
Middleware Support for Protecting Personal Data from
Web Based Data Services

Ravi Chandra Jammalamadaka†, Sharad Mehrotra†, Kent E. Seamons‡,
Nalini Venkatasubramanian †

University of California, Irvine†, Brigham Young University‡
{rjammala, sharad, nalini}@ics.uci.edu seamons@cs.byu.edu

ABSTRACT
Web based data services are very popular with the average
computer user. Examples of such services include Gmail.com,
Yahoo Photos, Yahoo Briefcase and Amazon S3 Service. In
such services, the user outsources personal data to service
providers who provides data management services on out-
sourced data. Such services have many advantages which
include: a) Mobile access: The data can be accessed from
any computer connected to the internet; b) Availability: the
data is available 24/7; c) Good service: Typically such ser-
vices employ experts who provide a quality service. How-
ever, such a model does raise some fundamental questions
concerning data privacy and security. The data is stored in
plaintext at the service provider and is vulnerable to data
theft from disgruntled employees and internet thieves.

This paper describes our research in designing middleware
architectures that secure personal data using cryptographic
techniques before it is outsourced to the service provider.
Care is taken such that service provider can continue to
provide data services on secured data. We describe the
challenges in designing and implementing such middleware
architectures, a summary of our past work and the future
directions that we intend to take with regard to the project.

1. INTRODUCTION
Recently, there has been an explosion in the number of web
based data storage providers (WDP) that are emerging. Ex-
amples of such services include: Rapidshare.de, Youtube.com,
Megaupload.com, Yahoo Briefcase!, Amazon S3 service, etc.
The clients outsource their data to WDPs, who provides
data management tasks such as storage, access, backup, re-
covery, etc. WDPs offer numerous benefits to users, which
include: a) Device Independence: Clients can access their in-
formation from any machine connected to the Internet; and
b) Data Sharing: The WDPs provide data sharing capabil-
ities that allow users to share their data with any user on
the Internet.

Currently, users employ a variety of ways to achieve mobil-
ity when it comes to personal data. The range of solutions
include but are not limited to: i) Carrying their data in sec-
ondary storage devices such as USB drives, CD/DVDs, etc.
This is a largely inconvenient solution pushing the burden
of data management to the user. Also, the solution is inher-
ently insecure, as most users store their data in plaintext.
Such devices can be easily lost or stolen; ii) Maintaining
public servers such as web servers, FTP servers, etc. The
drawbacks of this solution are twofold: a) Administering
such a service is burdensome and requires sound technical
knowledge; and b) Many users are not in a position to run
such a service due to ISP restrictions. Likewise, to share
data, users employ solutions like sending email, etc., which
suffer from similar drawbacks listed above.

By comparison, services offered by the WDPs do not suffer
from the above drawbacks and have the following advan-
tages: a) Availability: Data is available 24/7 from any com-
puter connected to the Internet; b) Low cost: Typically, the
services are free. The business model is based on advertise-
ments, emphasizing the fact that storage has become very
cheap; c) Good Service: The storage providers typically em-
ploy experts, thereby providing very high quality service. All
of the above advantages make WDPs an attractive prospect
for data storage.

The primary limitation of such services is the requirement
to trust the storage provider. The client’s data is stored
in plaintext and therefore is susceptible to the following at-
tacks:

• Outsider attacks: There is always a possibility of In-
ternet thieves/hackers breaking into the storage provider’s
system and stealing or corrupting the user’s data.

• Insider attacks: Malicious employees of the storage
provider can steal the data themselves and profit from
it. There is no guarantee that the confidentiality and
integrity of the user’s data are preserved at the server
side. Recent reports indicate that the majority of at-
tacks are insider attacks [7].

There also have been instances of WDPs collaborating with
repressive regimes and providing them personal data that
belongs to users [18]. Fear of prosecution is in itself a valid
reason not to trust WDPs with our personal data. As such,



Web

App Middleware
Storage 
server 
(WDP)

Personal data

Data access 
request

Required data

Secured 
data

Access 
request on 
secured 
data

Response 
to access 
request

(Secured 
data)

Figure 1: High level interactions of various compo-
nents

use of WDPs for storing potentially sensitive information
has been heavily limited. Despite these security concerns,
WDPs are gaining popularity due to the convenience and
usefulness of the data services they offer.

There are two major components involved in a WDP ser-
vice, they are a :) web application, which utilizes the data
storage provided by the service and runs at the client side;
and b :) storage server, which runs at the service provider,
where the data is actually stored. Imagine a transparent
middleware that acts as a middleman between the web appli-
cation and the storage server. The middleware secures the
data before it leaves the client machine. The middleware en-
sures that the service provider can continue to provide the
services on secured data. When the data is fetched from the
service provider, the data is transformed back to its original
form and presented to the user. The user now does not have
to worry about security breaches with regard to its data.
The goal of our research is to build such middleware archi-
tectures. In this paper, we will describe the challenges in
building such architectures, our preliminary results and the
future directions that we intend to take. Fig 1 illustrates
the relevant high level components and their interactions.

1.1 Two service models
There are two different types of service models with regard
to WDPs. They are: a) Data storage only (DS) service; and
b) Application and data storage (ADS) service.

DS service model: In DS service model, the WDP only
provides data storage and backup services. The web appli-
cation or the application logic is not provided by the WDP.
Examples of DS service model include Amazon S3 service
and Gmail.com. Gmail.com also provides a web based email
application, but such an application can be ignored in the in-
terest of storage space. The WDP provides interfaces (API)
that application programmers can utilize for their storage
needs. As you can imagine, a variety of applications can
be built on top of such storage. The biggest problem with
the current setup is the heterogeneity in the storage mod-
els provided by the different WDPs. For instance, Amazon
S3 service provides an API based on a proprietary object
based data abstraction. In Gmail.com, data abstraction is
in the form of emails. To achieve portability across many
such WDPs, the web application programmer needs to worry
about all the different data abstractions. This could be cum-
bersome for the application programmer. We designed and

implemented the DataGuard middleware that besides en-
forcing data security, also takes care of the heterogeneity of
the storage models provided by the WDPs. The DataGuard
middleware is explained in more detail in section 2.

ADS service model: In the ADS service model, the WDP
provides both the storage and the web application that uti-
lizes the storage. Yahoo Photos is an example of a service
that conforms to the ADS model. Most ADS services can
also be considered as DS services by ignoring the web ap-
plication. For instance, Gmail.com is an example of ADS
service model, that can very easily considered as a DS ser-
vice.

To develop a security middleware for ADS services, we need
to address completely different set of challenges. The data
transfer takes place via HTTP requests between the web
application and the storage server. The middleware should
analyze the HTTP requests, extract the sensitive informa-
tion, secure the information using cryptographic techniques
and then pass it on to the storage servers. Unlike DS ser-
vices, the ADS services typically do not provide an API for
data storage. Consider Yahoo Photos service, only a few
HTTP requests actually carry the user’s pictures. These
HTTP requests need to be secured before being sent to the
web server. Other HTTP requests can be ignored.

It will be very difficult to develop automatic techniques that
can determine when HTTP requests carry personal data.
The HTTP requests are not semantically rich enough to help
the middleware in this regard. We envision a middleware
that takes the help of domain knowledgeable experts. The
experts teach the middleware where look for sensitive data
using appropriate interfaces. Section 3 provides more infor-
mation about the envisioned middleware which is a part of
our future work.

2. DATAGUARD MIDDLEWARE
In this section, we will briefly summarize the goals and de-
sign of the DataGuard middleware, that allows the users to
outsource their data to untrusted WDPs. Our goal is to
develop a middleware that a client can run on their local
machines, which can interact with the WDPs of their choice
and yet manage the client’s data securely. DataGuard ad-
dress the problem at the file level, i.e., the users outsource
their local file system to the WDPs. DataGuard effectively
builds a network drive on top of data storage provided by
an WDP.

There are three primary reasons that motivates our work
on designing such a middleware: a) Popularity: Network
drives are very popular because they allow users remote ac-
cess to their data. They effectively provide a virtual disk
that users can carry around seamlessly without much effort.
This is precisely the reason why there are many commercial
WDPs offering a network drive like service on the Internet
[15, 16]; b) Security: Data should be secured before it is
outsourced to an untrusted server. c) General applicabil-
ity: A wide variety of applications can be supported by a
file storage like service. For instance, consider the following
sample applications that can be supported: a) an autofill ap-
plication, which remembers and fills out passwords from any
machine connected to the Internet. b) a bookmark manager



which provides remote access to personal bookmarks.

2.1 Research Contributions
Our research in designing DataGuard has led to the fol-
lowing contributions. Here, we will describe them briefly,
for more information please refer to the full version of the
DataGuard paper [5].

Heterogeneity: DataGuard allows users to specify which
WDP they want to store their data. To provide such func-
tionality, DataGuard needs to take into account the hetero-
geneity of the data models that are offered by the WDPs.
For instance, in Amazon S3 service, files are the basic units
of data, while in Gmail.com, emails are the basic data units.
One of the fundamental tenets of DataGuard is make sure
that no changes are required at the server to support Data-
Guard. The servers are oblivious to the existence of Data-
Guard. To combat such heterogeneity, DataGuard provides
a novel general model of a file/data, that can then be further
customized to individual WDPs. We will call this model as
the generic data model (GDM). We will propose techniques
to map the generic database model to server side data rep-
resentation.

Security Model: Since the WDPs are untrusted in our
model, we propose a security model that will allows Data-
Guard to ensure data confidentiality and integrity of user’s
data by using cryptographic techniques. The cryptographic
keys are generated by using a secret called the masterpass-
word known only to the user. Masterpassword is the only
secret the user is expected to remember which makes Data-
Guard easy to use.

Cryptographic Index: DataGuard supports all the oper-
ations supported by modern file systems such as creating a
directory, reading a file, etc. DataGuard also allows users to
search for documents that contain a particular keyword, a
challenging task since data is encrypted at the server. The
obvious solution of fetching all the encrypted data from the
server, decrypting it and executing the query locally is im-
practical as it puts tremendous performance strain on the
system. We develop a novel index based approach of exe-
cuting such keyword based queries at the server. The pro-
posed index is carefully designed not to disclose any infor-
mation to adversaries. Previous work [6, 3] on executing
queries over encrypted data cannot be utilized in the con-
text of DataGuard, since the previous work assumes that
the server is cooperative and runs a compliant protocol for
enabling search. We cannot make such an assumption, since
in the DataGuard architecture, no changes are possible at
the server.

2.2 Future Work/Open Problems
In this section we will describe some of the open problems in
DataGuard. The following problems will be the main focus
for our future work in DataGuard.

Data Sharing: Currently DataGuard allows users to access
their data remotely. WDPs also offer data sharing function-
ality. DataGuard needs to be extended to leverage such
functionality and provide users with secure mechanisms to
share data with other users. Data sharing needs to be done

in a fashion where the server does not learn any of user’s
data.

Accessing Information from Untrusted Machines: Data-
Guard currently assumes that all end devices the user access
his/her data are trusted. While in most cases this is true, in
some cases it isn’t. For instance, consider Alice who is trav-
eling without a laptop. She needs to access her data from a
publicly accessible machines such the ones that are avaial-
ble in cybercafe or a public machine. Such public machines
can harbor macicious entities which could steal Alice’s mas-
terpassword. A simple keystroke logger will accomplish the
job. Clearly, this is undesirable. We need techniques to
to access personal data from untrusted machines. In other
words, DataGuard needs to be extended to allow access to
data from untrusted machines. In [19] the authors propose
a proxy based solution to access websites securely from un-
trusted machines. We envision a similar solution could solve
the above problems.

3. ADS SERVICE MODEL
Recall that in ADS service models both the web application
and storage servers are provided by the WDPs. The inter-
action between the web application and the storage servers
is via HTTP requests. Typically, data is sent via the HTTP
POST requests. A security middleware that wants to pro-
tect user’s data, should intercept the HTTP requests, iden-
tify the sensitive information from the requests and then
secure the information. The secured information should be
placed back in the HTTP requests and then forwarded to
the server. The middleware should also: a) be transparent
to the user, i.e., the user should be cognizant of the middle-
ware existence. In other words, the web experience of the
user should not be changed; and b) not significantly reduce
the performance of the web application. This is important,
as users tend to disable security measures when confronted
with performance delays.

We will explain the different challenges in building a mid-
dleware of this kind.

Identifying sensitive information: All the HTTP re-
quests sent to the server are not sensitive. Only a very
small fraction of the requests are sensitive. For instance,
in Yahoo Photos, only the HTTP POST requests that for-
ward the personal pictures should be considered sensitive.
The identification process can be made automatic, where
the middleware utilizes some heuristics to determine if the
HTTP request is sensitive or not. But such a model, can
be unreliable if it fails to secure some sensitive information.
We are of the opinion, that experts with domain knowledge
can train the middleware in identifying the sensitive infor-
mation that is sent back and forth in a web service. The
middleware needs to be trained individually for each web
service/website. The experts generate rules specific to a
website which can be plugged into the middleware. Once
the experts, generate the rules, the rules can be distributed
freely on the internet. Interested users can then download
the rules and install them in the middleware. We are cur-
rently developing a rule specification language that will allow
experts to easily create the rules. Experts could be any-
body with enough technical expertise to analyze the HTTP
requests, which includes the webmasters themselves.



Securing the sensitive information: Once the sensitive
HTTP requests are identified, the requests needs to be se-
cured using cryptographic techniques. Middleware should
ensure that data confidentiality and integrity of the sensi-
tive information is preserved. The sensitive information can
be encrypted with cryptographic keys that are derived from
a masterpassword. The masterpassword is the only secret
that the user needs to be provide the middleware at the be-
ginning of a session. The middleware also needs to compute
data signatures and store them along with the secured data
to ensure data integrity. Also, the encrypted information
needs to be tagged with metadata that will allow the mid-
dleware to identity the encrypted data when it is shipped
back from the server. The middleware then can decrypt the
data and show the plaintext from of the data to the user.
We are currently investigating efficient methods to enforce
data confidentiality and integrity constraints at the HTTP
request level.

Data sharing: Most of the ADS services offer data sharing
functionality. For instance, Yahoo Photos allows users to
share pictures with others. The bulk of the work in data
sharing architectures comes from authentication and data
distribution. Current WDPs already perform such opera-
tions. We want to retain the semantics of data sharing at
the WDPs and yet share data in a fashion that will not allow
the server to learn sensitive information. For example, we
would like pictures to be shared among users in Yahoo Pho-
tos, without the website learning the actual pictures. We
are currently investigation techniques that will allow secure
sharing to take place via ADS services.

4. RELATED WORK
We will first discuss DataGuard related work. Network file
systems [12, 13, 14] allow users to outsource their informa-
tion to a remote server. An authorized client can then mount
the file system stored at the server. Typically in these sys-
tems, the server is trusted and is in charge of authentication
of the users and enforcing access control on data. This is
not the case in the middleware architectures that we are
investigating.

Cryptographic file systems [1, 10, 11] on the other hand are
very related to our work. Cryptographic file systems do not
trust the end storage and all the cryptographic operations
are done at the trusted/client side. Cryptographic file sys-
tems such as Sirius [10] and Plutus [11] also allow sharing of
files between users, where access to files is provided via key
distribution. DataGuard currently does not deal with shar-
ing, although it is one of our future goals. We differ from the
cryptographic file systems in the following manner: a) cryp-
tographic file systems do not adopt to the heterogeneity of
data models of the server side. Typically, they assume a file
system based model at the server. DataGuard on the other
hand can easily adapt to the heterogenous data models at
the server.

DAS [8, 9] architectures allow clients to outsource struc-
tured databases to a service provider. The service provider
now provides data management tasks to the client. The
work on DAS architecures mainly concentrated on execut-
ing SQL queries over encrypted data. The clients of DAS
architectures are mainly organizations that require database

support. Both the DAS architectures and DataGuard can
be thought of as instantiations of the outsourced database
model (ODB). The key differences are: a) The data out-
sourced in DAS is highly structured. In DataGuard, the
data outsourced is semi-structured. b) DAS architectures
did not deal with mobility issues, which is one of the pri-
mary goals of DataGuard.

Distributed file systems like oceanstore [21] provide a stor-
age infrastructure for the users to store data on the net-
work rather than at a centralized server. In ocenstore, the
files are treated as objects and are replicated across multi-
ple locations. The goal is to ensure availability, scalability
and fault tolerance. DataGuard should not be treated as a
distributed file system, since middleware treats the storage
providers as a single logical entity. This does not imply that
the service providers do not implement a distributed storage
infrastructure. On the other hand, DataGuard does allow
users to mount different file systems with multiple storage
providers.

In DataVault [20], the authors proposed a client-server archi-
tecture which allows users to outsource their file systems to
an untrusted server. The server then provides data services
on top of outsourced data. DataGuard is not a client-server
architecture, it is a middleware that is trying to utilize the
storage space provided by untrusted servers on the Inter-
net. In DataVault, the authors were able to design a server
architecture from scratch that suits their data storage re-
quirements. DataGuard middleware on the other hand has
to work/adapt to the current data storage infrastructures of
the WDPs.

Jungle disk software[17] layers a security mechanism over
the Amazon S3 storage service. Unlike DataGuard, Jungle
Disk can only function with the Amazon S3 service. Jungle
Disk also provides a file system like interface to the user and
preserves data confidentiality of the user by encrypting the
data stored remotely. The user can provide a password as
the key to encrypt the data. To the best of our knowledge,
Jungle Disk does not verify the integrity of the data.

To the best of our knowledge there is no similar academic
work related to the ADS service middleware that we are
envisioning.

5. CONCLUSIONS
In this paper we motivated the requirement to secure the
personal data before outsourcing it to web based data stor-
age providers. We advocated a middleware based solution
to address the security concerns. We introduced the Data-
Guard middleware that allows users to outsource their data
to heterogenous storage providers on the Internet. We also
presented our envisioned ADS service middleware and the
challenges inherit in it. We stated some of the open problems
that we have discovered and the future directions we intend
to take. A preliminary version of the DataGuard middleware
that can be downloaded at http://DataGuard.ics.uci.edu.
We encourage users to try it and provide us with their valu-
able feedback.

6. ACKNOWLEDGEMENTS



We acknowledge the work done by Roberto Gamboni in im-
plementing parts of the DataGuard middleware. This re-
search was supported by funding from the National Science
Foundation under grant no. CCR-0325951 and IIS-0220069,
the prime cooperative agreement no. IIS- 0331707, and The
Regents of the University of California.

7. REFERENCES
[1] M.Blaze. A cryptographic file system for UNIX.

Proceedings of the 1st ACM conference on Computer
and communications security.

[2] G. Aggarwal, M. Bawa, P. Ganesan, H.
Garcia-Molina, K. Kenthapadi, R. Motwani, U.
Srivastava. D.Thomas, Y.Xu. Two Can Keep a
Secret: A Distributed Architecture for Secure
Database Services.2nd Biennial Conference on
Innovative Data Systems Research, CIDR 2005.

[3] Eu jin Goh. Secure Indexes. In submission

[4] RSA Laboraties. PKCS #5 V2.1: Password Based
Cryptography Standard.
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-
5v2/pkcs5v2 1.pdf

[5] Ravi Chandra Jammalamadaka, Roberto Gamboni,
Sharad Mehrotra, Kent Seamons, Nalini
Venkatasubramanian. DataGuard: A Middleware
Layer Providing Seamless Mobile Access to Personal
Data via Untrusted Servers. Techincal Report

[6] D. Song, D.Wagner, and A. Perrig. Practical
Techniques for Searches on Encrypted Data. In 2000
IEEE Symposium on Research in Security and
Privacy.

[7] Dhillon, Gurpreet, and Steve Moores. 2001.
Computer crimes: theorizing about the enemy
within. Computers & Security 20 (8):715-723.

[8] Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad
Mehrotra. Executing SQL over Encrypted Data in
the Database-Service-Provider Model. 2002 ACM
SIGMOD Conference on Management of Data, Jun,
2002.

[9] E.Damiani, S. De Capitani Vimercati, S.Jajodia, S.
Paraboschi, P.Samarati. Balancing confidentiality
and efficiency in untrusted relational DBMSs.
Proceedings of the 10th ACM conference on
Computer and communications security.

[10] E. Goh, H. Shacham, N. Modadugu, and D. Boneh,
”SiRiUS: Securing remote untrusted storage,” in
Proc. Network and Distributed Systems Security
(NDSS) Symposium 2003.

[11] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu, ”Plutus: Scalable secure file sharing on
untrusted storage,” in Proc. 2nd USENIX Conference
on File and Storage Technologies (FAST), 2003.

[12] S.Shepler, B.Callaghan, D.Robinson, R.Thurlow,
C.Beame, M. Eisler, and D. Noveck. NFS version 4
protocol. RFC 3530, April 2003.

[13] J.Howard. An overview of the andrew file system. In
proceedings of ACM symposium on parallel
algorithms and architectures. SPAA, 2002.

[14] David Mazières. Self-certifying file system. Phd
Thesis. 2000

[15] http://www.aws.amazon.com/s3

[16] http://www.apple.com/dotmac/

[17] http://www.JungleDisk.com

[18] Man Jailed after Yahoo Handed Draft Email to China.
http://www.ctv.ca/servlet/ArticleNews/story/CTVNews/20060419/

[19] Ravi Chandra Jammalamadaka; Timothy van der
Horst; Sharad Mehrotra; Kent Seamons;
NaliniVenkatasuramanian. Delegate: A Proxy Based
Architecture for Secure Website Access from an
Untrusted Machine. 22nd Annual Computer Security
Applications Conference (ACSAC), Maimi, FL,
December, 2006.

[20] Ravi Chandra Jammalamadaka, Sharad Mehrotra,
Kent Seamons, Nalini Venkatasubramanian.
DataVault: An Architecture Providing Secure Mobile
Access and Data Sharing on the Web. UCI Technical
Report.

[21] S.Rhea, P.Easton, D.Geels, H.Weatherspoon.,
B.Zhao, and J.Kubiatowicz. Pond: The oceanstore
prototype. In the proceedings of the Usenix File and
Storage Technologies Conference(FAST) 2003.

8. APPENDIX



Figure 2: Snapshot of the DataGuard application/middleware. The interface is similar to the one provided
by the modern operating systems. DataGuard is implemented in Java.


