
iDataGuard: Middleware Providing a Secure Network Drive
Interface to Untrusted Internet Data Storage

Ravi Chandra Jammalamadaka†, Roberto Gamboni†, Sharad Mehrotra†, Kent E. Seamons‡,
Nalini Venkatasubramanian

University of California, Irvine†, Brigham Young University‡,
{rjammala, gamboni, sharad, nalini}@ics.uci.edu seamons@cs.byu.edu

ABSTRACT
In this demonstration, we present the design and features of
iDataGuard. iDataGuard is an interoperable security mid-
dleware that allows users to outsource their file systems to
heterogeneous data storage providers available on the Inter-
net. Examples of data storage providers include Amazon S3
service, Rapidshare.de and Nivarnix. In the iDataGuard ar-
chitecture, data storage providers are untrusted. Therefore,
iDataGuard preserves data confidentiality and integrity of
outsourced information by using cryptographic techniques.
iDataGuard effectively builds a secure network drive on top
of any data storage provider on the Internet. We propose
techniques that realize a secure file system over the heteroge-
neous data models offered by the diverse storage providers.
iDataGuard significantly reduces the development effort re-
quired to build applications on top of the storage offered
by the IDPs. Applications written to be compatible with
iDataGuard, do not have to worry where the data is stored
and how the security is enforced. iDataGuard automati-
cally provides such functionality to application developers.
To evaluate the practicality of iDataGuard, we implemented
a version of the middleware layer to test its performance.

1. INTRODUCTION
Internet based data storage providers (IDP) have recently

exploded on the market. Amazon S3 service, Yahoo Brief-
case!, Megaupload.com are examples of such services. These
services are based on a outsourcing model, where the clients
outsource their data to IDPs, who provides data manage-
ment tasks such as storage, access, backup, recovery, etc.
The numerous benefits for the clients include: a) Device In-
dependence: Clients can access their information from any
machine connected to the Internet; and b) Data Sharing:
The IDPs provide data sharing capabilities that allow users
to share their data with any user on the Internet.

The primary limitation of such services is the requirement
to trust the storage provider. The client’s data is stored in
plaintext and therefore is susceptible to the following at-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

tacks:

• Outsider attacks: There is always a possibility of In-
ternet thieves/hackers breaking into the storage provider’s
system and stealing or corrupting the user’s data.

• Insider attacks: Malicious employees of the storage
provider can steal the data themselves and profit from
it. There is no guarantee that the confidentiality and
integrity of the user’s data are preserved at the server
side. Recent reports indicate that the majority of at-
tacks are insider attacks [9, 8].

Despite these security concerns, IDPs are gaining pop-
ularity due to the convenience and usefulness of the data
services they offer. In a related trend, there are many ap-
plications that are developed/being developed that leverage
the storage infrastructures provided by the IDP services.
Such applications are typically sold to organizations or in-
dividual users. Jungle disk [25] is an example of such an
application which builds a network drive over the storage
offered by Amazon S3. Herein lies the problem. Typically,
organizations have service contracts with IDP services of
their choice for their storage needs. Every IDP service pro-
vides its own interface for storing and fetching data within
its infrastructure. There are no standards on interfaces for
IDP services and therefore every service designs its own in-
terface. For instance, in the Amazon S3 service, data is
stored and accessed using the REST based protocol, and in
Open X-Drive storage service the interface is based on the
JSON-RPC protocol. The application developer now has
the unenviable task of adapting his/her application to dif-
ferent IDP services, or otherwise risk significant reduction in
clientele. This greatly complicates application development.

Imagine a trusted middleware that sits in between the ap-
plication and the IDP service of choice. The middleware
can run at a client machine or in a trusted proxy. The
middleware provides a uniform interface for application de-
velopment. The middleware can translate data related op-
erations originating from the application to the equivalent
operations at the IDP side. In other words, the burden of
adapting to heterogeneity of interfaces is pushed from the
application onto the middleware. Also, such a middleware
can handle the data security requirements. Such a middle-
ware greatly simplifies application development. This paper
presents iDataGuard, a middleware that accomplishes the
above goals.

Figure 1: DataGuard Architecture

1.1 Architectural Overview
The desirable properties/goals of iDataGuard are the fol-

lowing:

• Allow users to outsource their file system to any Inter-
net based data storage provider of their choice.

• Preserve security properties of user data such as data
integrity and confidentiality.

• iDataGuard should be easy to use.

Major Entities and Threat Model: There are three
main components in our architecture: a) Client machine;
b) iDataGuard middleware; and c) Data storage providers.
The Client machine is the end device from which the user is
accessing the data. The client machine is entirely trusted.
The iDataGuard middleware is trusted and runs inside the
client machine. The middleware is in charge of providing
data services to the user by fetching the required data from
the storage providers. The storage providers provide data
management services to the clients and are untrusted. We
will assume an honest-but-curious behavioral model for the
storage providers. That is, the storage providers are ex-
pected to provide the required services, but the employees
that work for such providers could steal data and profit from
it.

Overview: Figure 1 illustrates the overall architecture
of iDataGuard. The outsourced file system from the appli-
cation is first translated into an abstract data model by the
middleware. Abstract data model is an object based model,
generic enough to encompass the data models of a variety
of IDPs. The abstract data model is explained in more de-
tail in the next section. Data translator (DT) in fig 1 is in
charge of that operation. The file system is mapped to a set
of objects. The objects are then cryptographically secured
by the Crypto module. The crypto module requires a secret
provided by the client called the masterpassword to generate
the cryptographic keys that are used to secure the objects.
The objects are stored and fetched by the middleware by
utilizing service adapters. Service adapters are IDP specific
modules. For every service the middleware supports, a ser-
vice adapters needs to be written. Service adapters utilize
the interface (API) by the IDP to store and fetch objects.
The index generator component generates the cryptographic
index for all the textual files that are outsourced.

The application can issue all file system operations to

iDataGuard. iDataGuard translates all file system opera-
tions into equivalent operations on the abstract operation
model. Abstract operation model models a set of operations
that are generic enough to encompass the operational model
of a variety of IDPs. The abstract operation model is ex-
plained in more detail in the next section. The translation
is done at the operation translation (OPT) component. The
operations are first executed at the object level and their
effects propagated to the IDPs via the service adapters.

iDataGuard also allows clients to specify a group of IDPs
that can be treated as a single virtual storage provider. This
flexibility does not complicate the design.

Who writes the service adapters? Service adapters
need to be written by experts capable of understanding the
interfaces/APIs provided by the service providers. Service
adapters are fairly easy to write, requiring the implemen-
tation of only a few functions. Once the service adapters
are developed, we envision that they will be freely distrib-
uted on the Internet. The client can procure such service
adapters and install them in the middleware.

2. RESEARCH CONTRIBUTIONS

2.1 Adopting to Heterogeneity
iDataGuard allows users to specify which IDP they want

to store their data. To provide such functionality, iData-
Guard needs to take into account the heterogeneity of the
data models that are offered by the IDPs. For instance, in
Amazon S3 service, files are the basic units of data, while
in Gmail.com, emails are the basic data units. One of the
fundamental tenets of iDataGuard is make sure that no
changes are required at the server to support iDataGuard.
The servers are oblivious to the existence of iDataGuard.

To combat such heterogeneity, iDataGuard provides an
abstract service model, that can then be further customized
to individual IDPs. The abstract service model is designed
to be generic enough to encompass all the IDPs that are
currently functioning on the Internet. The abstract service
model describes abstractly the data format and the func-
tionality that IDPs need to provide to be compatible with
iDataGuard. The abstract service model places minimal
requirements on the functionality of the IDPs. Requiring
IDPs to support more functionality could impede adoption
of iDataGuard.

The abstract service model primarily consists of an ab-
stract data model and an abstract operation model. The
abstract data model models data as objects. Objects are
atomic units of data. For instance, a pdf document or an im-
age can be an object. Every object O has a unique id (O.id)
and a set of attributes O.A where A = {id, content, metadata}.
O.content represents the object’s content and O.metadata

represents the ancillary information about the object. The
metadata is a set of attribute=value pairs. The file system
outsourced by the application is translated to a set of ob-
jects.

The abstract operation model consists of a set of opera-
tions that IDPs are expected to perform. It includes the
store object(o), fetch object(o.id) and delete object(o.id) op-
erations, where o is the object outsourced to the IDP. For
a more detailed treatment of the abstract service model,
please refer to [6].

2.2 Security Model
Since the IDPs are untrusted in our model, we propose a

security model that allows iDataGuard to ensure data confi-
dentiality and integrity of user’s data by using cryptographic
techniques. Our security model does not reveal: a) Content
of the files; b) Metadata of the file system; and c) Structure
of the file system to the server. It is obvious that the file
content must be protected. We believe that mere encryption
of the files is insufficient in itself. Both the metadata and the
structure of the file system also contain a lot of information
about user’s data and therefore it makes sense to hide them
as well. In this section we will briefly describe our security
model.

In iDataGuard the file system outsourced is mapped to
a set of objects. An object is created for every directory
and file. The directory object contains a list of pointers
to the children (files/other directories). When the objects
are encrypted in a straightforward manner, the size of the
encrypted directory object discloses the number of children
it contains, hence revealing the structure partially. iData-
Guard ensures that all encrypted directory objects are of
equal size and thereby it prevents file structure leakage. This
is achieved by padding small objects with irrelevant bits and
breaking large objects into a set of equi-sized objects. Be-
sides protecting file structure, iDataGuard also protects the
integrity and confidentiality of objects in the following man-
ner.

Confidentiality: For every data object(i.e., file/directory),
iDataGuard generates an object encrytion key and encrypts
the object with it. The object encryption key is generated
using the master password and the object’s name. The mas-
ter password is the only secret the clients needs to remember
to use iDataGuard. Generating a unique key for every ob-
ject prevents cryptanalysis attacks.

Integrity: iDataGuard calculates integrity information
for every object by using the HMAC primitive. To guaran-
tee freshness of an object, iDataGuard keeps track of the ob-
ject’s version number. The HMAC is calculated using both
the object’s content and the version number. This is done so
that the server does not cheat and retrieve an older version
of the object when requested. Clearly, the version num-
bers cannot be stored at the server. To solve this problem,
iDataGuard leverages the ability to store data with multiple
storage providers. For instance, if a user configures iData-
Guard with at least two different storage providers SP1 and
SP2, then iDataGuard can store the version numbers of the
objects belonging to SP1 with SP2 and vice versa. If we as-
sume that SP1 and SP2 do not collude then the last update
problem can be solved. This assumption of non-colluding
servers has been made previously [3] and it is applicable to
iDataGuard since the storage providers are in two differ-
ent administrative domains to reduce the probability of an
attack.

Our security model is designed to strike an appropriate
balance between security and performance.

2.3 Search on Encrypted Data
iDataGuard supports all the operations supported by mod-

ern file systems such as creating a directory, reading a file,
etc. iDataGuard also allows users to search for documents
that contain a particular keyword. Such a task in the con-
text of iDataGuard is very challenging, since the data is
encrypted at the server. The obvious solution of fetching all

the encrypted data from the server, decrypting it and exe-
cuting the query locally is impractical as it puts tremendous
performance strain on the system. We developed a novel in-
dex based approach of executing such keyword based queries
at the server. The proposed index (CryptInd++) is carefully
designed not to disclose any information to adversaries. Pre-
vious work [7, 4] on executing queries over encrypted data
cannot be utilized in the context of iDataGuard, since the
previous work assumes that the server is cooperative and
runs a compliant protocol for enabling search. We cannot
make such an assumption, since in the iDataGuard architec-
ture, no changes are possible at the server. Our proposed
index based approach does not require changes at the server.
Any server that can store and fetch objects can support our
index based approach for encrypted search. CryptInd++
also allows pattern based queries not supported by pervious
approaches.

Overview of the index based approach: CryptInd++
is a double index. One index(Keyword index) maintains an
inverted list of all unique keywords and set of all document
ids that contain the keyword. Another index (q-gram in-
dex) maintains an inverted list of all unique q-grams and
set of keywords that contain the q-gram. For instance, let
us assume that only one document is indexed and it only
contains one word “secure”. Then, a keyword index entry
< “secure”, “document id outsourced” > is created. Note,
all the values are encrypted and not present in plaintext as
we have shown above. Then, the q-gram index with the fol-
lowing four index entries is created: < “sec”, {Secure} >,
< “ecu”, {Secure} >, < “cur”, {Secure} > and < “ure”,

{Secure} >. The q-gram entries are also encrypted. When
the client wants to search for all documents that contain a
word that matches the pattern “*cur*”, the q-gram entry
< “cur”, {Secure} is fetched first and then subsequently
< “secure”, “document id outsourced” > . The document
id will be the result of the query. The above example is a
very simple. If a pattern contains more than one q-gram,
all the q-gram entries for the q-grams present in the pattern
are fetched from the IDP. The intersection of the keywords
present in the q-gram entries is calculated. These are key-
words that can potentially match the pattern. These key-
words are then checked if they match the pattern locally at
the trusted client side. Let Kp be the set of keywords that
match the pattern. For all the keywords in Kp, the docu-
ment ids that contain the keywords are retrieved from the
server and subsequently the required documents. All the
above steps are explained in greater detail later in [6].

3. DEMONSTRATION SCENARIO
Our demonstration shows how a client application writ-

ten to access the iDataGuard middleware can utilize the
storage provided by the Amazon S3 service and Gmail.com.
Although Gmail.com provides an email service on top of the
storage, we ignore that service in the interest of the storage
space. The application is incognizant of where the data is
stored and it is up to the client/user to dictate such require-
ments.

We developed a File Backup application that allows clients
to backup their files and directories to any IDP that is com-
patible with iDataGuard. File Backup provides full file sys-
tem functionality (e.g., creating a directory, deleting a file)
to the user. The demonstration will include a client machine,
such as a standard laptop, connecting to Internet based data

storage providers. The features of the File Backup client
application will demonstrated for both the client and server
side representations of the data, since data is secured before
it leaves the client perimeter. Fig 2 illustrates a snapshot
of the File Backup application that utilizes the iDataGuard
middleware.

4. RELATED WORK
Network file systems [18, 19, 20] allow users to outsource

their information to a remote server. An authorized client
can then mount the file system stored at the server. Typi-
cally in these systems, the server is trusted and is in charge
of authentication of the users and enforcing access control
on data. This is not the case in iDataGuard.

Cryptographic file systems [2, 15, 13, 14] on the other
hand are very related to our work. Cryptographic file sys-
tems do not trust the end storage and all the cryptographic
operations are done at the trusted/client side. Cryptographic
file systems such as Sirius [13] and Plutus [14] also allow
sharing of files between users, where access to files is pro-
vided via key distribution. iDataGuard currently does not
deal with sharing, although it is one of our future goals.
We differ from the cryptographic file systems in the follow-
ing manner: a) cryptographic file systems do not adopt to
the heterogeneity of data models of the server side. Typi-
cally, they assume a file system based model at the server.
iDataGuard on the other hand can easily adapt to the het-
erogenous data models at the server.

DAS [11, 12] architectures allow clients to outsource struc-
tured databases to a service provider. The service provider
now provides data management tasks to the client. The
work on DAS architecures mainly concentrated on execut-
ing SQL queries over encrypted data. The clients of DAS
architectures are mainly organizations that require database
support. Both the DAS architectures and iDataGuard can
be thought of as instantiations of the outsourced database
model (ODB). The key differences are: a) The data out-
sourced in DAS is highly structured. In iDataGuard, the
data oursourced is semi-structured. b) DAS architectures
did not deal with mobility issues, which is one of the pri-
mary goals of iDataGuard.

Distributed file systems like Oceanstore [10] provide a
storage infrastructure for the users to store data on the net-
work rather than at a centralized server. In ocenstore, the
files are treated as objects and are replicated across multi-
ple locations. The goal is to ensure availability, scalability
and fault tolerance. iDataGuard should not be treated as a
distributed file system, since middleware treats the storage
providers as a single logical entity. This does not imply that
the service providers do not implement a distributed storage
infrastructure. On the other hand, iDataGuard does allow
users to mount different file systems with multiple storage
providers.

In DataVault [21], the authors proposed a client-server
architecture which allows users to outsource their file sys-
tems to an untrusted server. The server then provides data
services on top of outsourced data. iDataGuard is not a
client-server architecture, it is a middleware that is trying
to utilize the storage space provided by untrusted servers
on the Internet. In DataVault, the authors were able to
design a server architecture from scratch that suits their
data storage requirements. iDataGuard middleware on the
other hand has to work/adapt to the current data storage

infrastructures of the IDPs.
Jungle disk software[25] layers a security mechanism over

the Amazon S3 storage service. Unlike iDataGuard, Jungle
Disk can only function with the Amazon S3 service. Jungle
Disk also provides a file system like interface to the user and
preserves data confidentiality of the user by encrypting the
data stored remotely. The user can provide a password as
the key to encrypt the data. To the best of our knowledge,
Jungle Disk does not verify the integrity of the data.

5. CONCLUSIONS
In this paper we presented iDataGuard, a novel interoper-

able security middleware that reduces the burden of devel-
oping applications that leverage the storage infrastructures
provided by internet based data storage providers. To the
best of our knowledge, this is the first research work that ad-
dresses security and heterogeneity issues with regard to IDPs
at the middleware level. iDataGuard is a useful tool for both
application developers and clients. iDataGuard ensures the
confidentiality and integrity of the client’s data. iDataGuard
utilizes a novel index based approach to allow keyword based
search on encrypted data. Our experiments indicate that
performance degradation due to the middleware is negligi-
ble when compared to the network costs, thereby making
the middleware approach practically feasible.

Our main goal is to release the iDataGuard middleware
as open source software that will allow experts or webmas-
ters themselves to write service adapters compatible with
iDataGuard. We have currently developed an iDataGuard
prototype that can be downloaded at http://DataGaurd.

ics.uci.edu.

6. REFERENCES
[1] R.C.Jammalamadaka, T. van der Horst, S. Mehrotra,

K.Seamons, and N. Venkatasuramanian. Delegate: A
Proxy Based Architecture for Secure Website Access
from an Untrusted Machine. Proceedings of 22nd
Annual Computer Security Applications Conference
(ACSAC), 2006.

[2] M.Blaze. A cryptographic file system for UNIX.
Proceedings of the 1st ACM conference on Computer
and Communications Security, 1993.

[3] G. Aggarwal, M. Bawa, P. Ganesan, H.
Garcia-Molina, K. Kenthapadi, R. Motwani, U.
Srivastava, D.Thomas, and Y.Xu. Two Can Keep a
Secret: A Distributed Architecture for Secure
Database Services. 2nd Biennial Conference on
Innovative Data Systems Research (CIDR), 2005.

[4] E.j.Goh. Secure Indexes. Stanford University
Technical Report. 2003

[5] RSA Laboraties. PKCS #5 V2.1: Password Based
Cryptography Standard. ftp://ftp.rsasecurity.
com/pub/pkcs/pkcs-5v2/pkcs5v2\ 1.pdf, 1999.

[6] R.C.Jammalamadaka, R. Gamboni, S. Mehrotra, K.
Seamons, and N. Venkatasubramanian. iDataGuard:
An Interoperable Security Middleware for Untrusted
Internet Data Storage. University of California,
Irvine, Technical Report, 2007.

[7] D. Song, D.Wagner, and A. Perrig. Practical
Techniques for Searches on Encrypted Data.
Proceedings of IEEE Symposium on Research in
Security and Privacy, 2000.

Figure 2: Snapshot of the File Backup application. The interface is similar to the one provided by modern

operating systems. iDataGuard is implemented in Java.

[8] A. Briney. The 2001 Information Security Industry
Survey 2001, 2002.
http://www.infosecuritymag.com/archives2001.shtml

[9] G. Dhillon and S. Moores. Computer Crimes:
Theorizing about the Enemy Within. Computers &
Security 20 (8):715-723, 2001.

[10] S.Rhea, P.Easton, D.Geels, H.Weatherspoon.,
B.Zhao, and J.Kubiatowicz. Pond: The oceanstore
prototype. In the proceedings of the Usenix File and
Storage Technologies Conference (FAST) 2003.

[11] H.Hacigumus, B.Iyer, C. Li, and S. Mehrotra.
Executing SQL over Encrypted Data in the
Database-Service-Provider Model. ACM SIGMOD
Conference on Management of Data, Jun, 2002.

[12] E.Damiani, S. De Capitani Vimercati, S.Jajodia, S.
Paraboschi, and P.Samarati. Balancing
confidentiality and efficiency in untrusted relational
DBMSs. Proceedings of the 10th ACM Conference on
Computer and Communications Security, 2003.

[13] E.Goh, H.Shacham, N.Modadugu, and D.Boneh.
SiRiUS: Securing remote untrusted storage.
Proceedings of Network and Distributed Systems
Security (NDSS) Symposium, 2003.

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable secure file sharing on
untrusted storage. Proceedings of 2nd USENIX
Conference on File and Storage Technologies
(FAST), 2003.

[15] E.Zadok, I.Badulescu, and A.Shender. Cryptfs: A
Stackable vnode level encryption file system.
Technical Report CUCS-021-98, Columbia
University, 1998.

[16] G.Miklau and D.Suciu, Controlling Access to
Published Data Using Cryptography. Proceedings of
Very Large Data Bases (VLDB) Conference, 2003.

[17] E.Bertino, B.Carminati, E.Ferrari, B.Thuraisingham
and A.Gupta. Selective and authentic third party
distribution of XML documents. IEEE Transactions
on Knowledge and Data Engineering, Volume 16 ,
Issue 10, October 2004.

[18] S. Shepler, B.Callaghan, D.Robinson, R.Thurlow,
C.Beame, M. Eisler, and D. Noveck. NFS version 4
protocol. RFC 3530, April 2003.

[19] J.Howard. An Overview of the Andrew File System.
Proceedings of ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 2002.

[20] D. Mazires. Self-certifying file system. Phd Thesis,
Massachusetts Institute of Technology, 2000.

[21] R.Jammalamdaka,S.Mehrotra, K.Seamons and
N.Venkatasubramanian. Providing Data Sharing as a
Service. University Of California, Irvine, Technical
Report, 2007.

[22] http://www.aws.amazon.com/s3

[23] http://www.apple.com/dotmac/

[24] R.C. Jammalamadaka, R. Gamboni, S. Mehrotra, K.
Seamons and N. Venkatasubramanian. gVault: A
Gmail Based Cryptographic Network File System.
Proceedings of 21st Annual IFIP WG 11.3 Working
Conference on Data and Applications, 2007.

[25] http://jungledisk.com

