

• Last unification fails: only because x can’t take values John and OJ at the same time
• But we know that if John knows x, and everyone (x) knows OJ, we should be able to infer that 

John knows OJ

• Problem is due to use of same variable x in both sentences

• Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,OJ)



Unification examples
1) UNIFY( Knows( John, x ), Knows( John, Jane ) )    { x / Jane } 

2) UNIFY( Knows( John, x ), Knows( y, Jane ) ) { x / Jane, y / John }

3) UNIFY( Knows( y, x ), Knows( John, Jane ) ) { x / Jane, y / John }

4) UNIFY( Knows( John, x ), Knows( y, Father (y) ) )   { y / John, x / Father (John) } 

5) UNIFY( Knows( John, F(x) ), Knows( y, F(F(z)) ) )   { y / John, x / F (z) } 

6) UNIFY( Knows( John, F(x) ), Knows( y, G(z) ) ) None 

7) UNIFY( Knows( John, F(x) ), Knows( y, F(G(y)) ) )  { y / John, x / G (John) } 



Unification
• To unify Knows(John,x) and Knows(y,z),

θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

• The first unifier is more general than the second.

• There is a single most general unifier (MGU) that is unique up 
to renaming of variables.

MGU = { y/John, x/z }

• General algorithm in Figure 9.1 in the text



Unification Algorithm



Unification Algorithm

If we have failed or succeeded, 
then fail or succeed.



Unification Algorithm

If we can unify a variable
then do so.



Unification Algorithm

If we already have bound 
variable var to a value, try 
to continue on that basis.

There is an implicit assumption that “{var/val} ∈ θ”, if it 
succeeds, binds val to the value that allowed it to succeed, 



Unification Algorithm

If we already have bound x
to a value, try to continue 
on that basis.



Unification Algorithm

If var occurs anywhere 
within x, then no 
substitution will succeed.



Unification Algorithm

Else, try to bind var to x, 
and recurse.



Unification Algorithm

If a predicate/function,
unify the arguments.



Unification Algorithm

If unifying arguments,
unify the remaining 
arguments.



Unification Algorithm

Otherwise, fail.



Hard matching example

• To unify the grounded propositions with premises of the implication you need to solve a 
CSP!

• Colorable() is inferred iff the CSP has a solution
• CSPs include 3SAT as a special case, hence matching is NP-hard

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒
Colorable()

Diff(Red,Blue) Diff (Red,Green) 
Diff(Green,Red)  Diff(Green,Blue) 
Diff(Blue,Red) Diff(Blue,Green)



Resolution: brief summary
• Full first-order version:

l1 ∨ ··· ∨ lk,          m1 ∨ ··· ∨ mn
(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ

where Unify(li, ¬mj) = θ.

• The two clauses are assumed to be standardized apart so that they 
share no variables.

• For example,
¬Rich(x) ∨ Unhappy(x) 
Rich(Ken)
Unhappy(Ken)

with θ = {x/Ken}

• Apply resolution steps to CNF(KB ∧ ¬α); complete for FOL



Examples of Sound Inference Patterns
Classical Syllogism (due to Aristotle)

All Ps are Qs All Men are Mortal
X is a P Socrates is a Man
Therefore, X is a Q Therefore, Socrates is Mortal

Implication (Modus Ponens)
P implies Q Smoke implies Fire
P Smoke
Therefore, Q Therefore, Fire

Contrapositive (Modus Tollens)
P implies Q Smoke implies Fire
Not Q Not Fire
Therefore, Not P Therefore, not Smoke

Law of the Excluded Middle (due to Aristotle)
A Or B Alice is a Democrat or a Republican
Not A Alice is not a Democrat
Therefore, B Therefore, Alice is a Republican



Examples of Sound Inference Patterns
Classical Syllogism (due to Aristotle)

All Ps are Qs All Men are Mortal
X is a P Socrates is a Man
Therefore, X is a Q Therefore, Socrates is Mortal

∀ x Man(x) ⇒ Mortal(x)
Man(Socrates)
Therefore, Mortal(Socrates)

( ¬Man(x) Mortal(x) )
( Man(Socrates) )



Examples of Sound Inference Patterns
Classical Syllogism (due to Aristotle)

All Ps are Qs All Men are Mortal
X is a P Socrates is a Man
Therefore, X is a Q Therefore, Socrates is Mortal

∀ x Man(x) ⇒ Mortal(x)
Man(Socrates)
Therefore, Mortal(Socrates)

( ¬Man(x) Mortal(x) )
( Man(Socrates) )

Mortal(Socrates), with substitution θ = { x/Socrates }

The classical syllogism is proven sound by Resolution!



Examples of Sound Inference Patterns
Implication (Modus Ponens)

P implies Q Smoke implies Fire
P Smoke
Therefore, Q Therefore, Fire

Smoke ⇒ Fire
Smoke
Therefore, Fire

( ¬Smoke Fire )
( Smoke )



Examples of Sound Inference Patterns
Implication (Modus Ponens)

P implies Q Smoke implies Fire
P Smoke
Therefore, Q Therefore, Fire

Smoke ⇒ Fire
Smoke
Therefore, Fire

( ¬Smoke Fire )
( Smoke )

( Fire )

Implication (Modus Ponens) is proven sound by Resolution!



Examples of Sound Inference Patterns
Contrapositive (Modus Tollens)

P implies Q Smoke implies Fire
Not Q Not Fire
Therefore, Not P Therefore, not Smoke

Smoke ⇒ Fire
¬Fire
Therefore, ¬Smoke

( ¬Smoke Fire )
( ¬Fire )



Examples of Sound Inference Patterns
Contrapositive (Modus Tollens)

P implies Q Smoke implies Fire
Not Q Not Fire
Therefore, Not P Therefore, not Smoke

Smoke ⇒ Fire
¬Fire
Therefore, ¬Smoke

( ¬Smoke Fire )
( ¬Fire )

( ¬Smoke )

The Contrapositive (Modus Tollens) is proven sound by Resolution!



Examples of Sound Inference Patterns
Law of the Excluded Middle (due to Aristotle)

A Or B Alice is a Democrat or a Republican
Not A Alice is not a Democrat
Therefore, B Therefore, Alice is a Republican

( Democrat(Alice) ∨ Republican(Alice) )
¬Democrat(Alice) 
Therefore, Republican(Alice)

( Democrat(Alice) ∨ Republican(Alice) )
( ¬Democrat(Alice) )



Examples of Sound Inference Patterns
Law of the Excluded Middle (due to Aristotle)

A Or B Alice is a Democrat or a Republican
Not A Alice is not a Democrat
Therefore, B Therefore, Alice is a Republican

( Democrat(Alice) ∨ Republican(Alice) )
¬Democrat(Alice) 
Therefore, Republican(Alice)

( Democrat(Alice) ∨ Republican(Alice) )
( ¬Democrat(Alice) )

( Republican(Alice) )

The Law of the Excluded Middle is proven sound by Resolution!



So --- how do we keep it from
“Just making things up.” ?

“Einstein Simplified:
Cartoons on Science”
by Sydney Harris, 1992,
Rutgers University Press

How can we make correct inferences?
How can we avoid incorrect inferences?

Is this inference correct?

How do you know?
How can you tell?



Example of an Unsound Inference Pattern
An Unsound Inference Pattern 

All Ps are Qs All Cats are FourFootedAnimals
X is a Q I am a FourFootedAnimal
Therefore, X is a P Therefore, I am a Cat

∀ x Cat(x) ⇒ FourFootedAnimal(x)
FourFootedAnimal(Me)
Therefore, Cat(Me)

( ¬Cat(x) FourFootedAnimal(x) )
( FourFootedAnimal(Me) )



Example of an Unsound Inference Pattern
An Unsound Inference Pattern 

All Ps are Qs All Cats are FourFootedAnimals
X is a Q I am a FourFootedAnimal
Therefore, X is a P Therefore, I am a Cat

∀ x Cat(x) ⇒ FourFootedAnimal(x)
FourFootedAnimal(Me)
Therefore, Cat(Me)

( ¬Cat(x) FourFootedAnimal(x) )
( FourFootedAnimal(Me) )

No Resolution is possible!  No pair of complementary literals!

Resolution shows that the premises do not entail the conclusion!



Example knowledge base
• The law says that it is a crime for an American to sell 

weapons to hostile nations.  The country Nono, an 
enemy of America, has some missiles, and all of its 
missiles were sold to it by Colonel West, who is 
American.

• Prove that Col. West is a criminal



Example knowledge base (Horn clauses)
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) ∧ Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)



Resolution proof:

~



Forward chaining proof:  (Horn clauses)



Forward chaining proof (Horn clauses)

Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missile(x) ⇒ Weapon(x)

Enemy(x,America) ⇒ Hostile(x)



Forward chaining proof (Horn clauses)

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)



*American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)
*Owns(Nono,M1) and Missile(M1)
*Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)
*Missile(x) ⇒ Weapon(x)
*Enemy(x,America) ⇒ Hostile(x)
*American(West)
*Enemy(Nono,America)

Forward chaining proof (Horn clauses)



Backward chaining example (Horn clauses)



Backward chaining example (Horn clauses)



Backward chaining example (Horn clauses)



Backward chaining example (Horn clauses)



Backward chaining example (Horn clauses)



Backward chaining example (Horn clauses)



Backward chaining example (Horn clauses)



Summary
• First-order logic:

• Much more expressive than propositional logic
• Allows objects and relations as semantic primitives
• Universal and existential quantifiers

• Syntax: constants, functions, predicates, equality, quantifiers

• Nested quantifiers

• Translate simple English sentences to FOPC and back

• Semantics: correct under any interpretation and in any world

• Unification: Making terms identical by substitution
• The terms are universally quantified, so substitutions are justified.
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