Special Topics Lecture:

Why empty KB is TRUE and empty Clause is FALSE

by Rick Lathrop

Notation used in this Special Topics lecture

- Prefix notation (or extended Polish notation)
- The operator appears first, followed by its arguments
- (AND A B C) in prefix notation is (A AND B AND C) in infix notation
- (OR A B C) in prefix notation is (A OR B OR C) in infix notation
- Prefix notation enables an easy parser - it looks at the first element of each list and dispatches args to a handler for that operator token.
- Lisp and related languages define their entire syntax in prefix notation
- See https://en.wikipedia.org/wiki/Polish_notation
- Prefix allows any arity, delimited by (...); strict Polish = fixed arity
- Conjunctive Normal Form (CNF) - the AND of ORs
- $K B=\{A N D(O R$ literal-1 literal-2 ...) (OR literal-3 literal-4 ...) ...\}
- Drop ANDs and ORs - we know where they are (clausal notation)
- $K B=\{$ (literal-1 literal-2 ...) (literal-3 literal-4 ...) ...\}
- In this lecture, KB uses \{...\} brackets, clauses use (...) parentheses
- Here, the empty KB \{\} always means \{AND\} with no clauses
- Here, the empty clause () always means (OR) with no literals

Side Trip: Functions AND, OR, and identity values

function AND(arglist) returns a truth-value return ANDOR(arglist, TRUE)
/* Think of AND as by default TRUE, but args may make it FALSE */
function OR(arglist) returns a truth-value return ANDOR(arglist, FALSE)
/* Think of OR as by default FALSE, but args may make it TRUE */
function ANDOR(arglist, identityvalue) returns a truth-value /* identityvalue is TRUE for AND, and is FALSE for OR. */ if (arglist $==$ NIL) then return identityvalue if (FIRST(arglist) $==$ NOT(identityvalue)) then return NOT(identityvalue) return ANDOR(REST(arglist), identityvalue)

So: $\underline{A N D() ~ e v a l u a t e s ~ t o ~ T R U E ~ a n d ~ O R() ~ e v a l u a t e s ~ t o ~ F A L S E!~}$

Side Trip: We only need one logical connective. (Note: AND, OR, NOT are "syntactic sugar" in logic.)

Both NAND and NOR are logically complete.

- NAND is also called the "Sheffer stroke"
- NOR is also called "Pierce's arrow"

$$
\begin{aligned}
(\text { NOT A })= & (\text { NAND A TRUE })=(\text { NOR A FALSE }) \\
(\text { AND A B }) & =(\text { NAND TRUE (NAND A B) }) \\
& =(\text { NOR (NOR A FALSE) (NOR B FALSE) }) \\
(\text { OR A B }) & =(\text { NAND (NAND A TRUE) (NAND B TRUE) }) \\
& =(\text { NOR FALSE (NOR A B) })
\end{aligned}
$$

This fact is exploited by, e.g., VLSI semiconductor fabrication, which often provide a single NAND/NOR gate for efficiency.

Review: KB |=S means $\mid=(K B \Rightarrow S)$

- KB |= S is read "KB entails S."
- Means " S is true in every world (model) in which KB is true."
- $\mathrm{KB} \mid=\mathrm{S}$ is equivalent to $\mid=(\mathrm{KB} \Rightarrow \mathrm{S})$
- $\quad \mathrm{I}=(\mathrm{KB} \Rightarrow \mathrm{S})$ means " $(\mathrm{KB} \Rightarrow \mathrm{S})$ is true in every world (i.e., is valid)."
- $\mid=(K B \Rightarrow S)$ means TRUE $\mid=(K B \Rightarrow S)$ means $\} \mid=(K B \Rightarrow S)$
- And so: $\} \mid=S$ is equivalent to $\mid=(\{ \} \Rightarrow S)$
- So what does $(\} \Rightarrow$ S) mean?
- Means "TRUE implies S."
- Means "S is valid."
- In Horn form, means "S is a fact." p. 256 ($3^{\text {rd }}$ ed.; p. 281, $2^{\text {nd }}$ ed.)
- Why does \{\} mean TRUE here,

Review: (TRUE \Rightarrow S) means " S is a fact."

- By convention,
- The null conjunct is "syntactic sugar" for TRUE (see above slides).
- The null disjunct is "syntactic sugar" for FALSE (see following slides).
- Each is assigned the truth value of its identity element.
- For conjuncts, TRUE is the identity: $(A \wedge$ TRUE $) \equiv A$
- For disjuncts, FALSE is the identity: $(A \vee F A L S E) \equiv A$
- A KB is the conjunction of all of its sentences.
- So we see that \{\} is the null conjunct and means TRUE.
- Better way to think of it: \{\} does not exclude any worlds (models) because nothing falsifies the dominant connective AND.
- In Conjunctive Normal Form each clause is a disjunct.
- So we see that () is the null disjunct and means FALSE.
- Better way to think of it: $\boldsymbol{1}$ does not include any worlds (models) because nothing satisfies the dominant connective OR.

