
Machine Learning Classifiers:
Many Diverse Ways to Learn

CS271P, Fall Quarter, 2018
Introduction to Artificial Intelligence

Prof. Richard Lathrop

Read Beforehand: R&N 18.5-12, 20.2.2

You will be expected to know

• Classifiers:
– Decision trees
– K-nearest neighbors
– Perceptrons
– Support vector Machines (SVMs), Neural Networks
– Naïve Bayes

• Decision Boundaries for various classifiers
– What can they represent conveniently? What not?

Review: Supervised Learning

Supervised learning: learn mapping, attributes → target
– Classification: target variable is discrete (e.g., spam email)
– Regression: target variable is real-valued (e.g., stock market)

Review: Supervised Learning

Supervised learning: learn mapping, attributes → target
– Classification: target variable is discrete (e.g., spam email)
– Regression: target variable is real-valued (e.g., stock market)

Review: Training Data for Supervised Learning

Review: Decision Tree

Review: Supervised Learning

• Let x represent the input vector of attributes
– xj is the value of the jth attribute, j = 1, 2,…,d

• Let f(x) represent the value of the target variable for x
– The implicit mapping from x to f(x) is unknown to us
– We just have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f, i.e.,
– h(x; θ) should be “close” to f(x) for all training data points x

 θ are the parameters of the hypothesis function h()

• Examples:
– h(x; θ) = sign(w1x1 + w2x2+ w3)
– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4))

A Different View on Data Representation

Feature A

Feature B

Data Points
(Color
represents
which class
they are in)

Feature Space
● Data pairs can be plotted in “feature

space”

● Each axis represents 1 feature.

○ This is a d dimensional space,
where d is the number of features.

● Each data case corresponds to 1 point
in the space.

○ In this figure we use color to
represent their class label.

Can we find a boundary that separates the two classes?

Decision Boundaries

Decision Boundaries

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Decision
Boundary Decision

Region 1

Decision
Region 2

Classification in Euclidean Space

• A classifier is a partition of the feature space into disjoint
decision regions
– Each region has a label attached
– Regions with the same label need not be contiguous
– For a new test point, find what decision region it is in, and predict

the corresponding label

• Decision boundaries = boundaries between decision regions

• We can characterize a classifier by the equations for its
decision boundaries

• Learning a classifier ⬄ searching for the decision boundaries
that optimize our objective function

Can we represent a decision tree classifier in the
feature space?

Example: Decision Trees

• When applied to continuous attributes, decision trees produce
“axis-parallel” linear decision boundaries

• Categorical features -> values from a discrete set
e.g. Restaurant type (French, Italian, Thai, Burger)

Raining outside? (Yes/No)

• Continuous features -> real values
e.g. Income

– Each internal node is a binary threshold of the form
xj > t ? and converts each real-valued feature into a binary one

Decision Tree Example

Income

Debt

Decision Tree Example

t1 Income

Debt
Income > t1

??

Decision Tree Example

t1

t2

Income > t1

Debt > t2

??

Income

Debt

Decision Tree Example

t1t3

t2

Income > t1

Debt > t2

Income > t3

Income

Debt

Decision Tree Example

t1t3

t2

Income

Debt
Income > t1

Debt > t2

Income > t3
Note: tree boundaries are
linear and axis-parallel

A Simple Classifier: Minimum Distance Classifier

• Training
– Separate training vectors by class
– Compute the mean for each class, µk, k = 1,… m

• Prediction
– Compute the closest mean to a test vector x’ (using Euclidean

distance)
– Predict the corresponding class

• In the 2-class case, the decision boundary is defined by the
locus of the hyperplane that is halfway between the 2 means
and is orthogonal to the line connecting them

Minimum Distance Classifier

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Another Example: Nearest Neighbor Classifier

• The nearest-neighbor classifier
– Given a test point x’, compute the distance between x’ and each

input data point
– Find the closest neighbor in the training data
– Assign x’ the class label of this neighbor

• The nearest neighbor classifier results in piecewise linear
decision boundaries

Image Courtesy: http://scott.fortmann-roe.com/docs/BiasVariance.html

Local Decision Boundaries

1

1

1

2

2

2

Feature 1

Feature 2

?

Boundary? Points that are equidistant
between points of class 1 and 2
Note: locally the boundary is linear

Finding the Decision Boundaries

1

1

1

2

2

2

Feature 1

Feature 2

?

Finding the Decision Boundaries

1

1

1

2

2

2

Feature 1

Feature 2

?

Finding the Decision Boundaries

1

1

1

2

2

2

Feature 1

Feature 2

?

Overall Boundary = Piecewise Linear

1

1

1

2

2

2

Feature 1

Feature 2

?

Decision Region
for Class 1

Decision Region
for Class 2

Nearest-Neighbor Boundaries on this data set?

Predicts blue

Predicts red

K-Nearest Neighbor Classifier

• Instead of finding the 1 closest neighbors, find k closest
neighbors.

• For categorical class labels, take vote based on k-nearest
neighbors.

• k can be chosen by cross-validation

Image Courtesy: https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Larger K ⟹ Smoother boundary

The kNN Classifier

• The kNN classifier often works very well.
• Easy to implement.
• Easy choice if characteristics of your problem are unknown.

• Can be sensitive to the choice of distance metric.
– Often normalize feature axis values, e.g., z-score or [0, 1]

• E.g., if one feature runs larger in magnitude than another

• Can encounter problems with sparse training data.

• Can encounter problems in very high dimensional spaces.
– Most points are neighbors of most other points.

Linear Classifiers

• Linear classifiers classification decision based on the value of a
linear combination of the characteristics.
– Linear decision boundary (single boundary for 2-class case)

• We can represent a linear decision boundary by a linear equation:

• wi are the weights (parameters of the model)

https://en.wikipedia.org/wiki/Linear_combination

Linear Classifiers

• This equation defines a hyperplane in d dimensions
– A hyperplane is a subspace whose dimension is one less than that of its

ambient space.
– If a space is 3-dimensional, its hyperplanes are the 2-dimensional planes;

if a space is 2-dimensional, its hyperplanes are the 1-dimensional lines.

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834
f67a4f6

A hyperplane in a
3-dimensional space.

Linear Classifiers

• For prediction we simply see if for new data x.

• Learning consists of searching in the d-dimensional weight
space for the set of weights (the linear boundary) that
minimizes an error measure

• A threshold can be introduced by a “dummy” feature that is
always one; its weight corresponds to (the negative of) the
threshold

• Note that a minimum distance classifier is a special case of a
linear classifier

The Perceptron Classifier (pages 729-731 in text)

Input
Attributes
(Features)

Weights
For Input
Attributes

Bias or
Threshold

Transfer
Function

Output

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834
f67a4f6

σ

Two different types of perceptron output

x-axis below is f(x) = f = weighted sum of inputs
y-axis is the perceptron output

f

σ(f)

Thresholded output (step function),
 takes values +1 or -1

Sigmoid output, takes
real values between -1 and +1

The sigmoid is in effect an approximation
to the threshold function above, but
has a gradient that we can use for learning

o(f)

f

• Sigmoid function is defined as

 σ[f] = [2 / (1 + exp[- f])] - 1
• Derivative of sigmoid
 ∂σ/δf [f] = .5 * (σ[f]+1) * (1-σ[f])

Squared Error for Perceptron with Sigmoidal Output

• Squared error =

 where x(i) is the i-th input vector in the training data, i=1,..N
 y(i) is the ith target value (-1 or 1)

 is the weighted sum of i-th inputs

 is the sigmoid of the weighted sum

• Note that everything is fixed (once we have the training data)
except for the weights w

• So we want to minimize E[w] as a function of w

Gradient Descent Learning of Weights

Gradient Descent Rule:

 w new = w old - α Δ (E[w])
where

Δ (E[w]) is the gradient of the error function E wrt weights, and
α is the learning rate (small, positive)

Notes:

1. This moves us downhill in direction Δ (E[w]) (steepest downhill)

2. How far we go is determined by the value of α

Pseudo-code for Perceptron Training

• Inputs: N features, N targets (class labels), learning rate η
• Outputs: a set of learned weights

Initialize each wj (e.g.,randomly)

While (termination condition not satisfied)
for i = 1: N % loop over data points (an iteration)

for j= 1 : d % loop over weights
 w j, new = w j - α Δ (E[w j])

end
calculate termination condition
end

Comments on Perceptron Learning

• Iteration = one pass through all of the data

• Algorithm presented = incremental gradient descent
– Weights are updated after visiting each input example
– Alternatives

• Batch: update weights after each iteration (typically slower)
• Stochastic: randomly select examples and then do weight updates

• Rate of convergence
– E[w] is convex as a function of w, so no local minima
– Convergence is guaranteed as long as learning rate is small enough

• But if we make it too small, learning will be *very* slow
– If learning rate is too large, we move further, but can overshoot the

solution and oscillate, and not converge at all

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

• What if we took K perceptrons and trained them in parallel and
then took a weighted sum of their sigmoidal outputs?
– This is a multi-layer neural network with a single “hidden” layer (the

outputs of the first set of perceptrons)

• How would we train such a model?
– Backpropagation algorithm = clever way to do gradient descent
– Bad news: many local minima and many parameters

• training is hard and slow
– Good news: can learn general non-linear decision boundaries

• Generated much excitement in AI in the late 1980’s and 1990’s

• New current excitement with very large “deep learning” networks

Which decision boundary is “better”?

§ Both have zero training error (perfect training accuracy).
§ But one seems intuitively better...

Support Vector Machines (SVM): “Modern perceptrons”
(section 18.9, R&N)

• A modern linear separator classifier
– Essentially, a perceptron with a few extra wrinkles

• Constructs a “maximum margin separator”
– A linear decision boundary with the largest possible distance from the

decision boundary to the example points it separates
– “Margin” = Distance from decision boundary to closest example
– The “maximum margin” helps SVMs to generalize well

• Can embed the data in a non-linear higher dimension space
– Transform data into higher dimensional space
– Constructs a linear separating hyperplane in that space

• This can be a non-linear boundary in the original space

• Currently most popular “off-the shelf” supervised classifier.

Can embed the data in a non-linear higher dimension
space

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Goal: We want to estimate P(C | X1,…Xn)

Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally
equivalent expression that involves only P(C) and P(X1,…Xn | C).

Then assume that feature values are conditionally independent given
class, which allows us to turn P(X1,…Xn | C) into Πi P(Xi | C).

We estimate P(C) easily from the frequency with which each class appears
within our training data, and we estimate P(Xi | C) easily from the frequency
with which each Xi appears in each class C within our training data.

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Bayes Rule: P(C | X1,…Xn) is proportional to P (C) Πi P(Xi | C)
[note: denominator P(X1,…Xn) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C
• choose the class value ci with the highest P(ci | x1,…, xn)
• simple to implement, often works very well
• e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(Xi | C) can easily be estimated from labeled date
• Problem: Need to avoid zeroes, e.g., from limited training data
• Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Summary

• Supervised Machine Learning
– Given a labeled training data set, a class of models, and an error

function, this is essentially a search or optimization problem

• Different Machine Learning classifiers & their decision
boundaries.
– Decision trees
– K-nearest neighbors
– Perceptrons
– Support vector Machines (SVMs),
– Neural Networks
– Naïve Bayes

