1. (5 pts each, 30 pts total) Mark the following reasoning patterns as S (= sound, carries true premises to true conclusions) or U (= unsound, may carry true premises to false conclusions). Premises are shown above the line, conclusions below the line. Here, " \Rightarrow " means "implies" and " \neg " means "not." The first one is done for you as an example.
a. $\mathrm{S} \quad \begin{aligned} & \mathrm{P} \Rightarrow \mathrm{Q} \\ & \mathrm{P} \\ & \mathrm{Q}\end{aligned}$
b. \qquad

c. $\quad \frac{\mathrm{P} \Rightarrow \mathrm{Q}}{\mathrm{P} \text { or } \neg \mathrm{Q}}$
d.

e.

f.

g. \quad| $\neg P \Rightarrow Q$ |
| :--- |
| $\frac{P}{\neg Q}$ |

2. (5 pts each, 40 pts total) In each of the following, $K B$ is a set of sentences, $\}$ is the empty set of sentences, and S is a single sentence. Recall $\mid=$ means "entails" and $\mid-$ means "derives," where |-i means "inference procedure i derives." Use these keys:

Snd = Sound.
Unsnd = Unsound.
C = Complete.
I = Incomplete.
V = Valid.
Sat = Satisfiable.
Unsat = Unsatisfiable.
$\mathrm{N}=$ None of the above.
For each blank below, write in the key above that best corresponds to the correct term.
(a) Suppose some inference procedure i has the property, that for some $K B$ and some $S, K B \mid=S$ but not $K B \mid-\mathrm{i} S$. Then the inference procedure i is \qquad
(b) Let S be given in advance. Suppose that for some $K B_{1}, K B_{1} \mid=S$; but that for some other $K B 2, K B 2 \mid=\neg S$. Then S is \qquad .
(c) Suppose some inference procedure i has the property, that for any $K B$ and any S, whenever $K B \mid=S$ then $K B \mid-i \quad S$. Then the inference procedure i is \qquad .
(d) Suppose inference procedure i has the property, that for some $K B$ and some $S, K B \mid-i S$ but not $K B \mid=S$. Then the inference procedure i is \qquad -.
(e) Let S be given in advance. Suppose that $\} \mid=S$. Then S is \qquad -.
(f) Suppose some inference procedure i has the property, that for any $K B$ and any S, whenever $K B \mid$-i S then $K B \mid=S$. Then the inference procedure i is \qquad .
(g) Suppose that $K B \mid=S$, then the sentence $(K B \Rightarrow S)$ is \qquad .
(h) Suppose that $K B \mid=S$, then the sentence $(K B$ and $\neg S$) is \qquad .
3. Consider the KB shown below.
a. (5 pts each, 15 pts total) Translate the following $K B$ into Conjunctive Normal Form. The first one is done for you as an example (it was already in Conjunctive Normal Form ;-)).
A. $P \vee R$.
$P \vee R$
B. $Q \Rightarrow S$.
C. $P \Rightarrow Q$.
\qquad
B. Q
\qquad
\qquad
D. $R \Rightarrow S$. \qquad
b. (15 pts total, -5 for each wrong step, but not negative. The order may vary, if proof is correct.) Write a complete resolution proof that $K B \mid=S$. Show the two clauses that you resolve in front of the symbol $\mid-$, and the resulting clause after $\mid-$. You may not require all of the lines provided. The sentence labeled "E." adds the negated goal. The first one is done for you as an example.
E. $\neg S$
(a) \qquad , $\neg Q \vee S$, $1-$ \qquad .
(b) \qquad , \qquad , |- \qquad .
(c) \qquad , \qquad |- \qquad
(d) \qquad , \qquad , $1-$ \qquad .
(e) \qquad , \qquad , |- \qquad .
(f) \qquad , \qquad |- \qquad .
(g) \qquad , \qquad |- \qquad .
(h) \qquad , \qquad , |- \qquad .
(i) \qquad , \qquad |- \qquad
(add additional lines if you need them)

