Machine Learning Classifiers: Many Diverse Ways to Learn

CS271P, Fall Quarter, 2018 Introduction to Artificial Intelligence Prof. Richard Lathrop

Read Beforehand: R&N 18.5-12, 20.2.2

You will be expected to know

- Classifiers:
 - Decision trees
 - K-nearest neighbors
 - Perceptrons
 - Support vector Machines (SVMs), Neural Networks
 - Naïve Bayes
- Decision Boundaries for various classifiers
 - What can they represent conveniently? What not?

Review: Supervised Learning

Supervised learning: learn mapping, attributes \rightarrow target

- Classification: target variable is discrete (e.g., spam email)
- Regression: target variable is real-valued (e.g., stock market)

Review: Supervised Learning

Supervised learning: learn mapping, attributes \rightarrow target

- Classification: target variable is discrete (e.g., spam email)
- Regression: target variable is real-valued (e.g., stock market)

Simple illustrative learning problem

Problem:

Decide whether to wait for a table at a restaurant, based on the following attributes:

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Review: Training Data for Supervised Learning

Example	Attributes										Target
Linsinpro	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	T	Full	\$	F	F	Burger	30–60	Т

Review: Decision Tree

Review: Supervised Learning

- Let <u>x</u> represent the input vector of attributes
 x_j is the value of the jth attribute, j = 1, 2,...,d
- Let $f(\underline{x})$ represent the value of the target variable for \underline{x}
 - The implicit mapping from x to f(x) is unknown to us
 - We just have training data pairs, $D = \{\underline{x}, f(\underline{x})\}$ available
- We want to learn a mapping from <u>x</u> to f, i.e.,
 - $h(\underline{x}; \theta)$ should be "close" to f(x) for all training data points \underline{x} θ are the parameters of the hypothesis function h()
- Examples:
 - $h(\underline{x}; \theta) = sign(w_1x_1 + w_2x_2 + w_3)$
 - $h_k(\underline{x}) = (x_1 \text{ OR } x_2) \text{ AND } (x_3 \text{ OR NOT}(x_4))$

A Different View on Data Representation

- Data pairs can be plotted in "feature space"
- Each axis represents 1 feature.
 - This is a d dimensional space, where d is the number of features.
- Each data case corresponds to 1 point in the space.
 - In this figure we use color to represent their class label.

Decision Boundaries

Can we find a boundary that separates the two classes?

Decision Boundaries

Classification in Euclidean Space

- A classifier is a partition of the feature space into disjoint decision regions
 - Each region has a label attached
 - Regions with the same label need not be contiguous
 - For a new test point, find what decision region it is in, and predict the corresponding label
- Decision boundaries = boundaries between decision regions
- We can characterize a classifier by the equations for its decision boundaries
- Learning a classifier <> searching for the decision boundaries that optimize our objective function

Can we represent a decision tree classifier in the feature space?

Example: Decision Trees

• When applied to continuous attributes, decision trees produce "axis-parallel" linear decision boundaries

- Categorical features -> values from a discrete set
 - e.g. Restaurant type (French, Italian, Thai, Burger) Raining outside? (Yes/No)
- Continuous features -> real values e.g. Income
 - Each internal node is a binary threshold of the form $x_j > t$? and converts each real-valued feature into a binary one

A Simple Classifier: Minimum Distance Classifier

- Training
 - Separate training vectors by class
 - Compute the mean for each class, μ_k , k = 1,... m

- Prediction
 - Compute the closest mean to a test vector \underline{x}' (using Euclidean distance)
 - Predict the corresponding class
- In the 2-class case, the decision boundary is defined by the locus of the hyperplane that is halfway between the 2 means and is orthogonal to the line connecting them

Minimum Distance Classifier

Another Example: Nearest Neighbor Classifier

- The nearest-neighbor classifier
 - Given a test point \underline{x}' , compute the distance between \underline{x}' and each input data point
 - Find the closest neighbor in the training data
 - Assign \underline{x}' the class label of this neighbor
- The nearest neighbor classifier results in piecewise linear decision boundaries

Image Courtesy: http://scott.fortmann-roe.com/docs/BiasVariance.html

Local Decision Boundaries

Boundary? Points that are equidistant between points of class 1 and 2 Note: locally the boundary is linear

Finding the Decision Boundaries

Finding the Decision Boundaries

Finding the Decision Boundaries

Nearest-Neighbor Boundaries on this data set?

K-Nearest Neighbor Classifier

- Instead of finding the 1 closest neighbors, find k closest neighbors.
- For categorical class labels, take vote based on k-nearest neighbors.
- k can be chosen by cross-validation

20-nearest neighbour

Image Courtesy: https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

kNN Decision Boundary

- piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points

$$K = 1$$

$$\mathbf{K} = \mathbf{3}$$

kNN Decision Boundary

- piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points

$$K = 5$$

kNN Decision Boundary

- piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points

Larger $K \Rightarrow$ Smoother boundary

K = 25

The kNN Classifier

- The kNN classifier often works very well.
- Easy to implement.
- Easy choice if characteristics of your problem are unknown.
- Can be sensitive to the choice of distance metric.
 - Often normalize feature axis values, e.g., z-score or [0, 1]
 - E.g., if one feature runs larger in magnitude than another
- Can encounter problems with sparse training data.
- Can encounter problems in very high dimensional spaces.
 - Most points are neighbors of most other points.

Linear Classifiers

- Linear classifiers classification decision based on the value of a linear combination of the characteristics.
 - Linear decision boundary (single boundary for 2-class case)
- We can represent a linear decision boundary by a linear equation:

$$w_1 x_1 + w_2 x_2 + \ldots + w_d x_d = \sum_j w_j x_j = w^T x = 0$$

• w_i are the weights (parameters of the model)

Linear Classifiers

$$w_1 x_1 + w_2 x_2 + \ldots + w_d x_d = \sum_j w_j x_j = w^T x = 0$$

- This equation defines a *hyperplane* in d dimensions
 - A hyperplane is a subspace whose dimension is one less than that of its ambient space.
 - If a space is 3-dimensional, its hyperplanes are the 2-dimensional planes;
 if a space is 2-dimensional, its hyperplanes are the 1-dimensional lines.

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834 f67a4f6

Linear Classifiers

- For prediction we simply see if $\sum_j w_j x_j > 0$ for new data x.
- Learning consists of searching in the d-dimensional weight space for the set of weights (the linear boundary) that minimizes an error measure
- A threshold can be introduced by a "dummy" feature that is always one; its weight corresponds to (the negative of) the threshold
- Note that a minimum distance classifier is a special case of a linear classifier

The Perceptron Classifier (pages 729-731 in text)

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834 f67a4f6

Two different types of perceptron output

x-axis below is $f(\underline{x}) = f$ = weighted sum of inputs y-axis is the perceptron output

• Sigmoid function is defined as

$$\sigma[f] = [2/(1 + \exp[-f])] - 1$$

• Derivative of sigmoid $\partial \sigma / \delta f [f] = .5 * (\sigma [f]+1) * (1-\sigma [f])$

Squared Error for Perceptron with Sigmoidal Output

• Squared error = $E[w] = \sum_{i} [\sigma(f[\underline{x}(i)]) - y(i)]^2$

where $\underline{x}(i)$ is the i-th input vector in the training data, i=1,..N y(i) is the ith target value (-1 or 1)

 $f[\underline{x}(i)] = \sum_{j} w_{j} x_{j}$ is the weighted sum of i-th inputs $\sigma(f[\underline{x}(i)])$ is the sigmoid of the weighted sum

- Note that everything is fixed (once we have the training data) except for the weights <u>w</u>
- So we want to minimize E[w] as a function of w

Gradient Descent Learning of Weights

Gradient Descent Rule:

$$\underline{\mathbf{W}}_{\text{new}} = \underline{\mathbf{W}}_{\text{old}} - \alpha \Delta (\mathbf{E}[\underline{\mathbf{W}}])$$

where

 $\Delta(E[\underline{w}])$ is the gradient of the error function E wrt weights, and

lpha is the learning rate (small, positive)

Notes:

- 1. This moves us downhill in direction Δ (E[w]) (steepest downhill)
- 2. How far we go is determined by the value of lpha

Pseudo-code for Perceptron Training

```
Initialize each w_j (e.g.,randomly)

While (termination condition not satisfied)

for i = 1: N % loop over data points (an iteration)

for j = 1 : d % loop over weights

\underline{w}_{j, new} = \underline{w}_j - \alpha \Delta (E[\underline{w}_j])

end

calculate termination condition

end
```

- Inputs: N features, N targets (class labels), learning rate η
- Outputs: a set of learned weights

Comments on Perceptron Learning

- Iteration = one pass through all of the data
- Algorithm presented = incremental gradient descent
 - Weights are updated after visiting each input example
 - Alternatives
 - Batch: update weights after each iteration (typically slower)
 - Stochastic: randomly select examples and then do weight updates
- Rate of convergence
 - $E[\underline{w}]$ is convex as a function of \underline{w} , so no local minima
 - Convergence is guaranteed as long as learning rate is small enough
 - But if we make it too small, learning will be *very* slow
 - If learning rate is too large, we move further, but can overshoot the solution and oscillate, and not converge at all

Multi-Layer Perceptrons (Artificial Neural Networks)

(sections 18.7.3-18.7.4 in textbook)

Multi-Layer Perceptrons (Artificial Neural Networks)

(sections 18.7.3-18.7.4 in textbook)

- What if we took K perceptrons and trained them in parallel and then took a weighted sum of their sigmoidal outputs?
 - This is a multi-layer neural network with a single "hidden" layer (the outputs of the first set of perceptrons)
- How would we train such a model?
 - Backpropagation algorithm = clever way to do gradient descent
 - Bad news: many local minima and many parameters
 - training is hard and slow
 - Good news: can learn general non-linear decision boundaries
- Generated much excitement in AI in the late 1980's and 1990's
- New current excitement with very large "deep learning" networks

Which decision boundary is "better"?

- Both have zero training error (perfect training accuracy).
- But one seems intuitively better...

Support Vector Machines (SVM): "Modern perceptrons" (section 18.9, R&N)

- A modern linear separator classifier
 - Essentially, a perceptron with a few extra wrinkles
- Constructs a **"maximum margin separator"**
 - A linear decision boundary with the largest possible distance from the decision boundary to the example points it separates
 - "Margin" = Distance from decision boundary to closest example
 - The "maximum margin" helps SVMs to generalize well
- Can embed the data in a non-linear higher dimension space
 - Transform data into higher dimensional space
 - Constructs a linear separating hyperplane in that space
 - This can be a non-linear boundary in the original space
- Currently most popular "off-the shelf" supervised classifier.

Can embed the data in a non-linear higher dimension space

Figure 18.31 FILES: (a) A two-dimensional training set with positive examples as black circles and negative examples as white circles. The true decision boundary, $x_1^2 + x_2^2 \le 1$, is also shown. (b) The same data after mapping into a three-dimensional input space $(x_1^2, x_2^2, \sqrt{2x_1x_2})$. The circular decision boundary in (a) becomes a linear decision boundary in three dimensions. Figure 18.29(b) gives a closeup of the separator in (b).

Naïve Bayes Model

(section 20.2.2 R&N 3rd ed.)

Goal: We want to estimate $P(C | X_1, ..., X_n)$

Solution: Use Bayes' Rule to turn $P(C | X_1,...,X_n)$ into a proportionally equivalent expression that involves only P(C) and $P(X_1,...,X_n | C)$.

Then assume that feature values are *conditionally independent* given class, which allows us to turn $P(X_1,...,X_n \mid C)$ into $\prod_i P(X_i \mid C)$.

We estimate P(C) easily from the *frequency* with which each class appears within our training data, and we estimate $P(X_i | C)$ easily from the frequency with which each X_i appears in each class C within our training data.

Naïve Bayes Model

(section 20.2.2 R&N 3rd ed.)

Bayes Rule: $P(C | X_1, ..., X_n)$ is proportional to $P(C) \prod_i P(X_i | C)$ [note: denominator $P(X_1, ..., X_n)$ is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C

- choose the class value c_i with the highest $P(c_i | x_1, ..., x_n)$
- simple to implement, often works very well
- e.g., spam email classification: X's = counts of words in emails

Conditional probabilities $P(X_i | C)$ can easily be estimated from labeled date

- Problem: Need to avoid zeroes, e.g., from limited training data
- Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Summary

- Supervised Machine Learning
 - Given a labeled training data set, a class of models, and an error function, this is essentially a search or optimization problem

- Different Machine Learning classifiers & their decision boundaries.
 - Decision trees
 - K-nearest neighbors
 - Perceptrons
 - Support vector Machines (SVMs),
 - Neural Networks
 - Naive Bayes