
Local search algorithms

CS271P, Fall Quarter, 2019
Introduction to Artificial Intelligence

Prof. Richard Lathrop

Read Beforehand: R&N 4.1-4.2, 4.6
Optional: R&N 4.3-4.5

Local search algorithms
• In many optimization problems, the path to the goal is

irrelevant; the goal state itself is the solution
– Local search: widely used for very big problems
– Returns good but not optimal solutions
– Usually very slow, but can yield good solutions if you wait

• State space = set of "complete" configurations
• Find a complete configuration satisfying constraints

– Examples: n-Queens, VLSI layout, airline flight schedules

• Local search algorithms
– Keep a single "current" state, or small set of states
– Iteratively try to improve it / them
– Very memory efficient

• keeps only one or a few states
• You control how much memory you use

Typically, “tired of doing it” means that some resource limit is exceeded,
e.g., number of iterations, wall clock time, CPU time, etc.
It may also mean that result improvements are small and infrequent,
e.g., less than 0.1% result improvement in the last week of run time.

Basic idea of local search (many variations)

// initialize to something, usually a random initial state
// alternatively, might pass in a human-generated initial state
best_found ← current_state ← RandomState()
// now do local search
loop do

if (tired of doing it) then return best_found
else

current_state ← MakeNeighbor(current_state)
if (Cost(current_state) < Cost(best_found)) then

// keep best result found so far
best_found ← current_state

You, as algorithm
designer, write
the functions
named in red.

Example: n-queens

• Goal: Put n queens on an n × n board with no two
queens on the same row, column, or diagonal

• Neighbor: move one queen to another row
• Search: go from one neighbor to the next…

Algorithm design considerations
• How do you represent your problem?

• What is a “complete state”?

• What is your objective function?
– How do you measure cost or value of a state?
– Stand on your head: cost = −value, value = −cost

• What is a “neighbor” of a state?
– Or, what is a “step” from one state to another?
– How can you compute a neighbor or a step?

• Are there any constraints you can exploit?

Random restart wrapper

• We’ll use stochastic local search methods
– Return different solution for each trial & initial state

• Almost every trial hits difficulties (see sequel)
– Most trials will not yield a good result (sad!)

• Using many random restarts improves your chances
– Many “shots at goal” may finally get a good one

• Restart a random initial state, many times
– Report the best result found across many trials

Random restart wrapper
best_found ← RandomState() // initialize to something

// now do repeated local search
loop do

if (tired of doing it)
then return best_found

else
result ← LocalSearch(RandomState())
if (Cost(result) < Cost(best_found))

// keep best result found so far
then best_found ← result

Typically, “tired of doing it” means that some resource limit has been
exceeded, e.g., number of iterations, wall clock time, CPU time, etc.
It may also mean that result improvements are small and infrequent,
e.g., less than 0.1% result improvement in the last week of run time.

You, as algorithm
designer, write
the functions
named in red.

Tabu search wrapper

• Add recently visited states to a tabu-list
– Temporarily excluded from being visited again
– Forces solver away from explored regions
– Less likely to get stuck in local minima (hope, in principle)

• Implemented as a hash table + FIFO queue
– Unit time cost per step; constant memory cost
– You control how much memory is used

• RandomRestart(TabuSearch (LocalSearch()))

Tabu search wrapper (inside random restart!)

best_found ← current_state ← RandomState() // initialize
loop do // now do local search

if (tired of doing it) then return best_found else
neighbor ← MakeNeighbor(current_state)
if (neighbor is in hash_table) then discard neighbor
else push neighbor onto fifo, pop oldest_state

remove oldest_state from hash_table, insert neighbor
current_state ← neighbor;

if (Cost(current_state) < Cost(best_found))
then best_found ← current_state

FIFO QUEUE Oldest
State

New
State

HASH TABLE
State

Present?

Local search algorithms

• Hill-climbing search
– Gradient descent in continuous state spaces
– Can use, e.g., Newton’s method to find roots

• Simulated annealing search
• Local beam search
• Genetic algorithms
• Linear Programming (for specialized problems)

Local Search Difficulties

• Problems: depending on state, can get stuck in local maxima
– Many other problems also endanger your success!!

These difficulties apply to ALL local search algorithms, and become MUCH
more difficult as the search space increases to high dimensionality.

Local Search Difficulties

• Ridge problem: Every neighbor appears to be downhill
– But the search space has an uphill!! (worse in high dimensions)

Ridge:
Fold a piece of
paper and hold
it tilted up at an
unfavorable
angle to every
possible search
space step.
Every step
leads downhill;
but the ridge
leads uphill.

These difficulties apply to ALL local search algorithms, and become MUCH
more difficult as the search space increases to high dimensionality.

Hill-climbing search

“…like trying to find the top of Mount Everest in a thick fog while
suffering from amnesia”

Equivalently: “if COST[neighbor] ≥ COST[current] then …”

Equivalently:
“…a lowest-cost successor…”

You must shift effortlessly between maximizing value and minimizing cost

12 (boxed) = best h
among all neighors;
select one randomly

h = # of pairs of
queens that are
attacking each other,
either directly or
indirectly (cost)

h=17 for this state

Each number indicates h
if we move a queen in its
column to that square

Example: Hill-climbing, 8-queens

Example: Hill-climbing, 8-queens

• A local minimum with h=1

• All one-step neighbors have
higher h values

• What can you do to get out
of this local minimum?

Gradient descent
• Hill-climbing in continuous state spaces
• Denote “state” as θ, a vector of parameters
• Denote cost as J(θ)

• How to change θ to improve J(θ)?
• Choose a direction in which J(θ)

is decreasing
• Derivative

• Positive => increasing cost
• Negative => decreasing cost

The curly D means to take a
derivative while holding all other
variables constant. You are not
responsible for multivariate calculus,
but gradient descent is a very
important method, so it is presented.

Gradient descent

(c) Alexander Ihler

• Gradient vector

Gradient = direction of
steepest ascent
Negative gradient =
steepest descent

Hill-climbing in continuous spaces

* Assume we have some cost-function:
and we want minimize over continuous variables x1,x2,..,xn

1. Compute the gradient :

2. Take a small step downhill in the direction of the gradient:

3. Check if

4. If true then accept move, if not “reject”.

5. Repeat.

Gradient = the most direct direction up-hill in the objective
(cost) function, so its negative minimizes the cost function.

Gradient descent
Hill-climbing in continuous spaces

(or, Armijo rule, etc.)

(decrease step size, etc.)

http://upload.wikimedia.org/wikipedia/commons/d/db/Gradient_ascent_(contour).png

Gradient descent
• How do I determine the gradient?

– Derive formula using multivariate calculus.
– Ask a mathematician or a domain expert.
– Do a literature search.

• Variations of gradient descent can improve
performance for this or that special case.
– See Numerical Recipes in C (and in other languages) by

Press, Teukolsky, Vetterling, and Flannery.
– Simulated Annealing, Linear Programming too

• Works well in smooth spaces; poorly in rough.

Hill-climbing in continuous spaces

Newton’s method
• Want to find the roots of f(x)

– “Root”: value of x for which f(x)=0

• Initialize to some point xn

• Compute the tangent at xn & compute xn+1 = where it crosses x-axis

Newton’s method
• Want to find the roots of f(x)

– “Root”: value of x for which f(x)=0

• Initialize to some point xn

• Compute the tangent at xn & compute xn+1 = where it crosses x-axis
• Repeat for xn+1

– Does not always converge; sometimes unstable
– If converges, usually very fast
– Works well for smooth, non-pathological functions; accurate linearization
– Works poorly for wiggly, ill-behaved functions; tangent is a poor guide to root

Simulated annealing (Physics!)

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

Improvement: Track the
BestResultFoundSoFar.
Here, this slide follows
Fig. 4.5 of the textbook,
which is simplified.

Typical annealing schedule

• Usually use a decaying exponential
• Axis values scaled to fit problem characteristics

Tem
perature

Probability(accept worse successor)
•Decreases as temperature T decreases
•Increases as |Δ E| decreases
•Sometimes, step size also decreases with T

Tem
perature

e ∆E / T
Temperature T

High Low

|∆E |
High Medium Low

Low High Medium

(accept very bad moves early on; later, mainly accept “not very much worse”)

Your “random restart
wrapper” starts here.

A
Value=42

B
Value=41

C
Value=45

D
Value=44

E
Value=48

F
Value=47

G
Value=51

Va
lu

e

You want to get
here. HOW??

This is an illustrative cartoon…

Arbitrary (Fictitious) Search Space Coordinate

Goal: “ratchet up” a bumpy slope
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)

C
Value=45
∆E(CB)=-4
∆E(CD)=-1

P(CB) ≈.018
P(CD)≈.37

B
Value=41
∆E(BA)=1
∆E(BC)=4
P(BA)=1
P(BC)=1

A
Value=42
∆E(AB)=-1
P(AB) ≈.37

D
Value=44
∆E(DC)=1
∆E(DE)=4
P(DC)=1
P(DE)=1

E
Value=48
∆E(ED)=-4
∆E(EF)=-1

P(ED) ≈.018
P(EF)≈.37

F
Value=47
∆E(FE)=1
∆E(FG)=4
P(FE)=1
P(FG)=1

G
Value=51
∆E(GF)=-4

P(GF) ≈.018

x -1 -4

ex ≈.37 ≈.018

From A you will accept a move to B with P(AB) ≈.37.
From B you are equally likely to go to A or to C.
From C you are ≈20X more likely to go to D than to B.
From D you are equally likely to go to C or to E.
From E you are ≈20X more likely to go to F than to D.
From F you are equally likely to go to E or to G.
Remember best point you ever found (G or neighbor?).This is an illustrative cartoon…

Your “random
restart wrapper”
starts here.

Goal: “ratchet up” a jagged slope

Properties of simulated annealing
• One can prove:

– If T decreases slowly enough, then simulated annealing search
will find a global optimum with probability approaching 1

– Unfortunately this can take a VERY VERY long time
– Note: in any finite search space, random guessing also will find a

global optimum with probability approaching 1
– So, ultimately this is a very weak claim

• Often works very well in practice
– But usually VERY VERY slow

• Widely used in VLSI layout, airline scheduling, etc.

Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states are
generated

• If any one is a goal state, stop; else select the k best
successors from the complete list and repeat.

• Concentrates search effort in areas believed to be fruitful
– May lose diversity as search progresses, resulting in wasted effort

a1 b1 k1… Create k random initial states

… Generate their children

a2 b2 k2… Select the k best children

… Repeat indefinitely…

Is it better than simply running k searches?
Maybe…??

Local beam search

Genetic algorithms (Darwin!!)
• A state = a string over a finite alphabet (an individual)

– A successor state is generated by combining two parent states

• Start with k randomly generated states (a population)

• Fitness function (= our heuristic objective function).
– Higher fitness values for better states.

• Select individuals for next generation based on fitness
– P(individual in next gen.) = individual fitness/total population fitness

• Crossover fit parents to yield next generation (offspring)

• Mutate the offspring randomly with some low probability

Example: N-Queens
Each “individual” is a vector of each queen’s row

3 2 7 5 2 4 1 1 2 4 7 4 8 5 5 2

Genetic algorithms

• Fitness function (value): number of non-attacking pairs of
queens (min = 0, max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%
• 23/(24+23+20+11) = 29%; etc.

fitness =
#non-attacking
queens

• Fitness function: #non-attacking queen pairs
– min = 0, max = 8 × 7/2 = 28

• Σi fitness_i = 24+23+20+11 = 78
• P(pick child_1 for next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31%
• P(pick child_2 for next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc

probability of being
in next generation =
fitness/(Σ_i fitness_i)

How to convert a
fitness value into a
probability of being in
the next generation.

Linear Programming

• Maximize: z = c1 x1 + c2 x2 +…+ cn xn
• Primary constraints: x1≥0, x2≥0, …, xn≥0
• Arbitrary additional linear constraints:

ai1 x1 + ai2 x2 + … + ain xn ≤ ai, (ai ≥ 0)
aj1 x1 + aj2 x2 + … + ajn xn ≥ aj ≥ 0
bk1 x1 + bk2 x2 + … + bkn xn = bk ≥ 0

• Restricted class of linear problems.
– Efficient for very large problems(!!) in this class.

Linear Programming
Efficient Optimal Solution

For a Restricted Class of Problems

•Very efficient “off-the-shelf”
solvers are available for LPs.

• They quickly solve large problems
with thousands of variables.

Summary
• Local search maintains a complete solution

– Maintains a complete solution, seeks consistent (or at least good)
– vs: Path search maintains a consistent solution; seeks complete
– Goal of both: consistent & complete solution

• Types:
– hill climbing, gradient ascent
– simulated annealing, other Monte Carlo methods
– Population methods: beam search; genetic / evolutionary algorithms
– Wrappers: random restart; tabu search

• Local search often works well on very large problems
– Abandons optimality
– Always has some answer available (best found so far)
– Often requires a very long time to achieve a good result

	Local search algorithms
	Local search algorithms
	Basic idea of local search (many variations)
	Example: n-queens
	Algorithm design considerations
	Random restart wrapper
	Random restart wrapper
	Tabu search wrapper
	Tabu search wrapper (inside random restart!)
	Local search algorithms
	Local Search Difficulties
	Local Search Difficulties
	Hill-climbing search
	Example: Hill-climbing, 8-queens
	Example: Hill-climbing, 8-queens
	Gradient descent
	Gradient descent
	Gradient descent
	Gradient descent
	Newton’s method
	Newton’s method
	Simulated annealing (Physics!)
	Typical annealing schedule
	Probability(accept worse successor)
	Goal: “ratchet up” a bumpy slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Slide Number 27
	Properties of simulated annealing
	Local beam search
	Local beam search
	Genetic algorithms (Darwin!!)
	Example: N-Queens
	Genetic algorithms
	Slide Number 35
	Linear Programming
	Linear Programming�Efficient Optimal Solution�For a Restricted Class of Problems
	Summary

