Machine Learning Classifiers:
Many Diverse Ways to Learn

CS271P, Fall Quarter, 2018
Introduction to Artificial Intelligence
Prof. Richard Lathrop

) \ Read Beforehand: R&N 18.5-12, 20.2.2
A6 ©

BREN:IC= UNIVERSITY of CALIFORNIA O IRVINE

You will be expected to know

e C(Classifiers:
— Decision trees
- K-nearest neighbors

— Perceptrons

— Support vector Machines (SVMs), Neural Networks
— Naive Bayes

e Decision Boundaries for various classifiers
— What can they represent conveniently? What not?

Review: Supervised Learning

Supervised learning: learn mapping, attributes — target
— Classification: target variable is discrete (e.g., spam email)
— Regression: target variable is real-valued (e.g., stock market)

Review: Supervised Learning

Supervised learning: learn mapping, attributes — target
— Classification: target variable is discrete (e.g., spam email)
— Regression: target variable is real-valued (e.g., stock market)

Simple illustrative learning problem

Problem:

Decide whether to wait for a table at a
restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $%, $$9%)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Review: Training Data for Supervised Learning

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X; T F F T |Some| $%% F T | French| 0-10 T
X T F F T Full $ F F Thai | 30-60 F
X3 F T F F Some $ F F | Burger| 0-10 T
X4 T F i’ T Full $ F F Thai | 10-30 T
X5 T F T F Full | $%% F T | French| =60 F
Xe F T F T |Some| $$% T T | ltalian | 0-10 T
X7 F T F F None $ T F | Burger| 0-10 F
Xs F F F T |Some| $$% T T Thai | 0-10 T
X F T i i F Full $ T F | Burger| =60 F
X0 T T i T Full $%% F T | ltalian | 10-30 F
X111 F F F F None $ F F Thai | 0-10 F
X192 T T T T Full $ F F | Burger | 30-60 T

Review: Decision Tree

Patrons?
None m Full
Hungry?
Yes No

French Burger

Review: Supervised Learning

Let x represent the input vector of attributes
- X is the value of the jth attribute, j = 1, 2,...,d

Let f(x) represent the value of the target variable for x
— The implicit mapping from x to f(x) is unknown to us
— We just have training data pairs, D = {x, f(x)} available

We want to learn a mapping from x to f, i.e.,
— h(x; 0) should be “close” to f(x) for all training data points x
0 are the parameters of the hypothesis function h()

Examples:
_ h(x; e) = Sign(WIXI + W2X2+ W3)
- h(x) = (x, OR x,) AND (x, OR NOT(x,))

A Different View on Data Representation

Data pairs can be plotted in “feature
space’

Each axis represents 1 feature.

o This is a d dimensional space,
where d is the number of features.

Each data case corresponds to 1 point
in the space.

o In this figure we use color to
represent their class label.

Feature Space

-
Feature B . T

7r e i
" ;
% ¥ * ok .
* * £ ¥
6r * {'% *a{e i ﬁr* 7]
* t}i 4;* i *
5F * £ *% %f**] E
+ * *h ﬁki*ﬁ * *

*
*owr, £
n T * ¥ 4
3 £ * **j;’&*ﬁ# *** L *
2L * 7 ** * * |
Hok x ok F b3 %
N *x S |
¥ + ¥ *
0 | | | | |
0 1 2 3 4 5
Data Points
Feature A (Color
represents
which class

they are in)

Decision Boundaries

Can we find a boundary that separates the two classes?

8 T T T T T T
ar *
*
* * ¥ *
* * £ 7
5r - it ***
4 S T
4+ * * s N ot i
R * ¥
3 MR A : ﬁig i
i * ok * *
* + A ¥ f#* * oL *
* * *
e
2t 7%
Kok gk
-;i * * * %
. * ¥
*
" L *
0 | | | | | |

Decision Boundaries

8 I I I I I I I

Decision o
|~ ~ Boundary DeC|_S|on
7 S o Region 1
S * * *
S + * %
* SN T x ¥
6 \ ¥ 4¥ * 4 *
* o+ % oF % *
" kT e Peagx T
51 o TH ¥
N . % ¥ !) o
L * ~ o - *-%
o R T
P 4r Kl ™ K * kg *
5 ¥ * o+ *** Ly *x ¥ *
= t o, g ¥
- * x
* S~<o
SO
Decision *_ * * ok
1 Region 2 N
* * *
0 | | | | | | |
0 1 2 3 4 5 6 7

FEATURE 1

Classification in Euclidean Space

o A classifier is a partition of the feature space into disjoint
decision regions
— Each region has a label attached
— Regions with the same label need not be contiguous

— For a new test point, find what decision region it is in, and predict
the corresponding label

e Decision boundaries = boundaries between decision regions

e We can characterize a classifier by the equations for its
decision boundaries

e Learning a classifier <=~ searching for the decision boundaries
that optimize our objective function

Can we represent a decision tree classifier in the
feature space?

8 T
?
Patrons? ~ -
7r ~ %
\ S * 4
* ¥ * . ¥
5 #\ £ T
*h Ed e o«
*
* 5 N~ ’iﬁﬁj&i £
4 * *** t@t@k S ****I *Hp Kk
ki **-):e 4 o *
3 o :,;ﬁ %S{E
* i * ~—y
Al * ***** % F3 * —
ok ok % % %
al * *
* + * *
0 1 L L 1 1 L
0 1 2 B 4 5 6

Example: Decision Trees

e When applied to continuous attributes, decision trees produce
“axis-parallel” linear decision boundaries

e (Categorical features -> values from a discrete set

e.g. Restaurant type (French, Italian, Thai, Burger)
Raining outside? (Yes/No)

e (Continuous features -> real values

e.g. Income

— Each internal node is a binary threshold of the form
X; > t ? and converts each real-valued feature into a binary one

Decision Tree Example

Debt ,

Decision Tree Example

Debt

Income > t1

??

Decision Tree Example

Debt

t2

Income > t1

Debt > t2 \

VAN

Decision Tree Example

Debt

t2

Income > t1

/

Debt > t2

N

JAN

Income > t3

AN

Decision Tree Example

Debt ,
Income > t1

[
I
|
|
o I H
° |
ol =)
2 F-m1t--b
T ®_ Debt > t2
ol |

Iy | =

I , .

t3 1 Income /\

Income > t3

Note: tree boundaries are
linear and axis-parallel / \

A Simple Classifier: Minimum Distance Classifier

e Training
— Separate training vectors by class
- Compute the mean for each class, u, k=1,..m

e Prediction
— Compute the closest mean to a test vector x’ (using Euclidean
distance)

— Predict the corresponding class

e In the 2-class case, the decision boundary is defined by the
locus of the hyperplane that is halfway between the 2 means

and is orthogonal to the line connecting them

Minimum Distance Classifier

FEATURE 2

FEATURE 1

Another Example: Nearest Neighbor Classifier

e The nearest-neighbor classifier
- Given a test point x’, compute the distance between x’ and each
input data point
- Find the closest neighbor in the training data
- Assign x’ the class label of this neighbor

e The nearest neighbor classifier results in piecewise linear
decision boundaries

R AU

Local Decision Boundaries

Boundary? Points that are equidistant
between points of class 1 and 2
Note: locally the boundary is linear

Feature 2 4

Feature 1

v

Finding the Decision Boundaries

Feature 2

Feature 1

Finding the Decision Boundaries

Feature 2

Feature 1

Finding the Decision Boundaries

Feature 2

Feature 1

Overall Boundary = Piecewise Linear

t Decision Region

for Class 1 Decision Region

for Class 2

Feature 2

Feature 1

Nearest-Neighbor Boundaries on this data set?

8 I T T I I T T
| Predicts blue
*
*
6 :
Predicts red "
5_
* +
4+ * ***
H
3l * ﬁ*
* *
* -
*
2l *
*5 %k *
:k';* e * L
1_
* 3 * *
0 | | | | | | 1

K-Nearest Neighbor Classifier

Instead of finding the 1 closest neighbors, find k closest
neighbors.

For categorical class labels, take vote based on k-nearest
neighbors.

k can be chosen by cross-validation

nearest neighbour (k = 1) 20-nearest neighbour

Image Courtesy: https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

kNN Decision Boundary

e piecewise linear decision boundary
* Increasing k "simplifies” decision boundary
- Majority voting means less emphasis on individual points

K=1 K=3

kNN Decision Boundary

e piecewise linear decision boundary
* Increasing k "simplifies” decision boundary
- Majority voting means less emphasis on individual points

K=5 K=7

kNN Decision Boundary

*» piecewise linear decision boundary

e Increasing k "simplifies” decision boundary
- Majority voting means less emphasis on individual points

Larger K= Smoother boundary

The kNN Classifier

e The kNN classifier often works very well.
e Easy to implement.

e Easy choice if characteristics of your problem are unknown.

e (Can be sensitive to the choice of distance metric.
— Often normalize feature axis values, e.g., z-score or [0, 1]
e E.g., if one feature runs larger in magnitude than another

e (Can encounter problems with sparse training data.

e (Can encounter problems in very high dimensional spaces.
— Most points are neighbors of most other points.

Linear Classifiers

e Linear classifiers classification decision based on the value of a

linear combination of the characteristics.
— Linear decision boundary (single boundary for 2-class case)

e We can represent a linear decision boundary by a linear equation:

W1Ty + Waly + ... +werg = wir; = wlr =0

¥

e w. are the weights (parameters of the model)

https://en.wikipedia.org/wiki/Linear_combination

Linear Classifiers
Wiy + WaTo + ... + Wxy = ZJ. liziny = Wha =0

e This equation defines a hyperplane in d dimensions

— A hyperplane is a subspace whose dimension is one less than that of its
ambient space.

— If a space is 3-dimensional, its hyperplanes are the 2-dimensional planes;
if a space is 2-dimensional, its hyperplanes are the 1-dimensional lines.

A hyperplane in a

3-dimensional space\

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834
f67a4f6

Linear Classifiers

e For prediction we simply see if > w;r; >0 for new data x.

e Learning consists of searching in the d-dimensional weight
space for the set of weights (the linear boundary) that
minimizes an error measure

e A threshold can be introduced by a "dummy” feature that is
always one; its weight corresponds to (the negative of) the
threshold

e Note that a minimum distance classifier is a special case of a
linear classifier

The Perceptron Classifier (pages729-731 in text)

G —ZH Output

>
I

Transfer
\ Function
Bias or
Input Weights Threshold
Attributes For Input
(Features) Attributes

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834
f67a4f6

Two different types of perceptron output

x-axis below is f(x) = f = weighted sum of inputs
y-axis 1s the perceptron output

o(f) /Thresholded output (step function),

takes values +1 or -1

< »
< >

f

o(f) Sigmoid output, takes

—:Jf /real values between -1 and +1
f

The sigmoid is in effect an approximation

to the threshold function above, but
has a gradient that we can use for learning

Sigmoid function is defined as

slfl=[2/(1+exp[-f])]-1
Derivative of sigmoid
oo/6f [f] =.5 * (o[f]+1) * (1-6[f])

Squared Error for Perceptron with Sigmoidal Output

e Squared error = E[w] = Zi [U(f[L(1>]) _ !/(1.-)]2

where x(i) is the i-th input vector in the training data, i=1,..N
y(i) is the ith target value (-1 or 1)

Flez)] = ZJ. W% is the weighted sum of i-th inputs

o(flxz(7)]) is the sigmoid of the weighted sum

e Note that everything is fixed (once we have the training data)
except for the weights w

e So0 we want to minimize E[w] as a function of w

Gradient Descent Learning of Weights

Gradient Descent Rule:
=w .- oa A(CE[w])

W new — old
where

A (E[w]) is the gradient of the error function E wrt weights, and
O is the learning rate (small, positive)

Notes:

1. This moves us downhill in direction A (E[w]) (steepest downhill)

2. How far we go is determined by the value of O

Pseudo-code for Perceptron Training

Initialize each W, (e.g.,randomly)

While (termination condition not satisfied)
fori=1. N % loop over data points (an iteration)
forj=1:d % loop over weights
Woew ~ X, - 0 ACE[w])
end
calculate termination condition

end

e Inputs: N features, N targets (class labels), learning rate n
e Qutputs: a set of learned weights

Comments on Perceptron Learning

e Iteration = one pass through all of the data

e Algorithm presented = incremental gradient descent
- Weights are updated after visiting each input example
— Alternatives
e Batch: update weights after each iteration (typically slower)
e Stochastic: randomly select examples and then do weight updates

e Rate of convergence
- E[w] is convex as a function of w, so no local minima
— Convergence is guaranteed as long as learning rate is small enough
e But if we make it too small, learning will be *very* slow

— If learning rate is too large, we move further, but can overshoot the
solution and oscillate, and not converge at all

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

O\
X (.)/ transfer (ncbor;

1 4
— v/-- -..\'
. % 2 4
e
(N
:/— %
E '\»3 !
input .
ayer :
ye P
n
k\,_ !.
™ hickden

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

e What if we took K perceptrons and trained them in parallel and
then took a weighted sum of their sigmoidal outputs?

— This is a multi-layer neural network with a single “hidden” layer (the
outputs of the first set of perceptrons)

How would we train such a model?
— Backpropagation algorithm = clever way to do gradient descent
- Bad news: many local minima and many parameters
e training is hard and slow
— Good news: can learn general non-linear decision boundaries

Generated much excitement in Al in the late 1980’s and 1990’s

New current excitement with very large “deep learning” networks

Which decision boundary is “better”?

= Both have zero training error (perfect training accuracy).
= But one seems intuitively better...

o L
e
>£| @ ?. ~ @] >El
® o]
o o« oo e
v o ® » ®
: e E
< ® 'Y Y <
v M1 v
= oo®’ =
o3e%fe, ©
L ©
o
®
Decision boundary ¢ Decision boundary

Feature 1, X, Feature 1, X,

Support Vector Machines (SVM): "Modern perceptrons

144

(section 18.9, R&N)

A modern linear separator classifier
— Essentially, a perceptron with a few extra wrinkles

Constructs a "maximum margin separator”

— A linear decision boundary with the largest possible distance from the
decision boundary to the example points it separates

— “Margin” = Distance from decision boundary to closest example
— The “maximum margin” helps SVMs to generalize well

Can embed the data in a non-linear higher dimension space

— Transform data into higher dimensional space
— Constructs a linear separating hyperplane in that space
e This can be a non-linear boundary in the original space

Currently most popular "off-the shelf” supervised classifier.

Can embed the data in a non-linear higher dimension
space

V2x,x,

D - O W

|
w

(@) (®)

Figure 18.31 FILES:. (a) A two-dimensional training set with positive examples as black circles
and negative examples as white circles. The true decision boundary, 7 + x3 < 1, is also shown.
(b) The same data after mapping into a three-dimensional input space (z7, 3, V2x122). The circular
decision boundary 1n (a) becomes a linear decision boundary in three dimensions. Figure 18.29(b) gives
a closeup of the separator 1n (b).

Naive Bayes Model (section 20.2.2 R&N 3™ ed.)

Goal: We want to estimate P(C | X,,...X)

Solution: Use Bayes’ Rule to turn P(C | X,,...X) into a proportionally
equivalent expression that involves only P(C) and P(X,,...X_ | C).

Then assume that feature values are conditionally independent given
class, which allows us to turn P(X,,...X_ | C) into II. P(X. | C).

We estimate P(C) easily from the frequency with which each class appears
within our training data, and we estimate P(X. | C) easily from the frequency
with which each X. appears in each class C within our training data.

Naive Bayes Model (section 20.2.2 R&N 3™ ed.)

Bayes Rule: P(C | X,,...X) is proportional to P (C) IL. P(X. | C)
[note: denominator P(X,,...X) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C
* choose the class value c. with the highest P(c. | x,,..., X)
* simple to implement, often works very well
* e.g., spam email classification: X's = counts of words in emails

Conditional probabilities P(X. | C) can easily be estimated from labeled date
* Problem: Need to avoid zeroes, e.g., from limited training data
» Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Summary

e Supervised Machine Learning

— Given a labeled training data set, a class of models, and an error
function, this is essentially a search or optimization problem

e Different Machine Learning classifiers & their decision
boundaries.
— Decision trees
- K-nearest neighbors
— Perceptrons
— Support vector Machines (SVMs),
— Neural Networks
— Naive Bayes

