4. Give the name that results from each of the following special cases:
a. Local beam search with $k=1$.
a. Local beam search with $\mathrm{k}=1$ is hill-climbing search.
b. Local beam search with one initial state and no limit on the number of states retained. b. Local beam search with $\mathrm{k}=\infty$: strictly speaking, this doesn't make sense. The idea is that if every successor is retained (because k is unbounded), then the search resembles breadth-first search in that it adds one complete layer of nodes before adding the next layer. Starting from one state, the algorithm would be essentially identical to breadth-first search except that each layer is generated all at once.
c. Simulated annealing with $T=0$ at all times (and omitting the termination test).
c. Simulated annealing with $\mathrm{T}=0$ at all times: ignoring the fact that the termination step would be triggered immediately, the search would be identical to first-choice hill climbing because every downward successor would be rejected with probability 1.
d. Simulated annealing with $T=$ infinity at all times.
d. Simulated annealing with $\mathrm{T}=$ infinity at all times: ignoring the fact that the termination step would never be triggered, the search would be identical to a random walk because every successor would be accepted with probability 1 . Note that, in this case, a random walk is approximately equivalent to depth-first search.
e. Genetic algorithm with population size $N=1$.
e. Genetic algorithm with population size $\mathrm{N}=1$: if the population size is 1 , then the two selected parents will be the same individual; crossover yields an exact copy of the individual; then there is a small chance of mutation. Thus, the algorithm executes a random walk in the space of individuals.
5. (20 points total, 5 pts off for each wrong answer, but not negative) Label the following as T (= True) or F (= False). Unless stated otherwise, assume a finite branching factor, step costs $\geq \varepsilon>$ 0 , and at least one goal at a finite depth. You may be in either a tree or a graph.
a. (5 pts) An admissible heuristic NEVER OVER-ESTIMATES the remaining cost (or distance) to the goal.

TRUE, by definition of admissible.
b. (5 pts) Best-first search when the queue is sorted by $f(n)=g(n)+h(n)$ is both complete and optimal when the heuristic is admissible and the total cost estimate $f(n)$ is monotonic increasing on any path to a goal node.

TRUE, because the search described is A* and the heuristic described is both admissible and consistent.
c. (5 pts) Most search effort is expended while examining the interior branch nodes of a search tree.

FALSE. Most search effort is expended while examining leaf node of the tree.
d. (5 pts) Uniform-cost search (sort queue by $g(n)$) is both complete and optimal when the path cost never decreases.

TRUE, because uniform-cost search is $A *$ search with $h(n)=0$, which is admissible.
e. (5 pts) Greedy best-first search (sort queue by $h(n)$) is both complete and optimal when the heuristic is admissible and the path cost never decreases.

FALSE. Your book gives a counter-example (Fig. 3.23, $3^{\text {rd }}$ ed.; Fig. 4.2, $2^{\text {nd }}$ ed.).
f. (5 pts) Beam search uses $O(b d)$ space and $O(b d)$ time.

FALSE. For a beam search in a tree using k nodes total, the space used is $\mathrm{O}(\mathrm{bk})$ and the time is $\mathrm{O}(\mathrm{bmk})$. For a beam search in a graph, the space is again $\mathrm{O}(\mathrm{bk})$ but it can waste time in loops.
g. (5 pts) Simulated annealing uses O (constant) space and can escape from local optima.

TRUE. The space is constant and it accepts bad moves with probability exp(-delta(Value)).
h. (5 pts) Genetic algorithms use O (constant) space and can escape from local optima.

TRUE. The space is constant and it can accept bad moves by creating bad offspring.
i. (5 pts) Gradient descent uses O (constant) space and can escape from local optima.

FALSE. The space is constant, but it generally moves toward, and gets stuck on, a local optima.
3. (20 points total, 5 pts each) Perform Simulated Annealing search to maximize value in the following search space.

Recall that a good move (increases value) is always accepted ($P=1.0$); a bad move (decreases value) is accepted with probability $P=e^{\Delta V A L / T}$, where $\triangle V A L=V A L(N e x t)-V A L($ Current $)$.

Use this temperature schedule:

Time Step	$1-100$	$101-200$	$201-300$
Temperature (T)	10	1.0	0.1

This table of values of e may be useful:

x	0.0	-1.0	-4.0	-4.3	-40.0	-43.0
e^{x}	1.0	≈ 0.37	≈ 0.018	≈ 0.014	$\approx 4.0 * 10^{-18}$	$\approx 2.1 * 10^{-19}$

a. (5 points total, 1 pt off for each wrong answer, but not negative)Analyze the following possible moves in the search. The first one is
done for you as an example.

Time	From	To	T	$\triangle V A L$	$\Delta V A L / T$	P
57	A	B	10	-10	-1	0.37
78	C	B	10	-40	-4	≈ 0.018
132	C	B	1.0	-40	-40	$\approx 4.0^{*} 10^{-18}$
158	C	D	1.0	-1	-1	≈ 0.37
194	E	D	1.0	-4	-4	≈ 0.018
194	E	B	1.0	-43	-43	$\approx 2.1^{*} 10^{-19}$
238	E	D	0.1	-4	-40	$\approx 4.0^{*} 10^{-18}$
263	E	F	0.1	-0.1	-1	≈ 0.37
289	G	F	0.1	-0.4	-4	≈ 0.018
289	G	D	0.1	-4.3	-43	$\approx 2.1^{*} 10^{-19}$

b. (5 pts) At Time=100, is the search more likely to be in state A or in state C ? (ignore E, G)
C.
c. (5 pts) At Time $=200$, is the search more likely to be in state A, C, or E ? (ignore G)
E.
d. (5 pts) At Time $=300$, is the search more likely to be in state A, C, E, or G ?
G.

