Monster (““Mega’) Sudoku

NXN grid, N = pg a composite number > 9

N symbols; generate them “odometer” style
— 1..9AB...Z21112..191A..1Z221 ..9ZA1 .. A9 AA .. ZZ
111 112 ... 92Z Al11 ... ZZZ 1111 .. ZZZZ 11111 .. ZZZZZ ..

N blocks, each with p rows and g columns

— The N blocks fit regularly into the NxN grid

— p blocks fit across the NxN grid rows (p blocks x g columns = N)
— (blocks fit down the NxN grid columns (g blocks x p rows = N)

Some elements of the NxN grid already have symbols

Fill in the rest of the NXN grid with symbols under constraints
— No symbol appears twice in any row

— No symbol appears twice in any column

— No symbol appears twice in any block

— Often called the “AllIDiff” constraint

Examples

“panasal SYBY |y 2002 P nopns AEd (0

hard

< NIREE
Qw0 N~ o 00O 0
< w| e m
N O << Lo | LU <t |~
m ()
o I~ (4]
N~ o w — L (V]
~lo|alo| < |w
LL | © QOO(m <
Al |w| (ool |[v|olo| O |~
— olw
LL (] o
< ol Ao oo (LW
< o| |wl |o© o
— (O Tl e N~ |y
m o ~ ©
_ ".p..._.o..l..:.u.._._.lr..._u_._...-.n.,....._pu..
| oy 0| ~| g
2| (oo o o |
o <[o) Lo | et
M~ =t e
o] ‘o eu
<t _ | <
_ o | |en
= E s
| +| | @ ||~
|| Jov| | —
|.—| — 1 — ————
_ < | P | <+

You Will Write Code:

e Code that inputs a Monster Sudoku puzzle

Input parameters N, p, q to define the grid and blocks
Which symbols already are on which grid elements

e Code that generates a random Monster Sudoku puzzle

Input parameter M the number of symbols initially on grid
Symbols are chosen and placed randomly respecting constraints

e Code that solves a Monster Sudoku puzzle

Node consistency, arc consistency, path consistency (6.2)
Backtracking search (6.3)

Variable and value ordering: minimum-remaining values, degree
heuristic, least-constraining-value (6.3.1)

Forward checking (6.3.2)

e Extra Bonus Credit:

Local search for CSPs: min-conflict heuristic (6.4)

You Will Analyze:

e For each value of N there is a “hardest” value of M
— For each of an increasing series of N, find the corresponding M
— How does M change as N increases?

e What is the biggest N for which you reliably solve the “hardest” M?
— How does solution time grow with increasing N for “hardest” M?
— What is the relative contribution of the various CSP heuristics?

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

R:

number of variables

CPU|{
time

]
critical
ratio

Sections 3.7 and 4.4, Chapter 5 of AlMAZe 44

Hard satisfiability problems

= (-
() (2]
|| |
B o
I

<
I
|

Pr(satisfiable)

=
b
I
1

0 1 2 3 4 5 6 7 3

Clause/symbol ratio m/n

Hard satisfiability problems

Etm | | | 1 -F_
1800 | DPLL — |I+ s
1600 | WalkSAT - HT . |
1400 | \ .
v 1200 + |‘|| \ .
= hl \
= 1000 | || \ .
& 800 | |'|
600 | .
400 | Xk
[
200 | | *
i
R

0 1 2 3 4 5 6 7 8

Clause/symbol ratio m/n

e Median runtime for 100 satisfiable random
3-CNF sentences, nh = 50

	Monster (“Mega”) Sudoku
	Examples
	You Will Write Code:
	You Will Analyze:
	Slide Number 5
	Hard satisfiability problems
	Hard satisfiability problems

