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You will be expected to know
• Basic concepts and vocabulary of Bayesian networks.

– Nodes represent random variables.
– Directed arcs represent (informally) direct influences.
– Conditional probability tables, P( Xi | Parents(Xi) ).

• Given a Bayesian network:
– Write down the full joint distribution it represents.

• Given a full joint distribution in factored form:
– Draw the Bayesian network that represents it.

• Given a variable ordering and some background assertions of 
conditional independence among the variables:
– Write down the factored form of the full joint distribution, as simplified by 

the conditional independence assertions.

• Use the network to find answers to probability questions about it. 



Why Bayesian Networks?

• Probabilistic Reasoning
– Knowledge Base : Joint distribution  over all random variables
– Reasoning: Compute probability of states of the world 

• Find the most probable assignments
• Compute marginal / conditional probability

• Why Bayesian Net?
– Manipulating full joint distribution is very hard!
– Exploit conditional independence properties
– Bayesian Network usually more compact & feasible

• Probabilistic Graphical Models
• Tool for Reasoning, Computation 
• Probabilistic Reasoning based on the Graph



Conditional independence
• Recall: chain rule of probability

– p(x,y,z) = p(x) p(y|x) p(z|x,y)

• Some of these models are conditionally independent
– e.g.,    p(x,y,z) = p(x) p(y|x) p(z|x)

• Some models may have even more independence
– E.g.,    p(x,y,z) = p(x) p(y) p(z)

• The more independence and conditional
independence, the more compactly
we can represent and reason over
the joint probability distribution.

p(x) p(y|x) p(z|x,y)

p(x) p(y|x) p(z|x)

p(x) p(y) p(z)



• Directed graphical model
• Nodes associated with variables
• “Draw” independence in conditional probability expansion

– Parents in graph are the RHS of conditional

• Example:

• Example:  

Bayesian networks

x y z

a b

c

d

Graph must be acyclic

Corresponds to an order
over the variables 
(chain rule)

x y

z



• Specifies a joint distribution in a structured form:

(A and B are independent of all variables;
C depends on A and B)

• Dependence/independence shown by a directed graph:  
− Node = random variable
− Directed Edge = conditional dependence
− Absence of Edge = conditional independence

• Allows concise view of joint distribution relationships:  
− Graph nodes and edges show conditional relationships between variables.
− Tables provide probability data.

• Tables are concise!!
− P(¬ A) is not shown since it can be inferred as (1 − P(A) ), etc.

Bayesian Network

A B

C

p(A,B,C) = p(C|A,B)p(A)p(B)

P(A)
0.50



Bayesian Networks
• Structure of the graph  Conditional independence relations

• Requires that graph is acyclic (no directed cycles)

• 2 components to a Bayesian network
– The graph structure (conditional independence assumptions)
– The numerical probabilities (for each variable given its parents)

• Also known as belief networks, graphical models, causal networks

• Parents in the graph ⇔ conditioning variables 
(RHS) in the formula 

In general,

p(X1, X2,....XN) = Π p(Xi | parents(Xi ) )

The full joint distribution The graph-structured approximation



Examples of 3-way Bayesian Networks

A CB Marginal Independence:
p(A,B,C) = p(A) p(B) p(C)

Parents in the graph ⇔
conditioning variables (RHS)

A, B, and C are independent.



Examples of 3-way Bayesian Networks

A B

C

Independent Causes:
p(A,B,C) = p(C|A,B)p(A)p(B)

“Explaining away” effect:
Given C, observing A makes B less likely
e.g., earthquake/burglary/alarm example

A and B are (marginally) independent 
but become dependent once C is known

Parents in the graph ⇔
conditioning variables (RHS)

A and B directly influence C.



Examples of 3-way Bayesian Networks

A CB Markov dependence:
p(A,B,C) = p(C|B) p(B|A)p(A)

Parents in the graph ⇔
conditioning variables (RHS)

A directly influences B; 
B directly influences C; 
but A influences C only 
indirectly through B.



Burglar Alarm Example

• Consider the following 5 binary variables:
– B = a burglary occurs at your house
– E = an earthquake occurs at your house
– A = the alarm goes off
– J  = John calls to report the alarm
– M = Mary calls to report the alarm

– What is P(B | M, J) ?  (for example)

– We can use the full joint distribution to answer this question
• Requires 25 = 32 probabilities

• Can we use prior domain knowledge to come up with a Bayesian 
network that requires fewer probabilities?



The Causal Bayesian Network

Only requires 10 probabilities!

Generally, order variables so that resulting graph reflects assumed causal relationships.

Because the variables are 
binary, we only need show 
the value when variable=t.
The value when variable=f 
may be obtained by 
subtracting from 1.0.  E.g., 
P(B=t) = .001, and so 
P(B=f) = 1 - P(B=t) = .999. 
Doing so saves space.



Constructing a Bayesian Network: Step 1
• Order the variables in terms of influence (may be a partial order)

e.g., {E, B} -> {A} -> {J, M}

• Now, apply the chain rule, and simplify based on assumptions

• P(J, M, A, E, B) =  P(J, M | A, E, B) P(A| E, B) P(E, B)

≈  P(J, M | A)         P(A| E, B) P(E) P(B)

≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B)

These conditional independence assumptions are reflected in the graph 
structure of the Bayesian network

Generally, order variables to reflect the assumed causal relationships.



Constructing this Bayesian Network: Step 2

• P(J, M, A, E, B) =    
P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B)

• There are 3 conditional probability tables (CPDs) to be determined:
P(J | A),  P(M | A),  P(A | E, B) 
– Requiring 2 + 2 + 4 = 8 probabilities

• And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities

• Where do  these probabilities come from?
– Expert knowledge
– From data (relative frequency estimates)
– Or a combination of both - see discussion in Section 20.1 and 20.2 

(optional)

Parents in the graph ⇔
conditioning variables (RHS)



The Resulting Bayesian Network

P(J, M, A, E, B) = P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B)
Generally, order variables so that resulting graph reflects assumed causal relationships.

Parents in the graph ⇔
conditioning variables (RHS)



The Bayesian Network From a 
Different Variable Ordering

P(J, M, A, E, B) = P(E | A, B)  P(B | A)  P(A | M, J)  P(J | M)  P(M)
Generally, order variables so that resulting graph reflects assumed causal relationships.

Parents in the graph ⇔
conditioning variables (RHS)



The Bayesian Network From a 
Different Variable Ordering

P(J, M, A, E, B) = P(A | B, E, M, J)  P(B | E, M, J)  P(E | M, J)  P(J | M)  P(M)

Parents in the graph ⇔
conditioning variables (RHS)

Generally, order variables to reflect the assumed causal relationships.



Number of Probabilities Needed (1)

• Joint distribution
EB

A

J M

E B A J M P( … )

0 0 0 0 0 .93674

0 0 0 0 1 .00133

0 0 0 1 0 .00005

0 0 0 1 1 .00000

0 0 1 0 0 .00003

0 0 1 0 1 .00002

0 0 1 1 0 .00003

0 0 1 1 1 .00000

0 1 0 0 0 .04930

0 1 0 0 1 .00007

0 1 0 1 0 .00000

0 1 0 1 1 .00000

0 1 1 0 0 .00027

0 1 1 0 1 .00016

0 1 1 1 0 .00025

0 1 1 1 1 .00000

E B A J M P( … )

1 0 0 0 0 .00946

1 0 0 0 1 .00001

1 0 0 1 0 .00000

1 0 0 1 1 .00000

1 0 1 0 0 .00007

1 0 1 0 1 .00004

1 0 1 1 0 .00007

1 0 1 1 1 .00000

1 1 0 0 0 .00050

1 1 0 0 1 .00000

1 1 0 1 0 .00000

1 1 0 1 1 .00000

1 1 1 0 0 .00063

1 1 1 0 1 .00037

1 1 1 1 0 .00059

1 1 1 1 1 .00000

Full joint distribution:
25 = 32 probabilities

Structured distribution:
specify 10 parameters



Number of Probabilities Needed (2)
• Consider n binary variables

• Unconstrained joint distribution requires O(2n) probabilities

• If we have a Bayesian network, with a maximum of k parents 
for any node, then we need O(n 2k) probabilities

• Example
– Full unconstrained joint distribution

• n = 30, k = 4:  need 109 probabilities for full joint distribution
– Bayesian network

• n = 30, k = 4:  need 480 probabilities



Example of Answering a Simple Query

• What is P(¬j, m, a, ¬e, b) = P(J = false ∧ M=true ∧ A=true ∧ E=false ∧ B=true)

P(J, M, A, E, B) ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) ; by conditional independence

P(¬j, m, a, ¬e, b) ≈  P(¬j | a) P(m | a) P(a| ¬e, b) P(¬e) P(b) 
= 0.10   x   0.70   x   0.94  x  0.998  x  0.001 ≈ .0000657

EarthquakeBurglary

Alarm

John Mary

B E P(A|B,E)

1 1 0.95

1 0 0.94

0 1 0.29

0 0 0.001

P(B)

0.001
P(E)

0.002

A P(J|A)

1 0.90

0 0.05
A P(M|A)

1 0.70

0 0.01



Hospital Alarm network

PCWP CO

HRBP

HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

ANAPHYLAXIS

MINOVL

PVSAT

FIO2
PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP

The “alarm” network:  37 variables, 509 parameters (rather than 237 = 1011 !) 

[Beinlich et al., 1989]



Reasoning in Bayesian networks
• Suppose we observe J

– Observing J makes A more likely
– A being more likely makes B more likely

• Suppose we observe A
– Makes M more likely

• Observe A and J?
– J doesn’t add any more information about M
– Observing A makes J, M independent
– P(M | A, J) = P(M | A)    ; M is conditionally independent of J given A

• How can we read independence directly from the graph?

Earthquake Burglary

Alarm

John Mary



Reasoning in Bayesian networks

• How are J,M related given A?
– P(M) = 0.0117
– P(M|A) = 0.7
– P(M|A,J) = 0.7
– Conditionally independent

• Proof:

Earthquake Burglary

Alarm

John Mary
(we actually know this by construction!)



Reasoning in Bayesian networks

• How are J,B related given A?
– P(B) = 0.001
– P(B|A) = 0.3735
– P(B|A,J) = 0.3735
– Conditionally independent

• Proof:

Earthquake Burglary

Alarm

John Mary



Reasoning in Bayesian networks

• How are E,B related?
– P(B) = 0.001
– P(B|E) = 0.001
– (Marginally) independent

• What about given A?
– P(B|A) = 0.3735
– P(B|A,E) = 0.0032
– Not conditionally independent!
– The “causes” of A become coupled by observing its value
– Sometimes called “explaining away”

Earthquake Burglary

Alarm

John Mary



Given a graph, can we “read off” 
conditional independencies?

The “Markov Blanket” of X
(the gray area in the figure)

X is conditionally independent of 
everything else, GIVEN the 
values of:

* X’s parents
* X’s children
* X’s children’s parents

X is conditionally independent of 
its non-descendants, GIVEN the 
values of its parents.



D-Separation
• Prove sets X,Y independent given Z?
• Check all undirected paths from X to Y
• A path is “inactive” if it passes through:

(1) A “chain” with an observed variable

(2) A “split” with an observed variable

(3) A “vee” with only unobserved
variables below it

• If all paths are inactive, conditionally independent!

X
YV

X YV

X Y
V



Naïve Bayes Model

X1 X2 X3

C

Xn

P(C | X1,…,Xn)  =  α P (C) Π P(Xi | C)

Features Xi are conditionally independent given the class variable C

Widely used in machine learning
e.g., spam email classification: Xi = counts of wordi in emails

Probabilities P(C) and  P(Xi | C) can be estimated easily from labeled data



Naïve Bayes Model (2)
P(C | X1,…Xn)  =  α P (C) Π P(Xi | C)

Probabilities P(C) and P(Xi | C) can be estimated easily from labeled data

P(C = cj)  ≈ #(Examples with class label cj)  /  #(Examples)

P(Xi = xi,k | C = cj)
≈ #(Examples with Xi value xi,k and class label cj) 

/  #(Examples with class label cj)

Usually easiest to work with logs
log [ P(C | X1,…Xn) ]

=  log α + log P (C) + Σ log P(Xi | C)

DANGER: Suppose ZERO examples with Xi value xi,k and class label cj ?
An unseen example with Xi value xi,k will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.



Hidden Markov Model (HMM)

Y1

S1

Y2

S2

Y3

S3

Yn

Sn

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Observed

Hidden

Two key assumptions:
1. hidden state sequence is Markov
2. observation Yt is conditionally independent

of all other variables given St

Widely used in speech recognition, protein sequence models

Since this is a Bayesian network polytree, inference is linear in n







Examples of “real world” Bayesian Networks:
Genetic linkage analysis

- 6 individuals
- Haplotype: {2, 3}
- Genotype: {6}
- Unknown

21

3 4

5 6

? | A
? | B

? | ?
? | ?

? | ?
? | ?

A | a
B | b

A | A
B | b

A | a
B | b



L11m L11f

X11

L12m L12f

X12

L13m L13f

X13

L14m L14f

X14

L15m L15f

X15

L16m L16f

X16

S13m

S15m

S16mS15m

S15m

S15m

L21m L21f

X21

L22m L22f

X22

L23m L23f

X23

L24m L24f

X24

L25m L25f

X25

L26m L26f

X26

S23m

S25m

S26mS25m

S25m

S25m

L31m L31f

X31

L32m L32f

X32

L33m L33f

X33

L34m L34f

X34

L35m L35f

X35

L36m L36f

X36

S33m

S35m

S36mS35m

S35m

S35m

Examples of “real world” Bayesian Networks:
Pedigree model: 6 people, 3 markers



Inference in Bayesian Networks

• X = { X1, X2, …, Xk } = query variables of interest
• E = { E1, …, El } = evidence variables that are observed

– (e, an event)
• Y = { Y1, …, Ym } = hidden variables (nonevidence, nonquery)

• What is the posterior distribution of X, given E?
• P( X | e ) = α Σ y P( X, y, e )

• What is the most likely assignment of values to X, given E?
• argmax x P( x | e ) = argmax x Σ y P( x, y, e )



Inference in Bayesian Networks
Simple Example

A B

C

D

}
}
}

Query Variables A, B

Hidden Variable C

Evidence Variable D

P(A)
.05
Disease1

P(B)
.02
Disease2

A B P(C|A,B)
t  t .95
t  f .90
f  t .90
f  f .005

TempReg

C P(D|C)
t     .95
f     .002

Fever

Note: Not an anatomically correct model of how diseases cause fever!

Suppose that two different diseases influence some imaginary internal body 
temperature regulator, which in turn influences whether fever is present.



Inference in Bayesian Networks
Simple Example

A B

C

D

What is the posterior conditional 
distribution of our query variables, 
given that fever was observed?

P(A,B|d) = α Σ c P(A,B,c,d)
= α Σ c P(A)P(B)P(c|A,B)P(d|c)
= α P(A)P(B) Σ c P(c|A,B)P(d|c)

P(A)
.05
Disease1

P(B)
.02
Disease2

A B P(C|A,B)
t  t .95
t  f .90
f  t .90
f  f .005

TempReg

C P(D|C)
t     .95
f     .002

Fever

P(a,b|d) = α P(a)P(b) Σ c P(c|a,b)P(d|c) = α P(a)P(b){ P(c|a,b)P(d|c)+P(¬c|a,b)P(d|¬c) }
= α .05x.02x{.95x.95+.05x.002} ≈ α .000903 ≈ .014

P(¬a,b|d) = α P(¬a)P(b) Σ c P(c|¬a,b)P(d|c) = α P(¬a)P(b){ P(c|¬a,b)P(d|c)+P(¬c|¬a,b)P(d|¬c) }
= α .95x.02x{.90x.95+.10x.002} ≈ α .0162 ≈ .248

P(a,¬b|d) = α P(a)P(¬b) Σ c P(c|a,¬b)P(d|c) = α P(a)P(¬b){ P(c|a,¬b)P(d|c)+P(¬c|a,¬b)P(d|¬c) }
= α .05x.98x{.90x.95+.10x.002} ≈ α .0419 ≈ .642

P(¬a,¬b|d) = α P(¬a)P(¬b) Σ c P(c|¬a,¬b)P(d|c) = α P(¬a)P(¬b){ P(c|¬a,¬b)P(d|c)+P(¬c|¬a,¬b)P(d|¬c) }
= α .95x.98x{.005x.95+.995x.002} ≈ α .00627 ≈ .096

α ≈ 1 / (.000903+.0162+.0419+.00627) ≈ 1 / .06527 ≈ 15.32



P(a,b|d) = α P(a)P(b) Σ c P(c|a,b)P(d|c) = α P(a)P(b){ P(c|a,b)P(d|c)+P(¬c|a,b)P(d|¬c) }
= α .05x.02x{.95x.95+.05x.002} ≈ α .000903 ≈ .014

P(¬a,b|d) = α P(¬a)P(b) Σ c P(c|¬a,b)P(d|c) = α P(¬a)P(b){ P(c|¬a,b)P(d|c)+P(¬c|¬a,b)P(d|¬c) }
= α .95x.02x{.90x.95+.10x.002} ≈ α .0162 ≈ .248

P(a,¬b|d) = α P(a)P(¬b) Σ c P(c|a,¬b)P(d|c) = α P(a)P(¬b){ P(c|a,¬b)P(d|c)+P(¬c|a,¬b)P(d|¬c) }
= α .05x.98x{.90x.95+.10x.002} ≈ α .0419 ≈ .642

P(¬a,¬b|d) = α P(¬a)P(¬b) Σ c P(c|¬a,¬b)P(d|c) = α P(¬a)P(¬b){ P(c|¬a,¬b)P(d|c)+P(¬c|¬a,¬b)P(d|¬c) }
= α .95x.98x{.005x.95+.995x.002} ≈ α .00627 ≈ .096

α ≈ 1 / (.000903+.0162+.0419+.00627) ≈ 1 / .06527 ≈ 15.32

Inference in Bayesian Networks
Simple Example

A B

C

D

What is the most likely posterior 
conditional assignment of values 
to our query variables, given that 
fever was observed?

argmax{a,b} P( a, b | d )
= argmax{a,b} Σ c P( a,b,c,d )
= { a,¬b }

P(A)
.05
Disease1

P(B)
.02
Disease2

A B P(C|A,B)
t  t .95
t  f .90
f  t .90
f  f .005

TempReg

C P(D|C)
t     .95
f     .002

Fever



Inference in Bayesian Networks
Simple Example

A B

C

D

What is the posterior conditional 
distribution of A, given that fever 
was observed? (I.e., temporarily 
make B into a hidden variable.)

We can use P(A,B|d) from above.

P(A|d) = α Σ b P(A,b|d)

P(A)
.05
Disease1

P(B)
.02
Disease2

A B P(C|A,B)
t  t .95
t  f .90
f  t .90
f  f .005

TempReg

C P(D|C)
t     .95
f     .002

Fever

P(a|d) = Σ b P(a,b|d) = P(a,b|d)+P(a,¬b|d)
= (.014+.642)  ≈ .656

P(¬a|d) = Σ b P(¬a,b|d) = P(¬a,b|d)+P(¬a,¬b|d)
= (.248+.096) ≈ .344

This is a marginalization, so we expect from 
theory that α = 1; but check for round-off error. 

A   B   P(A,B|d) from above
t    t ≈ .014
f    t ≈ .248
t    f      ≈ .642
f    f ≈ .096



General Strategy for inference
• Want to compute P(q | e)

Step 1:
P(q | e) = P(q,e)/P(e)  = α P(q,e),    since P(e) is constant wrt Q

Step 2:
P(q,e)  =  Σa..z P(q, e, a, b, …. z),   by the law of total probability

Step 3:
Σa..z P(q, e, a, b, …. z)  = Σa..z Πi P(variable i | parents i)  

(using Bayesian network factoring)
Step 4:

Distribute summations across product terms for efficient 
computation

Section 14.4 discusses exact inference in Bayesian Networks. The complexity 
depends strongly on the network structure. The general case is intractable, but 
there are things you can do. Section 14.5 discusses approximation by sampling.



Summary

• Bayesian networks represent a joint distribution using a graph

• The graph encodes a set of conditional independence assumptions

• Answering queries (or inference or reasoning) in a Bayesian network 
amounts to computation of appropriate conditional probabilities

• Probabilistic inference is intractable in the general case
– Can be done in linear time for certain classes of Bayesian networks (polytrees: 

at most one directed path between any two nodes)
– Usually faster and easier than manipulating the full joint distribution
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