Monster ("Mega") Sudoku

- NxN grid, $\mathrm{N}=\mathrm{pq}$ a composite number >9
- N symbols; generate them "odometer" style

$$
\begin{array}{r}
-1 \text {... } 9 \text { A B ... Z } 1112 \ldots 19 \text { 1A ... } 1 Z 21 \text {... } 9 Z \text { A1 ... A9 AA ... ZZ } \\
111112 \text {... } 9 Z Z \text { A11 ... ZZZ } 1111 \text {... ZZZZ } 11111 \text {... ZZZZZ ... }
\end{array}
$$

- N blocks, each with p rows and q columns
- The N blocks fit regularly into the NxN grid
- p blocks fit across the NxN grid rows (p blocks $\times \mathrm{q}$ columns $=\mathrm{N}$)
- q blocks fit down the $N \times N$ grid columns (q blocks $\times p$ rows $=N$)
- Some elements of the NxN grid already have symbols
- Fill in the rest of the NxN grid with symbols under constraints
- No symbol appears twice in any row
- No symbol appears twice in any column
- No symbol appears twice in any block
- Often called the "AllDiff" constraint

Examples

			1			4		7			8
	4				1				B		2
		5		A			3		4		
	2	4		7	B				6	C	
A							8		2		5
			C		6			4		B	
	9		4			6		B			
7		8		2							1
	1	6			5	B		3	2		
		1		3			2		A		
4		7				A				6	
5			8		4			3			

8	F		C						A						6
			A				F				B	7	4	D	
B		4				D	6		7			0		5	
1							0	3		9	2				
					1	F	D		3	0			E	7	4
	1		6				C		B			A		3	
	C		D			6	3		5			9	2		
9		3	4	E		2				7	D				
				5	7				8		C	3	0		A
		E	2			4		7	1			F		6	
	5		3			8		9				E		C	
7	0	6			C	9		D	E	3					
				D	E		4	0							2
	7		8			C		4	2				B		5
	2	9	E	B				5				4			
6						7						1		8	3

You Will Write Code:

- Code that inputs a Monster Sudoku puzzle
- Input parameters N, p, q to define the grid and blocks
- Which symbols already are on which grid elements
- Code that generates a random Monster Sudoku puzzle
- Input parameter M the number of symbols initially on grid
- Symbols are chosen and placed randomly respecting constraints
- Code that solves a Monster Sudoku puzzle
- Node consistency, arc consistency, path consistency (6.2)
- Backtracking search (6.3)
- Variable and value ordering: minimum-remaining values, degree heuristic, least-constraining-value (6.3.1)
- Forward checking (6.3.2)
- Extra Bonus Credit:
- Local search for CSPs: min-conflict heuristic (6.4)

You Will Analyze:

- For each value of N there is a "hardest" value of M
- For each of an increasing series of N , find the corresponding M
- How does M change as N increases?
- What is the biggest N for which you reliably solve the "hardest" M ?
- How does solution time grow with increasing N for "hardest" M ?
- What is the relative contribution of the various CSP heuristics?

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n=10,000,000$)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Hard satisfiability problems

Hard satisfiability problems

- Median runtime for 100 satisfiable random 3 -CNF sentences, $\mathrm{n}=50$

