
Announcements (1)

• Background reading for next week is posted.
– Learning to recognize faces quickly.
– AdaBoostingAdaBoosting
– (Optional) Machine learning applied to cancer rescue

• Try to read before this Thursday if you have time
– Some of the material will be presented in lecturep

• Discussion next week will occur 2:00-2:15, BEFORE Mid-term

• Machine Learning project made more flexible
– … and (c) a Support Vector Machine (SVM) or a Perceptron or an 

Artificial Neural Network or an AdaBoost classifier. 



Announcements (2)

Hello,
I have posted my changes at: http://code.google.com/p/maze-

solver-game/g
I think there may be also be bug in the isVisible() function that 

checks if an edge can be drawn between two points for certain 
edge cases. (I haven't done much testing so I can't say 
definitively).definitively).

As I find and fix bugs, I'll continue posting them, and others in the 
class email me their Gmail address, I can give them committing 
access as well. Similarly, if you have Google account, I can add 
you as a project owner  if you send me your usernameyou as a project owner, if you send me your username.

A bit of a side note... The project is stored in a Mercurial repository. 
Mercurial can be downloaded from: http://mercurial.selenic.com/
A good tutorial by Joel Spolsky (Joel on Software): http://hginit.com/

--David 



I t d ti  t  M hi  L iIntoduction to Machine Learning

Reading for today:  18.1-18.4



Outline

• Different types of learning problems

• Different types of learning algorithms• Different types of learning algorithms

• Supervised learning
Decision trees– Decision trees

– Naïve Bayes
– Perceptrons, Multi-layer Neural Networks
– Boostingg

• Unsupervised Learning
– K-means

• Applications: learning to detect faces in images

• Reading for today’s lecture: Chapter 18.1 to 18.4 (inclusive)



Automated Learning

• Why is it useful for our agent to be able to learn?
– Learning is a key hallmark of intelligence
– The ability of an agent  to take in real data and feedback and improve 

performance over time

• Types of learningyp g
– Supervised learning

• Learning a mapping from a set of inputs to a target variable
– Classification: target variable is discrete (e.g., spam email)
– Regression: target variable is real-valued (e g  stock market)Regression: target variable is real valued (e.g., stock market)

– Unsupervised learning
• No target variable provided

Clustering: grouping data into K groups– Clustering: grouping data into K groups

– Other types of learning
• Reinforcement learning: e.g., game-playing agent

L i  t  k   d t ki  i  W b h• Learning to rank, e.g., document ranking in Web search
• And many others….



Simple illustrative learning problem

Problem: 
decide whether to wait for a table at a restaurant, based on the following attributes:

1 Alternate: is there an alternative restaurant nearby?1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5 Patrons: number of people in the restaurant (None  Some  Full)5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)



Training Data for Supervised Learning



Terminology

• Attributes
– Also known as features, variables, independent variables, 

covariatesco a a es

• Target Variable
– Also known as goal predicate, dependent variable, …

• Classification
– Also known as discrimination, supervised classification, …

• Error function
Objective function  loss function  – Objective function, loss function, …



Inductive learning

• Let x represent the input vector of attributes

• Let f(x) represent the value of the target variable for x• Let f(x) represent the value of the target variable for x
– The implicit mapping from x to f(x) is unknown to us
– We just have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f, i.e., 
h(x; ) is “close” to f(x) for all training data points x          

 are the parameters of our predictor h(..)

• Examples:• Examples:
– h(x; ) = sign(w1x1 + w2x2+ w3)

– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4))k( ) ( ) ( ( ))



Empirical Error Functions

• Empirical error function:
E(h) = x distance[h(x; ) , f]

e.g., distance = squared error if h and f are real-valued  (regression)
distance = delta-function if h and f are categorical  (classification)

S  i   ll t i i  i  i  th  t i i  d t  DSum is over all training pairs in the training data D

In learning, we get to choose 

1. what class of functions h(..) that we want to learn 
– potentially a huge space!  (“hypothesis space”)potentially a huge space!  ( hypothesis space )

2. what error function/distance to use
- should be chosen to reflect real “loss” in problem

b  f  h  f  h i l/ l i h i  i- but often chosen for mathematical/algorithmic convenience



Inductive Learning as Optimization or Search

• Empirical error function:
E(h) = x distance[h(x; ) , f]

• Empirical learning = finding h(x), or h(x; ) that minimizes E(h)
– In simple problems there may be a closed form solution

• E.g., “normal equations” when h is a linear function of x, E = squared error

– If E(h) is differentiable as a function of q, then we have a continuous optimization problem 
and can use gradient descent, etc

• E.g., multi-layer neural networks

– If E(h) is non-differentiable (e.g., classification), then we typically have a systematic search 
problem through the space of functions hproblem through the space of functions h

• E.g., decision tree classifiers

• Once we decide on what the functional form of h is, and what the error function E 
i  th  hi  l i  t i ll  d  t   l  h  ti i ti  is, then machine learning typically reduces to a large search or optimization 
problem

• Additional aspect: we really want to learn an h(..) that will generalize well to new 
data, not just memorize training data – will return to this later, j g



Our training data example (again)

• If all attributes were binary, h(..) could be any arbitrary Boolean function

• Natural error function E(h) to use is classification error, i.e., how many incorrect 
predictions does a hypothesis h makepredictions does a hypothesis h make

• Note an implicit assumption:
– For any set of attribute values there is a unique target value
– This in effect assumes a “no-noise” mapping from inputs to targetspp g p g

• This is often not true in practice (e.g., in medicine). Will return to this later



Learning Boolean Functions

• Given examples of the function, can we learn the function?

• How many Boolean functions can be defined on d attributes?How many Boolean functions can be defined on d attributes?
– Boolean function = Truth table + column for target function (binary)
– Truth table has 2d rows
– So there are 2 to the power of 2d different Boolean functions we can define 

(!)(!)
– This is the size of our hypothesis space

– E.g., d = 6, there are 18.4 x 1018  possible Boolean functions

• Observations:
– Huge hypothesis spaces –> directly searching over all functions is impossible
– Given a small data (n pairs) our learning problem may be underconstrained

• Ockham’s razor: if multiple candidate functions all explain the data 
equally well, pick the simplest explanation (least complex function)

• Constrain our search to classes of Boolean functions, e.g.,
– decision trees
– Weighted linear sums of inputs (e.g., perceptrons)



Decision Tree Learning

• Constrain h(..) to be a decision tree



Decision Tree Representations

• Decision trees are fully expressive
– can represent any Boolean function
– Every path in the tree could represent 1 row in the truth table

Yi ld   ti ll  l  t– Yields an exponentially large tree
• Truth table is of size 2d, where d is the number of attributes



Decision Tree Representations

• Trees can be very inefficient for certain types of functions
– Parity function: 1 only if an even number of 1’s in the input vector

• Trees are very inefficient at representing such functions
– Majority function: 1 if more than ½ the inputs are 1’s

• Also inefficient
– Simple DNF formulae can be easily represented

E  f  (A AND B) OR (NOT(A) AND D)• E.g., f = (A AND B) OR (NOT(A) AND D)
• DNF = disjunction of conjunctions

• Decision trees are in effect DNF representations
f f– often used in practice since they often result in compact approximate 

representations for complex functions
– E.g., consider a truth table where most of the variables are irrelevant to the 

function



Decision Tree Learning

• Find the smallest decision tree consistent with the n examples
– Unfortunately this is provably intractable to do optimally

G d  h i i  h d i  i• Greedy heuristic search used in practice:
– Select root node that is “best” in some sense
– Partition data into 2 subsets, depending on root attribute value
– Recursively grow subtrees

Diff t t i ti  it i– Different termination criteria
• For noiseless data, if all examples at a node have the same label then 

declare it a leaf and backup
• For noisy data it might not be possible to find a “pure” leaf using the 

given attributesg
– we’ll return to this later – but a simple approach is to have a 

depth-bound on the tree (or go to max depth) and use majority 
vote

W  h  t lk d b t bi  i bl   til  b t   • We have talked about binary variables up until now, but we can 
trivially extend to multi-valued variables



Pseudocode for Decision tree learning



Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are 
(ideally) "all positive" or "all negative"

• Patrons? is a better choice
H    tif  thi ?– How can we quantify this?

– One approach would be to use the classification error E directly (greedily)
• Empirically it is found that this works poorly

– Much better is to use information gain (next slides)



Entropy  

H(p) = entropy of distribution p = {pi}
(called “information” in text)

= E [pi log (1/pi) ] = - p log p  - (1-p) log (1-p)

Intuitively log 1/pi is the amount of information we get when we find 
out that outcome i occurred, e.g.,

i = “6.0 earthquake in New York today”,  p(i) = 1/220 

log 1/pi = 20 bits
j = “rained in New York today”  p(i) = ½j = rained in New York today , p(i) = ½

log 1/pj = 1 bit

Entropy is the expected amount of information we gain, given a py p g , g
probability distribution – its our average uncertainty

In general, H(p) is maximized when all pi are equal and minimized 
(=0) when one of the p ’s is 1 and all others zero(=0) when one of the pi s is 1 and all others zero.



Entropy with only 2 outcomes

Consider 2 class problem: p = probability of class 1, 1 – p = 
probability of class 2p y

In binary case, H(p) = - p log p  - (1-p) log (1-p)

H(p)

1

0.5 10 p



Information Gain

• H(p) = entropy of class distribution at a particular node

• H(p | A)  conditional entropy  average entropy of • H(p | A) = conditional entropy = average entropy of 
conditional class distribution, after we have partitioned the 
data according to the values in A

• Gain(A) = H(p) – H(p | A)

• Simple rule in decision tree learningSimple rule in decision tree learning
– At each internal node, split on the node with the largest 

information gain (or equivalently, with smallest H(p|A))

• Note that by definition, conditional entropy can’t be greater 
than the entropy



Root Node Example

For the training set, 6 positives, 6 negatives, H(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type:

bits 0541.)]
6
4,

6
2(

12
6)0,1(

12
4)1,0(

12
2[1)(  HHHPatronsIG

bits 0)]
4
2,

4
2(

12
4)

4
2,

4
2(

12
4)

2
1,

2
1(

12
2)

2
1,

2
1(

12
2[1)(  HHHHTypeIG

Patrons has the highest IG of all attributes and so is chosen by the learning 
algorithm as the root

Information gain is then repeatedly applied at internal nodes until all leaves contain 
only examples from one class or the other



Decision Tree Learned

• Decision tree learned from the 12 examples:



True Tree (left) versus Learned Tree (right)



Assessing Performance

Training data performance is typically optimistic
e.g., error rate on training data

Reasons?
- classifier may not have enough data to fully learn the concept (but

on training data we don’t know this)
- for noisy data, the classifier may overfit the training data

In practice we want to assess performance “out of sample”In practice we want to assess performance out of sample
how well will the classifier do on new unseen data? This is the

true test of what we have learned (just like a classroom)

With large data sets we can partition our data into 2 subsets  train and testWith large data sets we can partition our data into 2 subsets, train and test
- build a model on the training data
- assess performance on the test data



Example of Test Performance

Restaurant problem
- simulate 100 data sets of different sizes
- train on this data, and assess performance on an independent test set
- learning curve = plotting accuracy as a function of training set size
- typical “diminishing returns” effect (some nice theory to explain this)



Overfitting and Underfitting

Y

XX



A Complex Model

Y = high-order polynomial in X

Y

XX



A Much Simpler Model

Y = a X  + b  +  noise

Y

XX



Example 2



Example 2



Example 2



Example 2



Example 2



How Overfitting affects Prediction

P di tiPredictive
Error

Model Complexity

Error on Training Data

Model Complexity



How Overfitting affects Prediction

P di tiPredictive
Error

Error on Test Data

Model Complexity

Error on Training Data

Model Complexity



How Overfitting affects Prediction

P di ti

OverfittingUnderfitting
Predictive

Error

Error on Test Data

Model Complexity

Error on Training Data

Model Complexity

Ideal Range
for Model Complexity



Training and Validation Data

Full Data Set

Training Data
Idea: train each
model on theTraining Data model on the
“training data”

and then test

Validation Data

each model’s
accuracy on
the validation data



The v-fold Cross-Validation Method

• Why just choose one particular 90/10 “split” of the data?
– In principle we could do this multiple times

• “v-fold Cross-Validation” (e.g., v=10)
– randomly partition our full data set into v disjoint subsets (each 

roughly of size n/v, n = total number of training data points)
• for  i = 1:10  (here v = 10)

– train on 90% of data,
– Acc(i) =  accuracy on other 10%
d• end

• Cross-Validation-Accuracy =  1/v  i Acc(i)

– choose the method with the highest cross-validation accuracy
– common values for v are 5 and 10
– Can also do “leave-one-out” where v = n



Disjoint Validation Data Sets

Full Data Set

Validation Data

Training Data

1st partition



Disjoint Validation Data Sets

Full Data Set

Validation Data
Validation

Training Data

Validation 
Data

1st partition 2nd partition



More on Cross-Validation

• Notes
– cross-validation generates an approximate estimate of how well 

the learned model will do on “unseen” datae ea ed ode do o u see da a

– by averaging over different partitions it is more robust than just a 
single train/validate partition of the data

– “v-fold” cross-validation is a generalization
• partition data into disjoint validation subsets of size n/v
• train  validate  and average over the v partitions• train, validate, and average over the v partitions
• e.g., v=10 is commonly used

– v-fold cross-validation is approximately v times computationally 
more expensive than just fitting a model to all of the data



Learning to Detect Faces

(This material is not in the text: for details see paper by 
P. Viola and M. Jones,  International Journal of Computer Vision, 2004.)

Try to read by Tuesday’s lecture.



Summary

• Inductive learning
– Error function, class of hypothesis/models {h}
– Want to minimize E on our training dataWant to minimize E on our training data
– Example: decision tree learning

• Generalization
– Training data error is over-optimistic
– We want to see performance on test data
– Cross-validation is a useful practical approach

• Learning to recognize faces
– Viola-Jones algorithm: state-of-the-art face detector, entirely 

learned from data  using boosting+decision-stumpslearned from data, using boosting+decision-stumps


