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You will be expected to know

• Classifiers:
– Decision trees
– K-nearest neighbors
– Perceptrons
– Support vector Machines (SVMs), Neural Networks
– Naïve Bayes

• Decision Boundaries for various classifiers
– What can they represent conveniently?  What not?



Review: Supervised Learning

Supervised learning: learn mapping, attributes → target 
– Classification: target variable is discrete (e.g., spam email)
– Regression: target variable is real-valued (e.g., stock market)
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Review: Training Data for Supervised Learning



Review: Decision Tree



Review: Supervised Learning

• Let x represent the input vector of attributes
– xj is the value of the jth attribute, j = 1, 2,…,d

• Let f(x) represent the value of the target variable for x
– The implicit mapping from x to f(x) is unknown to us
– We just have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f, i.e., 
– h(x; θ) should be “close” to f(x) for all training data points x          

        θ are the parameters of the hypothesis function h( )

• Examples:
– h(x; θ) = sign(w1x1 + w2x2+ w3)
– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4))



A Different View on Data Representation

Feature A

Feature B

Data Points
(Color 
represents 
which class 
they are in)

Feature Space
● Data pairs can be plotted in “feature 

space”

● Each axis represents 1 feature.

○ This is a d dimensional space, 
where d is the number of features.

● Each data case corresponds to 1 point 
in the space.

○ In this figure we use color to 
represent their class label.



Can we find a boundary that separates the two classes?

Decision Boundaries



Decision Boundaries 
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Classification in Euclidean Space

• A classifier is a partition of the feature space into disjoint 
decision regions
– Each region has a label attached 
– Regions with the same label need not be contiguous
– For a new test point, find what decision region it is in, and predict 

the corresponding label

• Decision boundaries = boundaries between decision regions

• We can characterize a classifier by the equations for its 
decision boundaries

• Learning a classifier ⬄ searching for the decision boundaries 
that optimize our objective function 



Can we represent a decision tree classifier in the 
feature space?



Example: Decision Trees

• When applied to continuous attributes, decision trees produce 
“axis-parallel” linear decision boundaries

• Categorical features -> values from a discrete set
e.g. Restaurant type (French, Italian, Thai, Burger)

Raining outside? (Yes/No)

• Continuous features -> real values
e.g. Income

– Each internal node is a binary threshold of the form 
xj > t ? and converts each real-valued feature into a binary one



Decision Tree Example

Income

Debt



Decision Tree Example

t1 Income

Debt
Income > t1
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Decision Tree Example
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Decision Tree Example

t1t3

t2

Income > t1

Debt > t2

Income > t3
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Decision Tree Example

t1t3

t2

Income

Debt
Income > t1

Debt > t2

Income > t3
Note: tree boundaries are  
linear and axis-parallel



A Simple Classifier: Minimum Distance Classifier

• Training
– Separate training vectors by class
– Compute the mean for each class, µk,   k = 1,… m

• Prediction
– Compute the closest mean to a test vector x’ (using Euclidean 

distance)
– Predict the corresponding class

• In the 2-class case, the decision boundary is defined by the 
locus of the hyperplane that is halfway between the 2 means 
and is orthogonal to the line connecting them



Minimum Distance Classifier
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Another Example: Nearest Neighbor Classifier

• The nearest-neighbor classifier
– Given a test point x’, compute the distance between x’ and each 

input data point 
– Find the closest neighbor in the training data
– Assign x’ the class label of this neighbor

• The nearest neighbor classifier results in piecewise linear 
decision boundaries

Image Courtesy: http://scott.fortmann-roe.com/docs/BiasVariance.html



Local Decision Boundaries 
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Finding the Decision Boundaries
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Finding the Decision Boundaries

1

1

1

2

2

2

Feature 1

Feature 2

?



Overall Boundary = Piecewise Linear
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Nearest-Neighbor Boundaries on this data set?

Predicts blue

Predicts red



K-Nearest Neighbor Classifier

• Instead of finding the 1 closest neighbors, find k closest 
neighbors.

• For categorical class labels, take vote based on k-nearest 
neighbors.

• k can be chosen by cross-validation

Image Courtesy: https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/







Larger K ⟹ Smoother boundary



The kNN Classifier

• The kNN classifier often works very well.
• Easy to implement.
• Easy choice if characteristics of your problem are unknown.

• Can be sensitive to the choice of distance metric.
– Often normalize feature axis values, e.g., z-score or [0, 1]

• E.g., if one feature runs larger in magnitude than another

• Can encounter problems with sparse training data.

• Can encounter problems in very high dimensional spaces.
– Most points are neighbors of most other points.



Linear Classifiers

• Linear classifiers classification decision based on the value of a 
linear combination of the characteristics.
– Linear decision boundary (single boundary for 2-class case) 

• We can represent a linear decision boundary by a linear equation:

• wi are the weights (parameters of the model)

 

https://en.wikipedia.org/wiki/Linear_combination


Linear Classifiers

• This equation defines a hyperplane in d dimensions
– A hyperplane is a subspace whose dimension is one less than that of its 

ambient space.
– If a space is 3-dimensional, its hyperplanes are the 2-dimensional planes; 

if a space is 2-dimensional, its hyperplanes are the 1-dimensional lines. 

 

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834
f67a4f6

A hyperplane in a 
3-dimensional space.



Linear Classifiers

• For prediction we simply see if                   for new data x.                   

• Learning consists of searching in the d-dimensional weight 
space for the set of weights (the linear boundary) that 
minimizes an error measure

• A threshold can be introduced by a “dummy” feature that is 
always one; its weight corresponds to (the negative of) the 
threshold

• Note that a minimum distance classifier is a special case of a 
linear classifier

 



The Perceptron Classifier  (pages 729-731 in text)

Input
Attributes
(Features)

Weights 
For Input
Attributes

Bias or 
Threshold

Transfer 
Function

Output

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834
f67a4f6

σ



Two different types of perceptron output

x-axis below is f(x) = f  = weighted sum of inputs
y-axis is the perceptron output

f

σ(f)

Thresholded output (step function),
 takes values +1 or -1

 

Sigmoid output, takes
real values between -1 and +1

The sigmoid is in effect an approximation
to the threshold function above,  but
has a gradient that we can use for learning 

o(f)

f

• Sigmoid function is defined as

        σ[ f ] = [ 2 / ( 1 + exp[- f ] ) ] - 1
•  Derivative of sigmoid
         ∂σ/δf [ f ]  = .5  * ( σ[f]+1 ) * ( 1-σ[f] )



Squared Error for Perceptron with Sigmoidal Output

•  Squared error = 

     where x(i) is the i-th input vector in the training data, i=1,..N 
               y(i) is the ith target value (-1 or 1) 

                                              is the weighted sum of i-th inputs

                                     is the sigmoid of the weighted sum 

• Note that everything is fixed (once we have the training data) 
except for the weights w

• So we want to minimize E[w] as a function of w
        



Gradient Descent Learning of Weights

 
Gradient Descent Rule:

 w new   =  w old   -   α  Δ ( E[w] )  
where 

Δ (E[w]) is the gradient of the error function E wrt weights, and 
α  is the learning rate (small, positive)

Notes:

1. This moves us downhill in direction Δ ( E[w] )  (steepest downhill)

2. How far we go is determined by the value of α

 



Pseudo-code for Perceptron Training  

• Inputs:  N features, N targets (class labels), learning rate  η 
• Outputs: a set of learned weights

Initialize each wj   (e.g.,randomly) 

While (termination condition not satisfied)
for i = 1: N    % loop over data points (an iteration)

for j= 1 : d    % loop over weights
   w j, new  =  w j -   α  Δ ( E[w j] )

end
calculate termination condition
end



Comments on Perceptron Learning

• Iteration = one pass through all of the data

• Algorithm presented = incremental gradient descent
– Weights are updated after visiting each input example
– Alternatives

• Batch: update weights after each iteration (typically slower)
• Stochastic: randomly select examples and then do weight updates

• Rate of convergence
– E[w] is convex as a function of w, so no local minima
– Convergence is guaranteed as long as learning rate is small enough

• But if we make it too small, learning will be *very* slow
– If learning rate is too large, we move further, but can overshoot the 

solution and oscillate, and not converge at all



Multi-Layer Perceptrons (Artificial Neural Networks)  
(sections 18.7.3-18.7.4 in textbook)



Multi-Layer Perceptrons (Artificial Neural Networks)  
(sections 18.7.3-18.7.4 in textbook)

• What if we took K perceptrons and trained them in parallel and 
then took a weighted sum of their sigmoidal outputs?
– This is a multi-layer neural network with a single “hidden” layer (the 

outputs of the first set of perceptrons)

• How would we train such a model?
– Backpropagation algorithm = clever way to do gradient descent
– Bad news: many local minima and many parameters

•  training is hard and slow
– Good news: can learn general non-linear decision boundaries

• Generated much excitement in AI in the late 1980’s and 1990’s

• New current excitement with very large “deep learning” networks



Which decision boundary is “better”?

§ Both have zero training error (perfect training accuracy).
§ But one seems intuitively better...



Support Vector Machines (SVM): “Modern perceptrons”
(section 18.9, R&N)

• A modern linear separator classifier
– Essentially, a perceptron with a few extra wrinkles

• Constructs a “maximum margin separator”
– A linear decision boundary with the largest possible distance from the 

decision boundary to the example points it separates
– “Margin” = Distance from decision boundary to closest example
– The “maximum margin” helps SVMs to generalize well

• Can embed the data in a non-linear higher dimension space
– Transform data into higher dimensional space
– Constructs a linear separating hyperplane in that space

• This can be a non-linear boundary in the original space

• Currently most popular “off-the shelf” supervised classifier.



Can embed the data in a non-linear higher dimension 
space



Naïve Bayes Model                  (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Goal: We want to estimate P(C | X1,…Xn)

Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally 
equivalent expression that involves only P(C) and P(X1,…Xn  | C).

Then assume that feature values are conditionally independent given 
class, which allows us to turn P(X1,…Xn  | C) into Πi  P(Xi | C).

We estimate P(C) easily from the frequency with which each class appears 
within our training data, and we estimate P(Xi | C) easily from the frequency 
with which each Xi appears in each class C within our training data.



Naïve Bayes Model                  (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Bayes Rule:    P(C | X1,…Xn)  is proportional to P (C)  Πi  P(Xi | C)
[note: denominator P(X1,…Xn)  is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C
• choose the class value ci with the highest P(ci | x1,…, xn)
• simple to implement, often works very well
• e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(Xi | C) can easily be estimated from labeled date
• Problem:  Need to avoid zeroes, e.g., from limited training data
• Solutions: Pseudo-counts, beta[a,b] distribution, etc.



Summary

• Supervised Machine Learning
– Given a labeled training data set, a class of models, and an error 

function, this is essentially a search or optimization problem

• Different Machine Learning classifiers & their decision 
boundaries.
– Decision trees 
– K-nearest neighbors 
– Perceptrons
– Support vector Machines (SVMs), 
– Neural Networks 
– Naïve Bayes 


