
Delegate: A Proxy Based Architecture for Secure Website Access from an
Untrusted Machine�

Ravi Chandra Jammalamadaka�, Timothy W. van der Horst�

Sharad Mehrotra�, Kent E. Seamons�, Nalini Venkasubramanian�

University of California, Irvine� Brigham Young University�

�rjammala,sharad,nalini�@ics.uci.edu �timv,seamons�@cs.byu.edu

Abstract

Performing sensitive online transactions using comput-
ers found in cybercafés and public libraries is risky. The
untrusted nature of these machines creates a target rich en-
vironment. A simple keystroke logger, a common payload of
many viruses, records and transmits the secret information
(e.g., passwords, credit card numbers, PIN numbers) en-
tered into these machines. In addition, sophisticated mal-
ware can hijack a user’s authenticated session to perform
unauthorized transactions masquerading as the user.

This paper presents Delegate, a proxy-based architec-
ture that enables a user to access web sites without disclos-
ing personal information to untrusted machines. Delegate
enforces rules at the proxy to detect and prevent session
hijacking. This architecture leverages users’ trusted mo-
bile devices, e.g., cell phones, and requires no modification
to web servers or the untrusted machines. Delegate is de-
signed to provide a balance between security and usability.

1 Introduction

The widespread acceptance of the Internet as a medium
of doing business introduces new avenues for identity theft.
Many people access the Internet using public computers
that are not under their direct control, such as those avail-
able in cybercafés, public libraries, and universities. A com-
promised computer may be under complete control of an
adversary who can then log keystrokes/click streams, snoop
incoming and outgoing data, and take screen shots.

In New York, an adversary stole about 450 online bank-
ing passwords during a 2 year period by installing a key-
board sniffing program on public terminals at 13 different

�This research was supported by funding from the National Science
Foundation under grant no. CCR-0325951 and IIS-0220069, the prime
cooperative agreement no. IIS-0331707, and The Regents of the University
of California.

Kinkos locations in Manhattan [1]. An insider working in
a computer lab at BYU installed spyware that collected pri-
vate information from 600 students [6]. A similar instance
occurred at Boston College [2].

While not widely observed, more sophisticated active at-
tacks are possible. For example, an attacker could hijack
or piggyback on user’s session at an online store and make
additional purchases. In the case of an online bank, the at-
tacker could transfer money to a different account while the
user checks his balance.

The attacks available on public computing terminals are
not limited to the theft of information. Many times an at-
tacker is not concerned with what can be obtained by an at-
tack but what can be destroyed. For example, when the user
is accessing his/her email, an attacker could delete email
messages or send spam (or dirty messages) to everyone in
the user’s address book.

People continue to use untrusted public computers in
spite of these risks. For a traveler, a computer at a cyber-
café may be the only resource for his/her computing needs.
A laptop owner may be forced to use a public computer due
to a lack of network connectivity.

This paper presents the design of Delegate, an architec-
ture to safeguard users against the threat of attack while us-
ing untrusted public computers. The goals of Delegate are
to prevent an attacker from: 1) Stealing a user’s secret infor-
mation; 2) Destroying a user’s personal information; and 3)
Hijacking a user’s session in order to perform unauthorized
transactions at a web server. Delegate assumes the user has
a cell-phone or other trusted personal communication de-
vice that can be used to communicate with the user without
relying on the untrusted machine. The user can send and
receive personal information on the cell phone as well as
validate and approve sensitive transactions.

The remainder of the paper is organized as follows. Sec-
tion 2 presents our threat model and architecture. Section
3 details its current implementation. Section 4 shows how
Delegate addresses session hijacking. A security analysis
of Delegate is in Section 5 and experimental results are re-

1

ported in Section 6. Section 7 discusses related work, and
Section 8 provides conclusions and future work.

2 Architecture

Delegate is designed to address and mitigate the preva-
lent attacks that occur in the context untrusted machines,
namely: keylogging, password sniffing, shoulder surfing,
and session hijacking. The other goals of the Delegate ar-
chitecture are:

� Authenticate users who access web service providers
from untrusted machines without requiring the user to
reveal any long-term secrets that an attacker can use
to impersonate the user in the future.

� Detect and prevent session hijacking in order to stop
malware from performing unauthorized transactions
while the user is performing legitimate operations.

� Limit the scope of potential damage by reducing the
attack surface while the user is accessing the web
from an untrusted machine.

� Minimize the number of changes that are required by
a web server or a user in order to deploy the system.

� Create a system that is easy to use. The design must
strike an appropriate balance between security and us-
ability. If user’s find the system too burdensome, they
will quickly grow tired of using it and turn it off.

The design of Delegate is illustrated in Figure 1. There
are four components in the architecture: 1) Trusted proxy;
2) Web server; 3) Untrusted computer; and 4) Trusted, mo-
bile device.

Untrusted computer For this paper, a machine is un-
trusted if it is not under the administrative control of the
user. This includes any computer where software can be
installed without the user’s knowledge or permission. An
untrusted machine under complete control of an adversary
is unlimited in the kinds of attacks it can launch.

Trusted proxy The trusted proxy is under the complete
administrative control of the user. Typically, it is a home
or an office machine.1 This proxy stores a user’s secret in-
formation and acts as a middleman between an untrusted
machine and a web server by filtering all incoming and out-
going traffic between them.

The proxy: 1) Authenticates the user via the mobile de-
vice when it receives a request to establish a secure session
from an untrusted machine; 2) Intercepts the user’s requests
and inserts secrets when necessary; 3) Requests user val-
idation of any potentially dangerous requests via a secure
channel with the trusted modile device; and 4) Removes

1In cases where organizations do not allow individual users to host
servers, the proxy should be maintained by the organization itself.

any sensitive information from a web server’s response be-
fore forwarding it to the untrusted machine.

Web server A web server communicates directly with the
proxy and is unaware of the untrusted computer. Since each
user operates their own trusted proxy, no modification to
web servers is required in this system

Trusted mobile device The user must possess a trusted
mobile device, e.g., a cell phone, in order to use Delegate.
The trusted proxy contacts the user through this device to
obtain authorization for requests from the untrusted com-
puter. Delegate is also designed to minimize the resources
required by trusted moble device. If the cell phone is lost
or stolen, it must be easy for the user to quickly revoke the
trust that the proxy has in the cell phone.

Although many mobile devices can directly access web
sites and avoid the security risks associated with untrusted
platforms, they lack many of the advantages of using a desk-
top machine, including: 1) A larger display; 2) Greater net-
work bandwidth; 3) More memory and processing power;
and 4) No dependancies on battery life.

Usage 1) The user’s requests to the web server from an
untrusted machine is routed through the trusted proxy. 2)
The trusted proxy validates the request using the mobile
phone. The proxy establishes a session, and rejects any re-
quests that are outside the domain of the original request.
3) The proxy inserts secrets into subsequent requests that
require them, seeking explicit permission from the user via
the mobile device if necessary. 4) The proxy scrubs sen-
sitive information from pages before they are returned. 5)
When a request is determined to be dangerous, the proxy
obtains explicit permission from the user to forward the re-
quest. 6) The user terminates the session with the trusted
proxy to prevent an attacker from performing transactions
after the user leaves the untrusted computer.

��� ������ 	
����
�����

A principal motivation for the proxy design is to de-
ploy Delegate without requiring any changes to web servers.
This provides a convenient way to bootstrap the usage of
this system. However, this may ultimately hinder broad
adoption because not all users are in a position to run their
own proxy. The proxy service could be offered by a trusted
third party, however this third party would to be trusted to
store and manage a user’s sensitive information and would
be an attractive target for attackers.

If web servers incorporated the functionality of the
proxy, then many problems would go away. Sensitive in-
formation would be distributed among servers who are al-
ready trusted with this information. The benefits of Dele-

2

Http
request

Parser
Secret
Filler

B
R
O
W
S
E
R

secrets Rules

Delayed requests

Check for all applicable rules

Resolve Conflicts

Rule Engine
Request that
needs
validation

Validation of
http request

Rule Learner

Delayed
requests

New rules

URL
rewriter

Sensitive
Information
remover

Special HTTP
request

Feedback

HTML

Trusted Proxy Computer
Untrusted
Machine

Web
Server

Modified

http request

HTML

User

Trusted
hardware

Figure 1. Delegate Proxy-Based Architecture

gate would be immediately available to a much larger audi-
ence than the proxy model supports, namely all users who
have access to a cell phone with text messaging capabilities.

3 Implementation

We have implemented a preliminary Delegate prototype
in Java. Messages are sent to a traditional cell phone via
SMS text messaging or through a traditional socket to spe-
cialized software on the mobile device. This software is im-
plemented in the Java micro edition environment (J2ME).
Delegate enables access to websites running both HTTP and
HTTPS, but for simplicity we refer to both as HTTP.

When the user requests to browse a website with SSL
support, Delegate opens two SSL connections, one SSL
connection between proxy and the untrusted public com-
puter and another connection between proxy and the web
server. After the SSL connections are made, the proxy can
now act as a man-in-the-middle between the untrusted ma-
chine and the webserver.

Since an SSL connection is opened with the proxy, the
certificate that the proxy produces during the SSL hand-
shake is not trusted by the untrusted public computer. Even
if the user is visiting a web site that he deems should contain
a valid certificate, the user will be prompted with an invalid
certificate alert message from the browser, since this certifi-
cate belongs to the proxy. To avoid such a situation, the user
can purchase a valid certificate from a trusted certificate au-
thority. If buying a certificate is not an option, then the user
should carefully review and accept the certificate presented

by the proxy.

Authentication To access a website through an untrusted
computer, the user must first authenticate to the trusted
proxy computer using a one-time password or PIN. Follow-
ing an initial request, the proxy sends the domain name of
the request along with this one-time PIN. The proxy also re-
turns a login page to the untrusted machine where the user
can enter the PIN. Alternatively, the user can send a confir-
mation back to the proxy via the cell phone. This requires
an installation of our specialized software. Once the user
is authenticated, the proxy is ready to accept requests from
the remote untrusted computer to the website designated in
the login process. The proxy opens a session with the web
server and acts as the middleman, directing traffic between
the untrusted public machine and the web server.

In order to reduce the attack surface, the authentication
is for a specific domain. The proxy disregards any request
that does not pertain to the website for which the proxy has
opened a session. In some cases, a website can maintain
images/multimedia objects in a different domain where the
HTML files are hosted. Since the HTML files are funneled
through the proxy before being sent to the untrusted ma-
chine, the proxy keeps track of all the URLs of the im-
ages/multimedia objects and allows the requests made to
these objects. Any other request outside of this list and out-
side of the domain to which the user authenticated, is sim-
ply discarded. However, an adversary can send requests to
the proxy pertaining to the website for which the proxy has
opened a session. The proxy has to decide for every web

3

request forwarded, whether the request originated from the
user or from the adversary. To do this, the proxy compares
the requests against the set of rules provided by the user to
determine when to contact the user for validation of a re-
quest.

Using our specialized software, the cell phone and
the proxy cryptographically protect their communications.
However, in many cases, the user may be willing to tolerate
the risk that cell phone traffic is sent in the clear.

Secret Filling Essentially, there are two types of requests
that are primarily used during web browsing, the HTTP
GET and the HTTP POST. In general, GET requests are
used to pull information from the web server and POST re-
quests are used to send data to the web server. Secret filling
by the proxy should therefore only required for POST mes-
sages. The following is an example of a POST message:

POST www.somehost.com/login.asp HTTP/1.0
User-Agent: HTTPTool/1.0
Content-Length: 32
Username=&password=

This POST message is generated when the user navigates
to the login page of somehost.com and clicks the submit
button without filling in the username and password infor-
mation. When the proxy receives this request, the parser
strips out the data string (the last line of this post message)
and URL information, and passes it to the secret filler mod-
ule. The data string contains a set of key=value pairs. A
key is the metadata that is attached to every input element
(textboxes, radio boxes, etc.) in an HTML form. In this
example username and password are the two keys. The se-
cret filler now fetches the required secrets from the local
database using the URL information and the keys and fills
in the secrets by modifying the data string. The secret filler
module only fills in secrets that have been left blank by the
user and leaves all other requests unmodified.

Validating HTTP requests The proxy must determine if
a request it receives is legitimate, i.e., it is issued by the
user and not malware on an untrusted machine. One way
for the proxy to determine the legitimacy of a request is to
obtain user validation via the cell phone. The method can
be used to ask the user to validate each and every request
the proxy receives. This solution does not scale and places
an unbearable burden on the user.

Alternatively, the proxy can only require user validation
for requests that are potentially “damaging”, i.e., the re-
quest involves a monetary transaction. Determining such
kinds of requests is a non-trivial task and Delegate requires
the help of the user in this regard. The user supplies the
proxy with a set of rules. Using these rules, a Rule engine
determines if contact with the user is necessary. These rules

try to capture the validation policy of the user. In Section 4,
we will show how these rules are captured and evaluated.

Removing sensitive information All responses from a
web server are filtered by the proxy to remove any sensi-
tive information before it they are forwarded to an untrusted
computer. This is necessary because the response from a
web server may contain sensitive information (e.g., credit
card numbers, address, phone numbers) that would other-
wise be exposed to the untrusted machine. Although many
websites already obfuscate some of the sensitive informa-
tion they display, e.g., only listing the last four digits of a
credit card number, the proxy provides this functionality to
all the web sites a user may visit.

The identification of what constitutes sensitive informa-
tion in a certain context is a delicate task. We have iden-
tified several approaches that have thus far been effective.
The simplest approach is to replace any secret that appears
in the HTML response from the web server with “******”.
Although this method is useful, it does not deal with situa-
tions where the sensitive information cannot be predefined.
For instance, when a user accesses an email which contains
a new password (the attacker can force such an email) then
the previous heuristic will not suffice. For these kind of
situations, Delegate looks for sub-sentence patterns such as
(Password: �any word�) and hides them. Although both
these approaches are useful, more work is needed to fully
address this problem.

4 Session Hijacking

Delegate limits the potential malware has to hijack a
user’s session by fabricating or modifying dangerous re-
quests to a web server. First, the user configures the browser
on the untrusted machine to forward all web requests to the
proxy. The user can rely on the proxy to authenticate to a
web server and fill in all sensitive data. Delegate trusts the
user to protect sensitive information and avoid entering it at
the untrusted machine.

To prevent session hijacking, a simple solution is for the
proxy to forward all requests to the user for validation. This
solution has some severe drawbacks: 1) HTTP requests are
not semantically rich enough for users to understand the
purpose of the request; and 2) A typical web session can
generate hundreds of web requests, placing a tremendous
burden on the user. These factors make it probable that users
will reject such a system as unusable or impatiently approve
each request without evaluating it thoroughly. A successful
solution must strike an effective balance between security
and usability.

A significant number of web requests do not require user
validation. For instance, requests to retrieve the images em-
bedded in a web page that the user authorizes the proxy to

4

retrieve should not require further validation. The user is
primarily concerned with dangerous requests that malware
can exploit to cause harm to the user, e.g., an unauthorized
request to transfer money from the user’s account. Identify-
ing dangerous requests is the key to addressing the session
hijacking problem. Once a dangerous requests is identified,
the user can be contacted for validation.

Determining the danger of a web request is non-trivial
and subjective. Different users have different perceptions
about what is considered dangerous. For instance, some
users may feel that accessing their purchase history from
Amazon.com should be classified as a dangerous operation,
while others may not. Users have different levels of para-
noia. Since users have their own view on what constitutes
a dangerous request, a single strategy for determining dan-
gerous requests for all users is undesirable. It would result
in false positives and false negatives depending on the indi-
vidual preferences of each user. For the system to be usable,
it must be tailored to meet individual preferences for what
constitutes a dangerous request.

In Delegate, users dictate rules to the proxy that identify
dangerous requests. A rule specifies a set, or category, of
requests and the appropriate action to take when it is en-
countered. Rules are an effective way to capture the user’s
intent in identifying dangerous requests. The set of rules
constitutes the user’s policy. Users specify a policy for ev-
ery website they wish to access from an untrused machine.
Once a dangerous request is identified, a text message that
explains the semantics/purpose of the request needs to be
sent to the user for validation. This task is difficult to handle
automatically since HTTP request messages are not seman-
tically rich. Delegate enlists the user’s assistance to specify
the contents of a validation message.

The remainder of this section discusses Delegate’s model
for classifying dangerous requests, capturing a user’s policy,
and rule generation.

��� �

�����
���� �� �
������� ��������

An analysis of popular websites in the areas of banking,
travel, email, and retail revealed two kinds of dangerous re-
quests are prevalent during the course of an online session.

Definition 1 - State Change Request (SCR): A request
that alters the state of the web server permanently. Forward-
ing such requests to a web server without user validation
has the potential for damage. For example, a request that
transfers money from the user’s account. A distinguishing
characteristic of such requests is that they usually carry data
supplied by the user in addition to the URL information.

Definition 2 - Private Information Request (PIR): A
request that retrieves a user’s private information from the
web server. If the data is returned to the untrusted machine,
it is potentially exposed to malware. In some cases, the in-

formation should be filtered out of the web page or returned
to the user via the cell phone. In other cases, the user may
allow it to be sent to the untrusted machine, but only when
the user explicitly authorizes it. Unlike an SCR request, a
PIR request does not have any noteworthy distinguishing
characteristics to easily identify it.

Delegate assumes requests outside these two definitions
are not dangerous.

��� �
�������
 ��
���

Policies in Delegate have a request level granularity. Al-
though higher level policies may reduce the complexity of
policy creation, they lose the flexibility to reduce the vali-
dation requirements. For example, assume a user specifies
a policy that requests validation of PIR requests to a par-
ticular website. This may be overkill if the user is com-
fortable permitting some PIR requests without validation.
Seeking validation from the user is a costly operation and
hence should be avoided whenever possible if the security
risk is acceptable. Hence, the policy language operates at
the lowest granularity possible, at the request level.

Since validation is done at the request level, one might
assume that it makes sense to group requests and validate
them at the group level. However, this cannot be achieved
since 1) A single request forwarded to the web server can
do extensive damage; and 2) Most requests cannot be easily
undone once they are completed.

The following is a formal definition for an HTTP request
in Delegate policies:

Definition 3 - HTTP request object: An HTTP request
� is modeled as a set of �attribute, value� pairs, denoted
as ��� . Each set contains at least two �attribute, value�
pairs (i.e., ���� � � �). The URL pair stores the URL infor-
mation, e.g., �URL,“http://www.americanexpress.com”�.
The Type pair stores the request type, e.g., �Type,“GET”�.

The other pairs in the set are dependent on the contents
of the HTTP request and are application dependent. These
pairs can be obtained from three different sources 1) the
query string that is attached to the URL and follows the
“?” sign, 2) the data string that is attached to every POST
request, and 3) the cookie string that is attached to HTTP
requests. These �attribute, value� pairs can be classified
in two ways: 1) as constant valued pairs, or 2) as ran-
dom valued pairs. Constant valued pairs are identical across
all sessions, while the random values vary. The values of
the constant valued attributes have some special meaning to
the web server; they dictate the actions of the web server
in response to the request. Random valued attributes pro-
vide session specific information such as session ids, ses-
sion keys, etc.

The classification of �attribute,value� pairs as constant
or random is based on a fundamental assumption regard-

5

HTTP REQUEST:
GET /myca/onlinepayment/us/action?request type=authreg CardPayments

Accept: image/gif, image/x-xbitmap,
Referer: https://www99.americanexpress.com/myca/
Connection: Keep-Alive
User-Agent: Mozilla/4.0
Host: www99.americanexpress.com
Cookie: Manage=cards; s session id=1231122950204954-05-05

HTTP REQUEST object:
�URL,/myca/onlinepayment/us/action� , Constant
�Type, GET�, Constant
�request type, authreg CardPayments�, Constant
�Mange, cards�, Constant
�s session id,1231122950204954-05-05�, Random

Figure 2. An example HTTP request and its correspond-
ing HTTP request object

HTTP REQUEST:
GET /myca/onlinepayment/us/action?

request type=authreg acctAccountSummary
Accept: image/gif, image/x-xbitmap,
Referer: https://www99.americanexpress.com/myca/
Connection: Keep-Alive
User-Agent: Mozilla/4.0
Host: www99.americanexpress.com
Cookie: Manage=cards; s session id=1231122950204954-05-05

Figure 3. HTTP GET request generated when accessing
account summary from americanexpress.com

ing the design methodology of websites. It assumes that
the actions that are triggered at a web server in response to
a request only depend on the values of the constant valued
attributes. Therefore, two requests with the same set of con-
stant valued attributes names but different values can have
different semantics at the server side. This assumes that the
random valued attributes do not dictate semantics at the web
server side. This is a reasonable assumption, since it is un-
clear why websites would be designed in such fashion. We
have manually validated this assumption by examining the
request messages for many popular websites and we have
not encountered any website that contradicts this assump-
tion.

Also, an HTTP request contains some header informa-
tion such as accept, referer, etc. Delegate ignores these at-
tributes because any alteration of these values by malware
can only cause denial of service and are not significant for
protecting against dangerous requests.

The formal model of an HTTP request message as an
HTTP request object prunes away some unnecessary infor-
mation in the request and classifies the rest of the informa-
tion as constant or random. Fig 2 shows an example HTTP
request and its corresponding HTTP request object. This
example also includes the classification of the �attribute,
value� pairs. This request is generated when a user is try-
ing to access his/her credit card payment history from amer-
icanexpress.com. Only a portion of the HTTP request is
shown for simplicity.

HTTP Template:
�URL,/myca/onlinepayment/us/action�, constant
�Type, GET� , constant
�request type, authreg CardPayments�, constant
�Manage, cards�, constant
�s session id, *�, Random

Proxy Action:
Validate

Message:
Trying to access the American express account summary.

Figure 4. An example Rule

A rule is the basic building block of the policy language.
Each rule instructs the proxy which action to take for cer-
tain kinds of requests. Each rule has the following structure:

RULE:
�HTTP TEMPLATE��PROXY ACTION��MESSAGE�

HTTP TEMPLATE describes the class of requests per-
taining to the rule. Informally, an HTML TEMPLATE has
to encompass a set of HTTP requests. PROXY ACTION
describes the action that the proxy takes for the class of
requests, and MESSAGE contains the message the proxy
sends to the user when validation is required.

Definition 4 - HTTP TEMPLATE: An HTTP Template
contains a set of �attribute,value� pairs, denoted as ��� .
The cardinality of the set ��� is at least two. The HTTP
template also contains the URL and the type pairs. The rest
of the �attribute,value� pairs are classified as either con-
stant or random. For constant valued attributes, the value is
stored in the rule. For random valued attributes, no value is
stored.

The following definition describes when a request R con-
forms to a HTTP Template T.

Definition 5 - Template Conformance: A request R
conforms to an HTTP Template T, when the following
holds:

� R.urlpair = T.urlpair
� R.typepair = T.typepair
� Let all constant valued �attributes,value� pairs in

��� be represented by the set ���� . Let all con-
stant valued �attributes,value� pairs in ��� be rep-
resented by the set ���� . Then, ���� = ���� .

� Let all random valued attribute names in ��� be rep-
resented by the set ���. Let all random valued at-
tribute names in ��� be represented by the set ��� .
Then, ��� = ���

Fig 4 shows an HTTP TEMPLATE example. A request
R conforms to a Template T, if all constant valued pairs
from R match their corresponding pairs in T. The random
variable values are ignored since they are session specific.

Consider the two HTTP GET requests in Fig 2 and
Fig 3. The GET request in fig 2 is generated when the
user is trying to access his/her payment history from amer-

6

HTTP POST MESSAGE:
Accept: image/gif,
Referer: http://home.americanexpress.com/home/mt personal cm.shtml
Connection: Keep-Alive
User-Agent: Mozilla/4.0

UserID=bobwiley009&Password=notherealpassword&manage=cards

Figure 5. An example POST message

Validation Message:
Are you trying to log in to americanexpress.com??
Form reconstruction:
UserID = NOT SPECIFIED TO BE FILLED IN BY THE PROXY
Password = NOT SPECIFIED TO BE FILLED IN BY THE PROXY
NO DESCRIPTION=cards

Figure 6. An example Validation Message

icanexpress.com, while the other GET request is gener-
ated when the user is trying to access his account sum-
mary from the same website. Both these requests have the
same set of constant valued attributes, but the value of the
action request type dictates the information that the web
server should return.

PROXY ACTION: PROXY ACTION specifies the ac-
tion the proxy takes when an HTTP request conforms to the
HTTP TEMPLATE. There are four possible proxy actions:

1. Validate: The proxy contacts the user via the cell
phone to validate the HTTP request.

2. Accept: The proxy forwards the HTTP request to the
web server without any user validation.

3. Defer: The proxy stores the HTTP request locally
and not forward the request to the web server. The
user can validate the request once he/she is back
working on the trusted proxy. Defer action is very
helpful, since it saves the bother of contacting the
user via the cell phone. Such an action is applied
to requests which are not urgent. Since HTTP is a
stateless protocol, requests can be stored locally and
sent at a later time during a new session to have the
same effect.

4. Drop: The proxy drops the request and does not for-
ward it to the web server. This applies to requests
that the user never intends to issue from an untrusted
machine.

MESSAGE: MESSAGE refers to a text message that is
sent to the user when a request sent by the user satisfies
the HTTP TEMPLATE and PROXY ACTION is set to Val-
idate. Otherwise, the MESSAGE is left blank. The message
states the semantic meaning or the purpose of the request.
Since this message is given by the user, the user can eas-
ily identify the essence of the request when the message is
received on the cell phone.

Validation messages need to be sent to the user only for
HTTP GET and HTTP POST messages. Even though there
are 6 other types of HTTP messages, these are the only
two relevant to the Delegate architecture. An HTTP GET

message retrieves a resource from the web server, while an
HTTP POST messages sends data to a web page for further
processing. Fig 2 shows an example of the GET request
and figure 5 shows an example of the HTTP POST request.
The end of a POST request contains a data string, which
contains the data that is being submitted to the web server.

To validate an HTTP GET message, the entire message is
sent to the user. Validation of HTTP POST messages is not
that simple. Typically, POST messages are generated when
a user submits a form. When a post message is received, the
proxy constructs a text representation of the form and sends
it to the user for validation. A text representation of a form
is constructed in the following manner: a) The descriptive
text preceding each input element is located. b) The set of
�descriptive text, input value� pairs for all the input ele-
ments constitutes the text representation of the form. Fig
6 shows the validation message sent to the user when the
proxy receives the POST message in fig 5. Note, the value
cards does not have any descriptive text in the form.

Improving the expressiveness of the HTTP templates
Previously, we have defined HTTP templates that are ap-
plicable only for a particular kind of requests. To provide
set semantics to HTTP Templates, we allow regular expres-
sions to be placed in the value part of the �attribute, value�
pairs. We denote such templates as coarse templates. For
such templates, we modify Definition 5 as follows:

Definition 5b: A request R conforms to a coarse tem-
plate �� , when the following holds:

� R.urlpair matches with the regular expression speci-
fied in �� �����	
�.

� R.typepair matches with the regular expression speci-
fied in �� ����
�	
�.

��� ���������� ��
��

The rule-based approach is reminiscent of firewalls. The
proxy acts as a remote, personal firewall to protect the user’s
privacy and security. As in traditional firewalls, a single re-
quest can conform to several templates with conflicting ac-
tions. For instance, consider a user providing his validation
policy to the proxy for the amazon.com website. The user
does not want to validate any GET requests unless the GET
request fetches his/her past purchases. The easiest way to
create this policy is to create two rules, one rule accepts all
GET requests and another rule validates any GET request
for the history page. These two rules clearly conflict. If
conflicts were not allowed, the user is forced to specify a
rule for every web page that she expects to access.

The actions in Delegate have a clear precedence: Vali-
date, Defer, Drop, and Accept. When two different rules
conflict, the conflict is resolved according to the prece-
dence order. The conflict resolution operation is associa-

7

tive, therefore, when more than two rules conflict, the order
in which the conflicts are resolved does not matter.

��� ��
� �����
����

Delegate relies on a policy database of rules for each
website the user accesses from an untrusted machine. Poli-
cies can originate from someone other than the user. For
instance, security experts can develop policy files for cer-
tain websites that a user can easily install and use. A user
could customize the policy to meet her requirements. An-
other likely scenario is for a webmaster to provide policies
that identify dangerous actions and provide meaningful val-
idation messages to the user. The webmaster is well-suited
to understand those requests that pose the greatest threat to
users if exploited by malware. A webmasters could spec-
ify a range of policy options geared for users with different
levels of privacy preferences. As the Delegate architecture
is deployed, websites would have a competitive advantage
by providing their users with protective policies when using
untrusted machines. The system is more suitable for non-
technical users if experts supply the policies.

We are exploring an approach to policy generation that
can be used by experts to easily create policies. This ap-
proach has the potential to make it easier for non-experts
to generate their own rules. The approach is to access the
web from the trusted machine that runs the proxy, and have
the proxy assist in automatically generating rules based on
user feedback. To achieve this, the user first switches Del-
egate into learning mode and then starts to access websites
as he/she normally would through a proxy.

Whenever the proxy encounters an SCR or a PIR request,
Delegate asks the user whether a rule should be generated.
Since if is difficult to determine a PIR request compared
to an SCR request, Delegate assumes every request to an
image or multimedia object is not a PIR request. Thus, re-
quests that access web pages (i.e. requests that access html
files, asp pages, etc) are assumed to be PIR requests. For in-
stance, assume that the user is accessing his email account
and has just created an email and pressed the send button.
This generates a POST message that is forwarded to the
proxy. The proxy now asks the user if he wants to create
a rule for this action. If the user responds affirmatively, the
proxy creates an HTTP TEMPLATE for the request as de-
scribed in the previous sections. Now the user can modify
the default template, by placing the “*” operator and mak-
ing the HTTP TEMPLATE more generic. Since the user
is fully aware of this last action (in this case, the user sent
an email), the user chooses an appropriate proxy action and
creates a meaningful message to complete the creation of
the rule if validation is required. Initially, the rule is stored
in the policy database and is not immediately applicable
for future requests. Since the proxy needs to classify the

�attribute, value� pairs of the HTTP Template as either
constant or random, the proxy waits until the next time it
encounters the same request in a different session so that it
can check for constants. After receiving the rule twice, the
proxy then can apply the rule with immediate effect.

Training the proxy could require a significant effort on
the part of the user, since the policies are website specific
and users wish to access them from the untrusted machine.
More time spent training the proxy may significantly reduce
the number of attempts to contact the user via the cell phone
for request validation. Thus, the better the proxy is trained
the easier it should be to use Delegate because false posi-
tives and false negatives are reduced.

5 Security Analysis

The use of a completely untrusted machine provides lim-
itless possibilities for attack. As such, browsing and access-
ing web services from an untrusted device will never be as
secure as using a trusted device. Delegate significantly re-
duces the attack surface in order to achieve an acceptable
level of risk.

Using a keystroke logger or by shoulder surfing, an at-
tacker cannot acquire secrets belonging to the user because
they are never entered into the untrusted machine. Also, an
attacker cannot sniff for passwords or other secrets on the
local network since the secrets never traverse the network
used by the untrusted machines. An attacker will, however,
be successful in procuring any information entered at the
untrusted machine.

The cell phone is an attractive target for attack because it
has the ability to receive the one-time PINs from the proxy.
If the cell phone is lost or stolen, any previously received
PINs that remain on the phone are worthless. However an
attacker could successfully receive one-time PINs until the
proxy is informed that the phone has been compromised.

The proxy contains user secrets. To mitigate the effects
of a compromise, the proxy should: 1) Run in its own user
space; 2) Keep an audit log; 3) Refuse connections/requests
from any machine other than the one that has supplied the
one-time PIN; and 4) Only allow one active connection.

Web servers also store user secrets which may be acces-
sible to the untrusted machine through two methods. First,
the web server may disclose this information on a web page
sent to the user, either visibly (e.g., the page the user sees
has the info on it) or hidden (e.g., a hidden form value). Sec-
ond, if an attacker asks a web site to send an email-based
password reminder the password, or a link to change it, will
be exposed to the untrusted machine when the user access
her email account. Filtering at the proxy should be able to
counter both these attacks, provided the attack relies com-
pletely on the proxy for information on the user.

Without a successful active attack on the cell phone,

8

proxy, or web server, the untrusted machine only has access
to the information that the proxy releases and what it can
glean from publicly available information on the Internet.

Communication Links No security is guaranteed for
communication between the untrusted machine and the
proxy because it is in complete control of the untrusted de-
vice. No assumptions as to the integrity or confidentiality of
the messages passed in either direction of this link should be
made. Even though it provides no guarantees, a TLS con-
nection should be used on this link to avoid passive eaves-
dropping by others on the network. The presentation of a
valid one-time PIN means that the user has given authoriza-
tion to the possessor to forward HTTP requests to the proxy
and that the cell phone is ready to participate in the autho-
rization of those requests. All that attackers should be able
to gain by acquiring a valid PIN is that they can make HTTP
requests to a specific website via the proxy.

The unidirectional link between the proxy and the cell
phone should provide integrity, confidentiality, and authen-
tication. However this is not a feasible requirement to en-
force for all mobile devices, especially low-end cell phones.
The short-lived nature of the one-time PINS removes some
of the risks of using an insecure connection in this link.

The link between the web server and proxy is controlled
by the proxy. It has the same assurances as any link can
between a trusted machine and a known web server.

The untrusted machine can communicating directly with
the web server, but by withholding the necessary authen-
tication credentials from the untrusted machine prevents it
from impersonating the user.

The untrusted device could attempt to make a communi-
cate directly with the cell phone. These attempts cannot be
prevented, but the user should be alerted if they occur.

Although accessing the website directly through the cell
phone offers great protection to the user’s personal data, the
user loses out on the large screen, full-sized keyboard, band-
width, and processing offered by the untrusted device.

Other Considerations This system is designed so that all
messages must funnel through the proxy, providing a cen-
tral location to audit all activity. The only way to bypass this
auditing system is for malware on the untrusted computer to
establish a direct link with a web service. This should only
be feasible if an attacker has obtained the required authen-
tication credentials. Auditing information recorded after a
compromise of the proxy cannot be trusted.

The security of this system relies on the ability to a user
to recognize invalid requests and not authorize those re-
quests. Messages sent to the cell phone should be clear and
understandable because the user must be able to make an
informed decision based on their contents.

Blocking all outgoing traffic on the untrusted machine
causes a denial of service. A user may interpret this as a
normal technology failure and not an attack, and could sim-
ply access a website directly and disclose sensitive infor-
mation simply to complete a task. Preventing this type of
denial of service is outside of scope of this paper, however
users must be educated in order to avoid this scenario.

By making superfluous requests, an attacker could force
the proxy to send a large amount of validation messages to
the user’s cell phone. In Delegate, the user may disable the
current proxy session via the cell phone to end this frustrat-
ing attack. However, the threat of an attacker bombarding
a cell phone with messages remains as there are web and
email interfaces for sending text messages to a cell phone at
no cost to the attacker.

6 Experimental Results

This section describes several experiments we conducted
with the Delegate prototype to measure the overhead intro-
duced by the Delegate system and the benefit of using a
policy based approach to control session hijacking. A full
version of the paper provides more details[11]. The Java-
based proxy was running on a Pentium 4 machine with 512
MB ram and Windows XP. The cell phone used is a Sony
Ericsson w800i capable of running J2ME applications.

In the first experiment we measured the delay in mean re-
sponse time for an HTTP request made from the untrusted
public machine that uses Delegate. Delays are due to a) The
proxy intercepting the HTTP requests and filling in the se-
crets; b) Message transfer between the proxy and the cell
phone; and c) The validation process by the user. It took
less than 1 msec for the proxy to intercept HTTP requests
and fill in the relevant secrets. This time includes the pars-
ing of the HTTP request, secret retrieving and reconstruc-
tion of the HTTP request. Since the proxy runs on a fairly
powerful workstation, the secret filling time is negligible.
Transferring of a message of 200 bytes using the special-
ized software installed in the cell phone took on an average
420 msecs. Since most messages are less than 200 bytes,
420 msecs could be regarded as the average transfer time of
messages from the proxy to the cell phone. When the same
message was transferred via SMS text messaging, the aver-
age delay was 4 secs. The biggest delay is caused when the
user validates a messages sent from the proxy. The user has
to carefully read the messages and understand them, before
validating them. Since the user’s mind is occupied in this
process, he/she is unlikely to notice this delay.

In the second experiment we measured the benefit of a
policy based approach to control session hijacking. In this
method, requests known to be dangerous are identified in a
policy. Since PIR requests do not have any distinguishing
characteristics, we assume requests accessing images, mul-

9

timedia objects, etc., are not PIR requests. Without a policy,
the proxy considers all SCR and PIR requests as dangerous.

The two important lessons learned from this experiment
are a) a policy based approach significantly reduces the val-
idation requirements when compared with automatic ap-
proaches, and b) the average number of validation messages
per session for a typical user is 3.7. In contrast, when no
policy file is present the average number of validation mes-
sages per session is 23.1. These preliminary results illus-
trate that a trained proxy with site-specific policies can sig-
nificantly reduce the validation burden on the user. This
is important because it is unlikely that user’s will tolerate
excessive message validation via the cell phone. An open
problem is to identify characteristics that might allow an un-
trained proxy to better automatically identify requests that
users consider dangerous, which would reduce the need for
users or experts to generate policies in advance.

7 Related Work

Ross et al. [8] created a composable framework for
multi-modal access to content using both trusted and un-
trusted devices. Their system specifies a proxy-based ap-
proach for inserting secrets into requests, scrubbing sensi-
tive data from responses, and validating dangerous requests
through a trusted device. The framework is broad, general-
purpose, and extensible. No low-level details were given
for the rule language used to identify dangerous requests
and not all of the proposed features were implemented.

Wu et al. [9, 10] present a high-level overview of the
proxy-based architecture similar to the one used in this pa-
per. They also provide valuable insights into how actual
users interact with such a system. They do not provide a
solution for session hijacking.

Opera et al. [5] created a system that uses VNC [7] to
connect an untrusted machine to a trusted machine. The
untrusted machine receives short-lived, read-only access to
the trusted machine. This system is not vulnerable to ses-
sion hijacking because all input events must originate from
a trusted mobile device and must arrive via a separate, se-
cure communications channel. Due to the constraints of the
mobile device it may be difficult and tedious to use it as the
sole means of input.

SpyBlock [3] and Vault [4] use virtual machines to pro-
vide a sandbox for potential untrustworthy software, e.g.,
a web browser. Although the trusted and untrusted com-
ponents operate on the same machine, these projects cover
many of the same topics addressed by this paper. SpyBlock
can prompt the user to validate potentially harmful requests
and provides an API for servers to identify potentially dan-
gerous actions.

8 Conclusions

This paper presented Delegate, a proxy-based architec-
ture that allows users to access web services from an un-
trusted machine without revealing their sensitive informa-
tion to that untrusted platform. The proxy acts as a middle-
man and filters all the traffic between the untrusted machine
and the web service provider to insert secrets on the user’s
behalf. Delegate does not require any changes to the web
server’s authentication protocol. Delegate also permits the
user to define a rule base that specifies whether requests are
dangerous or not, and the proxy can contact the user via
a cell phone to gain approval to submit requests that pose
risks if exploited by malware.

The ideas in the Delegate design can be incorporated
into Web sites directly, which would make them suitable for
users on trusted and untrusted machines. Our design is tar-
geted at cell phone users with text messaging capabilities,
so the pool of potential users is very high.

The primary contribution of the paper is the specifica-
tion of a policy language for establishing rules to classify
dangerous Web requests and the appropriate action. This
methodology has similarities to firewall rules that dictate
Internet traffic that can pass through a firewall and traffic
that should be blocked. The Delegate proxy is a type of re-
mote personal firewall that inspects traffic and determines
whether it is permitted to flow to or from a Web site and
provides a layer of defense between the untrusted machine
and a website.

References

[1] http://www.securityfocus.com/news/6447
[2] http://news.com.com/2100-1023-983717.html
[3] C. Jackson, D. Boneh, and J. Mitchell. Spyware Re-

sistant Web Authentication using Virtual Machines.
http://crypto.stanford.edu/spyblock/spyblock.pdf, 2006.

[4] P. Kwan and G. Durfee. Vault: Practical Uses of Virtual Machines
for Protection of Sensitive User Data. PARC Technical Report.

[5] Oprea, D. Balfanz, G. Durfee, and D. K. Smetters. Securing a
Remote Terminal Application with a Mobile Trusted Device. In
proceedings Annual Computer Security Applications Conference
(ACSAC 2004), Tucson, AZ, December 2004.

[6] http://deseretnews.com/dn/view/0,1249,600154978,00.html
[7] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper.

Virtual network computing. IEEE Internet Computing, 1998.
[8] S. Ross, J. Hill, M. Chen, A. Joseph, D. Culler, E. Brewer. A

Composable Framework for Secure Multi-Modal Access to Inter-
net Services from Post-PC Devices, IEEE Workshop on Mobile
Computing Systems and Applications, December 2000.

[9] M.Wu, S.L.Garfinkel, R.Miller (2003) Secure Web Authentication
with Mobile Phones MIT Student Oxygen Workshop.

[10] M.Wu, S.L. Garfinkel, R.Miller. Short talk: Secure Web Authenti-
cation with Mobile Phones DIMACS Workshop on Usable Privacy
and Security Software, 2004.

[11] R.Jammalamadaka, T. van der Horst, S.Mehrotra, K.Seamons,
N.Venkatasubramanian. Delegate: A Proxy Based Architecture
for Secure Website Access from an Untrusted Machine. Techni-
cal Report No: TR-Rescue-06-13.

10

