Machine Learning Classifiers:
Many Diverse Ways to Learn

CS271P, Winter Quarter, 2020
Introduction to Artificial Intelligence
Prof. Richard Lathrop

‘) Read Beforehand: R&N 18.5-12, 20.2.2
N 0

BREN:[ICS UNIVERSITY of CALIFORNIA { } IRVINE
INFORMATION AND COMPUTER SCIENCES =)

FORMATION A

Outline

e Different types of learning problems
e Different types of learning algorithms

e Supervised learning
— Decision trees
- Naive Bayes
— Perceptrons, Multi-layer Neural Networks

You will be expected to know

o C(lassifiers:

— Decision trees

— K-nearest neighbors

- Naive Bayes

— Perceptrons, Support vector Machines (SVMs), Neural Networks
e Decision Boundaries for various classifiers

— What can they represent conveniently? What not?

Handwritten Hangul recognition using
deep convolutional neural networks

Thanks to
Xiaohui Xie

In-Jung Kim & Xiaohui Xie

o 27

HAHATEE T

o (U 0\.
(P g
“ A= 3

Fig. 1 Examples of Hangul characters

Fig. 4 Edge operators used to initialize convolution masks of the bottom layer

Thanks to

Py Xiaohui Xie

/
=
/

‘;

1/
77

A/l
~ S A AT

‘.E
v
@
[
§
'
i
'

| &
it

O
Iy

[Jfs

Bl &

[—

[T -

3] | Ql | o

T ——] (Faq) (Fy)
EYS = . . i
Input Com. pooling Conw, pr:c::ng Con, Mj’f‘ Classification
image Layer(C LayeriC Layer POCOUNE Layers
B yer(Cy) Layer(P,) yer(G) Layer(P,) [C?al Layer ¥
-
(Pu2)

Fig. 2 The overall architecture of the DCNN used by us, which includes an input layer, multiple alternating convolution and max-pooling layers,
and two fully connected classification layers. ¥ denotes the total number of layers in the network

Pz Mg 5 &
b L LA g
TEd At B R g
LAY NAN R Y
FAMIEEY AT 3
T ABAE A
NS H ARG 2
5228 FRAT 4
(a)
Fig. 5 Example images in SER195a and PE92 databases

Table 5 Structure of digit recognizer (MNIST)

ae:} «7}--71‘ “1}& g "‘;-_t; ._)+ ;_-,,1.- ?b ;&

£ E 28 P

2B A R

*F R M AN A

YERBNL2 A YD

A b e el

ARRRAE D A7

ARARNY ALY 2
(b)

Thanks to
Xiaohui Xie

Layer Type # of feature maps Feature map size Window size Stride # of parameters
C Conmvolution 32 28 % 28 5x5 1 832
P2 Max-pooling 32 14 = 14 2x2 2 0
Cs Convolution 32 10 = 10 5x5 1 25,632
Py Max-pooling 32 5x35 2x2 2 0
Cs Comvolution 256 =1 S5x 5 1 205,056
Fs Fully connected 256 1 x1 MN/A MN/A 65,792
Fq Fully connected 10 I =1 MNiA MIA 2,570
Table 6 Digit recognition results
MSE CE
Recog. rate (%) Error rate (%) Recog. rate (%) Ermor rate (%)
Baseline 09.29 0.71 99.22 0.78
Edge operators 99.31 0.69 09.28 0.72
Elastic distortion 99.51 0.49 99.63 0.37
Edge operators 4+ elastic distortion 99.65 0.35 99.67 0.33

Knowledge-based avoidance of
drug-resistant HIV mutants

® Physician’s advisor for drug-resistant HIV
® Rules link HIV mutations & drug resistance
® Rules extracted from literature manually

@ Patient’s HIV is sequenced

® Rules identify patient-specific resistance

® Rank approved combination treatments

Input/Output Behavior

® INPUT = HIV SEQUENCES FROM PATIENT:
® 5 HIV clones (clone = RT + PRO)
® =5 RT + 5 PRO (RT =1,299; PRO = 297)
® = 7,980 letters of HIV genome

® OUTPUT = RECOMMENDED TREATMENTS:

® 12 = 11 approved drugs + 1 humanitarian use
® Some drugs should not be used together
® 407 possible approved treatments

Example Patient Sequence of
HIV Reverse Transcriptase (RT)

CCA GTA AAA TTA AAG CCA GGA ATG GAT GGC CCA AAA GTT AAACAATGG CCACCC ATT AGC CCT
ATT GAG ACT GTATTG ACA GAA GAA AAA ATA AAA GCA TTA GTA GAA ATT TGT ACA GAG ATG GAA
AAG GAA GGG *AAATT TCA AAA ATT GGG CCT GAA AAT CCATAC AAT ACT CCAGTATTT GCC ATA
AAG AAA AAA GAC AGT ACT AAATGG AGA AAATTA GTA GAT TTC AGA GAA CTT AAT AAG AGA ACT
CAA GAC TTC TGG GAA GTT CAA TTA GGA ATA CCA CAT CCC GCA GGG TAA AAA AAG AAA AAATCA
GTA ACA GTA CTG GAT GTG GGT GAT GCATAT TTT TCA GTT CCC TTA GAT GAA GAC TTC AGG AAG
TAT ACT GCA TTT ACC ATA CCT AGT ATA AAC AAT GAG ACA CCA GGG ATT AGA TAT CAG TAC AAT
GTG CTT CCA [CAG] GGA TGG AAA GGA TCA CCA GCAATATTC CAA AGT AGC ATG ACAAAAATC TTA
GAG CCT TTT AGA AAA CAA AAT CCA GAC ATA GTT ATC TAT CAA TAC ATG GAT GAT TTG TAT GTA
GGA TCT GAC TTA GAA ATA GGG GAG CAT AGA ACA AAA ATA GAG GAG CTG AGA CAACATCTG TTG
AGG TGG GGA CTT ACC ACA CCA GAC AAA AAA CAT CAG AAA GAACCT CCATTC CTT TGG ATG GGT
TAT GAA CTC CAT CCT GAT AAA TGG ACA GTA CAG CCT ATA GTG CTG CCA GAA AAA GAC AGC TGG
ACT GTC AAT GAC ATA CAG AAG TTAGTG GGG AAATTG AAT TGG GCA AGT CAG ATT TAC CCA GGG
ATT AAA GTA AGG CAATTATGT AAACTC CTT AGA GGA ACC AAA GCA CTA ACA GAA GTAATACCA
CTA ACA GAA GAA GCA GAG CTA GAA CTG GCA GAA AAC AGA GAG ATT CTA TAA GAA CAA GTA CAT
GGA GTG TAT TAT GAC CCA TCA AAA GAC TTA ATA GCA GAA ATA CAG AAG CAG GGG CAA GGC CAA
TGG ACA TAT CAA ATT TAT CAA GAG CCA TTT AAA AAT CTG AAA ACA GGA AAA TAT GCA AGA ATG
AGG GGT GCC CAC ACT AAT GAT GTA AAA CAA ATA ACA GAG GCA GTG CAA AAA ATA ACC ACA GAA
AGC ATA GTAATATGG TGA AAG ACT CCT AAATTT AAA CTG CCC ATA CAA AAG GAA ACA TGG GAA
ACA TGG TGG ACA GAG TAT TGG CAA GCC ACC TGG ATT CCT GAG TGG GAG TTT GTT AAT ACC CCT
CCC ATAGTG AAATTATGG TAC CAG TTA GAG AAA GAA CCC

The bracketed codon [CAG] causes strong resistance to AZT.

Rules represent knowledge about
HIV drug resistance

IF <antecedent> THEN <consequent>
[weight] (reference).

IF RT codon 151 is ATG
THEN do not use AZT, ddl, d4T, or ddc.

[weight=1.0] (Iversen et al. 1996)

The weight is the degree of resistance,
NOT a confidence or probability.

“Knowledge-based
avoidance of drug-
resistant HIV mutants”

Conference on Innovative ‘lep[watzon.s of
]Lrﬁﬁaa[In te[[igence

July 27— 29,1998 + Madison, Wisconsin
: Lrd W AT Lathrop, Steffen, Raphael
The American Association for Artificial Intelligence P, : ’ P . ’
@agan Deeds-Rubin, Pazzani
recognizes the work of . .

Richard H. Lathrop, Nicholas R. Steffen, Miriam P. Raphael, Innovative Applications of
S A Artificial Intelligence Conf.

The American Association for Artificial Intelligence Madison, WI, USA, 1998

@aia)
recognizes the work 4

R. Steffeq, Miriam P. Raphael

‘Sophia Deeds-Rubin

Paul J. Clm dch h

Center for Special Immunology

Darryl M. S d iah G. Till
e ICS undergraduate women

and the A1 Application entitled:
Knowledge-Based Avoidance of Drug-Resistant HIV Mutants

Al magazine

VOLUME 20, NO.1 SPRING 1999

“Knowledge-based
avoidance of drug-
resistant HIV mutants”

INNOVATIVE
APPLICATIONS OF
ARTIFICIAL
INTELLIGENCE

Lathrop, Steffer, Raphael,
Deeds-Rubin, Pazzz7 i,
Cimocl ;. See, Tilles

Al Magazine 20(1999)13-25

ICS undergraduate women

A LU EL publication of the
American Association{{T: T GIHEIR T TG T

Inductive learning

e Let x represent the input vector of attributes
- X; is the jth component of the vector x
- X; is the value of the jth attribute, j = 1,...d

e Let f(x) represent the value of the target variable for x
— The implicit mapping from x to f(x) is unknown to us
- We just have training data pairs, D = {x, f(x)} available

e We want to learn a mapping from x to f, i.e.,
h(x; 0) is “close” to f(x) for all training data points x

0 are the parameters of our predictor h(..)

e Examples:
- h(x; 6) = sign(w;x; + WyX,+ Wj3)

- hi(x) = (x1 OR x2) AND (x3 OR NOT(x4))

Training Data for Supervised Learning

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X, T F F T |Some| %%% F T | French| 0-10 T
X T F F T Full $ F F Thai | 30-60 F
X3 F T F F Some $ F F Burger | 0-10 T
Xy T F T T Full $ F F Thai | 10-30 T
X, T F T F Full $3% F T | French| =60 F
Xg F T F T |Some| %% T T | ltalian | 0-10 T
X F T F F MNone $ T F Burger | 0-10 F
Xg F F F T |Some| %% T T Thai | 0-10 T
X, F| T | T | F | Ful $ T F |Burger| =60 F
X 10 T T T T Full $%% F T Italian | 10-30 F
X1 F F F F None $ F F Thai 0-10 F
X190 T T T T Full $ F F Burger | 30-60 T

True Tree (left) versus Learned Tree (right)

Classification Problem with Overlap

FEATURE 2

FEATURE 1

Decision Boundaries

8)))))))
Decision o

=~ < Boundary Decision

~ Region 1

_*.
S x * * %

_*..

FEATURE 2

P *
DeC|_S|on ** * %
1 Region 2

FEATURE 1

Classification in Euclidean Space

e A classifier is a partition of the space x into disjoint decision
regions
— Each region has a label attached
— Regions with the same label need not be contiguous

— For a new test point, find what decision region it is in, and predict
the corresponding label

e Decision boundaries = boundaries between decision regions
— The “dual representation” of decision regions

e We can characterize a classifier by the equations for its
decision boundaries

e Learning a classifier < searching for the decision boundaries
that optimize our objective function

Example: Decision Trees

e When applied to real-valued attributes, decision trees produce

“axis-parallel” linear decision boundaries

e Each internal node is a binary threshold of the form
X: >t7?
]

converts each real-valued feature into a binary one

requires evaluation of N-1 possible threshold locations for N

data points, for each real-valued attribute, for each internal
node

Decision Tree Example

Debt 4

Income

Decision Tree Example

Debt 4

Income > t1

° .- i') ??

t1 Income

Decision Tree Example

Debt

t2

4

t1 Income

Income > t1

Debt > t2 \

VAN

Decision Tree Example

Debt 4

Income > t1

|
|
|
|
o I H®
° |
ol |
e
2 Fmm T :
o | ® Debt > t2
ol I
l : >
t3 t1 Income /\

Income > t3

AN

Decision Tree Example

Debt A
Income > t1

|
|
|
|
o 18
° |
ol |
(@)
2 r=—T——- m
o1 ® P Debt > t2
ol I
1 : >
t3 t1 Income /\

Income > t3

AN

A Simple Classifier: Minimum Distance Classifier

Training
— Separate training vectors by class
— Compute the mean for each class, n,, k=1,..m

e Prediction

— Compute the closest mean to a test vector x’ (using Euclidean
distance)

— Predict the corresponding class

e In the 2-class case, the decision boundary is defined by the
locus of the hyperplane that is halfway between the 2 means
and is orthogonal to the line connecting them

e This is a very simple-minded classifier — easy to think of cases
where it will not work very well

Minimum Distance Classifier

FEATURE 2

FEATURE 1

Another Example: Nearest Neighbor Classifier

e The nearest-neighbor classifier

— Given a test point x’, compute the distance between x" and each
input data point

— Find the closest neighbor in the training data
— Assign x’ the class label of this neighbor
— (sort of generalizes minimum distance classifier to exemplars)

e If Euclidean distance is used as the distance measure (the
most common choice), the nearest neighbor classifier results
in piecewise linear decision boundaries

e Many extensions
- e.dg., kNN, vote based on k-nearest neighbors
— k can be chosen by cross-validation

Local Decision Boundaries

Boundary? Points that are equidistant
between points of class 1 and 2
Note: locally the boundary is linear

Feature 2 4

Feature 1

v

Finding the Decision Boundaries

Feature 2

Feature 1

v

Finding the Decision Boundaries

Feature 2

Feature 1

v

Finding the Decision Boundaries

Feature 2

Feature 1

v

Overall Boundary = Piecewise Linear

* Decision Region

for Class 1 Decision Region

for Class 2

Feature 2

v

Feature 1

Nearest-Neighbor Boundaries on this data set?

8 1 1 1 1 1 1 1

Predicts blue
* *

FEATURE 2
o
* 4?
*
)
*
*
*

FEATURE 1

kNN Decision Boundary

» piecewise linear decision boundary

» Increasing k "simplifies” decision boundary
— Majority voting means less emphasis on individual points

R Ly
° }l'ﬁ-i;’ % o 3!'1.:?
v, C +

kNN Decision Boundary

» piecewise linear decision boundary

» Increasing k "simplifies” decision boundary
— Majority voting means less emphasis on individual points

...:-.'. . ..;::‘ .
Y A . 5:::3.‘_5, $
. KR A LR
'.‘.-“z. ‘ = '.‘.-:é? ‘

kNN Decision Boundary

e piecewise linear decision boundary

e Increasing k "simplifies” decision boundary
— Majority voting means less emphasis on individual points

K =25

e True ("best”) decision boundary
— In this case is linear
— Compared to kNN: not bad!

The kNN Classifier

e The kNN classifier often works very well.
e Easy to implement.
e Easy choice if characteristics of your problem are unknown.

e Can be sensitive to the choice of distance metric.
— Often normalize feature axis values, e.qg., z-score or [0, 1]
e E.g., if one feature runs larger in magnitude than another
— Categorical feature axes are difficult, e.g., Color as Red/Blue/Green
e Maybe use the absolute differences of their wavelengths?
e But what about French/Italian/Thai/Burger?
e Often used: delta(A,B) = {IF (A=B) THEN O ELSE 1}

e (Can encounter problems with sparse training data.

e (Can encounter problems in very high dimensional spaces.
- Most points are corners.
— Most points are at the edge of the space.
— Most points are neighbors of most other points.

Linear Classifiers

Linear classifier < single linear decision boundary
(for 2-class case)

We can always represent a linear decision boundary by a linear equation:
Wi X;+WyXg+ o FWegXg = Zwjx = wix=0

In d dimensions, this defines a (d-1) dimensional hyperplane
- d=3, we get a plane; d=2, we get a line

For prediction we simply see if 2 w; X; > 0

The w; are the weights (parameters)

- Learning consists of searching in the d-dimensional weight space for the set of weights
(the linear boundary) that minimizes an error measure

- A threshold can be introduced by a “"dummy” feature that is always one; its weight
corresponds to (the negative of) the threshold

Note that a minimum distance classifier is a special (restricted) case of a linear
classifier

FEATURE 2

FEATURE 1

FEATURE 2

| Another Possible
Decision Beck)undary

FEATURE 1

FEATURE 2

Minimum Error

[Decision Boundary

FEATURE 1

The Perceptron Classifier (pages729-731 in text)

X1
Wi

X W»o 7

W,

.
Xn \

A @ Transfer

x\Function Output
Input Weights Bias or

Attributes For Input Threshold
(Features) Attributes

The Perceptron Classifier (pages729-731 in text)

e The perceptron classifier is just another name for a linear
classifier for 2-class data, i.e.,

output(x) = sign(2 w; x;)
e Loosely motivated by a simple model of how neurons fire

e For mathematical convenience, class labels are +1 for one
class and -1 for the other

e Two major types of algorithms for training perceptrons
— Objective function = classification accuracy (“error correcting”)
— Objective function = squared error (use gradient descent)

- Gradient descent is generally faster and more efficient.

Two different types of perceptron output

x-axis below is f(x) = f = weighted sum of inputs
y-axis is the perceptron output

o(f) /Thresholded output (step function),

takes values +1 or -1

A

[
»

f

G(ﬂ/Sigmoid output, takes

_i/f real values between -1 and +1
f

The sigmoid is in effect an approximation

to the threshold function above, but
has a gradient that we can use for learning

Sigmoid function is defined as

olfl=[2/(1+exp[-f])]-1
Derivative of sigmoid
oc/df [f] =.5 * (o[f]+1) * (1-c[f])

Squared Error for Perceptron with Sigmoidal Output

e Squared error = E[w] = X; [o(f[x(i)]) - y(i)]2

where x(i) is the ith input vector in the training data, i=1,..N
y(i) is the ith target value (-1 or 1)

f{x(i)] = 2 w;x; is the weighted sum of inputs
o(f[x(i)]) is the sigmoid of the weighted sum

e Note that everything is fixed (once we have the training data)
except for the weights w

e So we want to minimize E[w] as a function of w

Gradient Descent Learning of Weights

Gradient Descent Rule:

Woew = WYWoa - M A(E[E])

where
A (E[w]) is the gradient of the error function E wrt weights, and
N is the learning rate (small, positive)

Notes:

1. This moves us downhill in direction A (E[w]) (steepest downhill)

2. How far we go is determined by the value of M

Gradient Descent Update Equation

e From basic calculus, for perceptron with sigmoid, and squared
error objective function, gradient for a single input x(i) is

A(CEw]) = - (y(i) - olf()]) oolf(i)] x(i)

e Gradient descent weight update rule:

wy o= wy +n(y(i) - o[f()]) oolf(i)] x;(i)
A 4 .

f
— can rewrite as: / /
W, = w; + mn*error* c* x(i)

]

Pseudo-code for Perceptron Training

Initialize each w; (e.g.,randomly)

While (termination condition not satisfied)
fori=1: N % loop over data points (an iteration)
forji=1:d % loop over weights
deltawj = n (y(i) — olf(i)]) dolf(i)] x(i)
w; =w; + deltaw
end
calculate termination condition
end

e Inputs: N features, N targets (class labels), learning rate n
e Qutputs: a set of learned weights

Comments on Perceptron Learning

e [Iteration = one pass through all of the data

e Algorithm presented = incremental gradient descent
- Weights are updated after visiting each input example
— Alternatives
e Batch: update weights after each iteration (typically slower)
e Stochastic: randomly select examples and then do weight updates

e A similar iterative algorithm learns weights for thresholded output
(step function) perceptrons

e Rate of convergence
- E[w] is convex as a function of w, so no local minima
— S0 convergence is guaranteed as long as learning rate is small enough
e But if we make it too small, learning will be *very* slow

— But if learning rate is too large, we move further, but can overshoot
the solution and oscillate, and not converge at all

[4

Support Vector Machines (SVM): "Modern perceptrons’
(section 18.9, R&N)

e A modern linear separator classifier
- Essentially, a perceptron with a few extra wrinkles

e (Constructs a "maximum margin separator”

— A linear decision boundary with the largest possible distance from the
decision boundary to the example points it separates

— “Margin” = Distance from decision boundary to closest example
— The "maximum margin” helps SVMs to generalize well

e (Can embed the data in a non-linear higher dimension space
— Constructs a linear separating hyperplane in that space
e This can be a non-linear boundary in the original space
— Algorithmic advantages and simplicity of linear classifiers
— Representational advantages of non-linear decision boundaries

e Currently most popular “off-the shelf” supervised classifier.

Constructs a "maximum margin separator”

Figure 18.30 FILES: . Support vector machine classification: (a) Two classes of points (black and
white circles) and three candidate linear separators. () The maximum margin separator (heavy line),
15 at the midpoint of the margin (area between dashed lines). The support vectors (points with large
circles) are the examples closest to the separator.

Can embed the data in a non-linear higher
dimension space

L3 b s 3 e b L

(@) (b)

Figure 1831 FILES:. (a) A two-dimensional fraining set with positive examples as black circles
and negative examples as white circles. The frue decision boundary, ﬁ + *-cﬁ < 1, is also shown
(b) The same data after mapping into a three-dimensional input space (7, x3, v2r1x2). The circular
decision boundary in (a) becomes a linear decision boundary in three dimensions. Figure 18.29(b) gives
a closeup of the separafor in (b).

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

e What if we took K perceptrons and trained them in parallel and
then took a weighted sum of their sigmoidal outputs?

— This is a multi-layer neural network with a single “hidden” layer (the
outputs of the first set of perceptrons)

- If we train them jointly in parallel, then intuitively different
perceptrons could learn different parts of the solution

e They define different local decision boundaries in the input space
e What if we hooked them up into a general Directed Acyclic Graph?

— Can create simple “neural circuits” (but no feedback; not fully general)
— Often called neural networks with hidden units

e How would we train such a model?
— Backpropagation algorithm = clever way to do gradient descent
— Bad news: many local minima and many parameters
e training is hard and slow
— Good news: can learn general non-linear decision boundaries
— Generated much excitement in Al in the late 1980’s and 1990’s
— New current excitement with very large “deep learning” networks

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

4T "\I
I 3 “\-_1;"'-‘-
= ey
Input
Lyyer

Key

Output

! input | ihidden layer) | output

Perceptron

Input :)
P b C/ transfer function

000

Cutting Edge of Machine Learning: Thanks to
Deep Learning in Neural Networks |

Il-/ﬂ/!/ : ﬂ/b ;ﬁ'
22 ’HI;ﬂ

A A A

Thanks to
Pierre Baldi

.
o

Inpuc layer (51) 4 feature maps O
Qf o] |o]|e| °
] L] (Fua) (F)
Input Conv. pzﬂj;g conu pmal - conu. :j:"‘n Classification
image Layer(Cy) Layer(Py) Layer(C3) Layer(Py) [Cy y PLaverg Layers
]
Fig. 2 The overall architecture of the DCNN used by us, which includes an input layer, multiple alternating convolution and max-pooling layers,

1 sub-sampling layer | convolution layer 1 sub-sampling layer 1 fully connect ed I"1LP| and two fully connected classification layers. N denotes the total number of layers in the network

PRO:

* Good results on hard problems

* Combine feature extraction with classification directly from image
CON:

* Can be difficult to train; gradient descent does not work well

* Can be slow to train; but fast computers and modern techniques help

Naive Bayes Model (section 20.2.2 R&N 3 ed.)

______________________ (%)

Basic Idea: We want to estimate P(C | X,,...X.), but it's hard to think about
computing the probability of a class from input attributes of an example.

Solution: Use Bayes’ Rule to turn P(C | X,,...X)) into a proportionally
equivalent expression that involves only P(C) and P(X,,... X, | C).
Then assume that feature values are conditionally independent given class,

which allows us to turn P(X,,...X, | C)into I, P(X; | C).

We estimate P(C) easily from the frequency with which each class appears
within our training data, and we estimate P(X; | C) easily from the frequency
with which each X, appears in each class C within our training data.

Naive Bayes Model (section 20.2.2 R&N 3 ed.)

Bayes Rule: P(C | X,,...X,) is proportional to P (C) IL; P(X| C)
[note: denominator P(X,,...X,) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C
* choose the class value c; with the highest P(c, | x4,..., X;,)
» simple to implement, often works very well
* e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(X; | C) can easily be estimated from labeled date
* Problem: Need to avoid zeroes, e.g., from limited training data
» Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Naive Bayes Model (2)

P(C| X,,...X,) = a P(C) II; P(X;| C)
Probabilities P(C) and P(X; | C) can easily be estimated from labeled data
P(C = ¢;) =#(Examples with class label C = ¢;) / #({Examples)

P(Xi = xy | C=¢)
~ #(Examples with attribute value X; = x; and class label C = ;)

| #(Examples with class label C = cj)

Usually easiest to work with logs
log [P(C | X;,... X))]
= loga +logP (C)+ X log P(X;|C)

DANGER: What if ZERO examples with value X; = x; and class label C = ¢; ?
An unseen example with value X; = x; will NEVER predict class label C = ¢; !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Classifier Bias — Decision Tree or Linear Perceptron?

—
]
(=

ey _ 1 - _.x.*-w’”'**x-*
E Dg _ .-+—"|‘_.|-—""rd- -f, Gg'] ._,:'5' .-H__Jll. 'rr-"';-t-l -l
g Z X
S 08 - ¥ s08q ¥
:1-", - - e !; o
207 - e £071
= o
=} = —rh
206 4 Perceptron + =206 4_,_.,._4.4-"'—.,;-"‘4- “-r-r’%— -h_f
5 Decision free ---2--- E 1
2 03 4 EP_ 0.3 Perceptron —+—
= - Decision tree ---%--

04 —r 04 —
0 10 20 30 40 50 &0 70 B0 90 100 0 10 20 30 40 30 &0 70 80 90 100
Traming set size Traiming set size
(a) (b)

Figure 18.22 FILES: . Companng the performance of perceptrons and decision trees. (a) Percep-
trons are better at learning the majority function of 11 inputs. (b) Decision trees are better at learning
the WillWait predicate in the restaurant example.

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Summary

e Learning

— Given a training data set, a class of models, and an error function,
this is essentially a search or optimization problem

e Different approaches to learning
— Divide-and-conquer: decision trees
— Global decision boundary learning: perceptrons
— Constructing classifiers incrementally: boosting

e Learning to recognize faces

— Viola-Jones algorithm: state-of-the-art face detector, entirely
learned from data, using boosting+decision-stumps

	Machine Learning Classifiers:�Many Diverse Ways to Learn
	Outline
	You will be expected to know
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Knowledge-based avoidance of drug-resistant HIV mutants
	Input/Output Behavior
	Example Patient Sequence of�HIV Reverse Transcriptase (RT)
	Rules represent knowledge about HIV drug resistance
	Slide Number 11
	Slide Number 12
	Inductive learning
	Training Data for Supervised Learning
	True Tree (left) versus Learned Tree (right)
	Classification Problem with Overlap
	Decision Boundaries
	Classification in Euclidean Space
	Example: Decision Trees
	Decision Tree Example
	Decision Tree Example
	Decision Tree Example
	Decision Tree Example
	Decision Tree Example
	A Simple Classifier: Minimum Distance Classifier
	Minimum Distance Classifier
	Another Example: Nearest Neighbor Classifier
	Local Decision Boundaries
	Finding the Decision Boundaries
	Finding the Decision Boundaries
	Finding the Decision Boundaries
	Overall Boundary = Piecewise Linear
	Nearest-Neighbor Boundaries on this data set?
	Slide Number 34
	Slide Number 35
	Slide Number 36
	The kNN Classifier
	Linear Classifiers
	Slide Number 39
	Slide Number 40
	Slide Number 41
	The Perceptron Classifier (pages 729-731 in text)
	The Perceptron Classifier (pages 729-731 in text)
	Two different types of perceptron output
	Squared Error for Perceptron with Sigmoidal Output
	Gradient Descent Learning of Weights
	Gradient Descent Update Equation
	Pseudo-code for Perceptron Training
	Comments on Perceptron Learning
	Support Vector Machines (SVM): “Modern perceptrons”�(section 18.9, R&N)
	Constructs a “maximum margin separator”
	Can embed the data in a non-linear higher dimension space
	Multi-Layer Perceptrons (Artificial Neural Networks) (sections 18.7.3-18.7.4 in textbook)
	Multi-Layer Perceptrons (Artificial Neural Networks) (sections 18.7.3-18.7.4 in textbook)
	Cutting Edge of Machine Learning:�Deep Learning in Neural Networks
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (2)
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Summary

