
Querying Encrypted XML Documents

Ravi Chandra Jammalamadaka, Sharad Mehrotra
Donald Bren School of Information and Computer Sciences

University of California, Irvine, CA 92697, USAfrjammala; sharadg�is:ui:edu
Abstract

This paper proposes techniques to query encrypted XML
documents. Such a problem predominantly occurs in
“Database as a Service” (DAS) architectures, where a
client may outsource data to a service provider that pro-
vides data management services. Security is of paramount
concern, as the service provider itself may be untrusted.
Encryption offers a natural solution to preserve the con-
fidentiality of the client’s data. The challenge now is to
execute queries over the encrypted data, without decrypt-
ing them at the server side. In this paper we develop:
1) primitives using which a client can specify the sensi-
tive parts of the XML documents; 2) mechanisms to map
the XML documents to encrypted representations that hides
sensitive portions of the documents; and 3) techniques to
run SPJ (Selection-projection-join) queries over encrypted
XML documents. A strategy, where indices/ancillary infor-
mation is maintained along with the encrypted XML docu-
ments is exploited, which helps in pruning the search space
during query processing.

1 Introduction

Over the past decade, with the explosive growth of
the internet, networking, and computing technologies,
the software industry has witnessed the emergence of
the software as a service paradigm. In the software as a
service model clients, instead of installing, maintainingand
running software on their computer systems, can purchase
the software usage on a “rent an application” basis from
software service providers. Motivated by the software as a
service, recent database research has explored the viability
of the “database as a service” (DAS) paradigm [1, 4, 5]
in which clients store their databases on a remote service
provider that offers full-blown data management services
(storage, query, administration, backups, recovery, etc.).
Many research and technological challenges in supporting
DAS have been identified, the primary of which is the issue

of data privacy and security. Since in the DAS model,
the client’s data, some of which may be sensitive, resides
at the service provider outside the security perimeter of
the client, mechanisms to prevent data misuse have to be
developed. Encryption is the natural answer, but that raises
a fundamental (and difficult) challenge of how to execute
queries over encrypted data. Many innovative proposals
addressing this challenge have recently emerged [1, 5, 4] in
which the client and server collaboratively process queries.
As much of the query as is possible to execute without
decryption is executed in the untrusted domain, and when
further processing is not possible without decryption,
the data is brought to the trusted side and converted to
plaintext. Techniques to handle many different classes of
queries (selection, joins, aggregation) have been previously
studied. Much of this has considered outsourcing in the
context of the relational data model.

This paper focuses on outsourcing data in the context of
the XML databases. XML data, beside content, also con-
sists of a rich internal structure. A client, besides (or instead
of) hiding the attributes and elements of the XML document
may also desire to hide relationships among nodes. Our first
contribution is to develop simple, yet powerful, encryption
primitives using which clients (data owners) can specify a
rich class of security policies for XML data. Encryption
primitives are described in section 2. Our second contribu-
tion is to show how the security policies of the client are
cryptographically enforced and the encrypted documents
are hosted at the server. Server side encrypted XML storage
model is described in section 3. To facilitate query process-
ing, motivated by the strategy in [1], ancillary information
along with the encrypted XML documents is stored. In-
stead of exactly utilizing the approach in [1], we develop
a novel strategy ofmulti dimensional partitioningwhich
overcomes some of the security limitations of the approach
in [1]. Section 4 deals with ancillary information. This is
our third contribution. Our fourth and last contribution is
to show how a client side query is transformed to a server
side query which can be executed at the server side. The

1

main motivation is to push the majority of the query pro-
cessing work to the server side. Evaluation of the server
side query results in a superset of encrypted results which
are shipped back to the client. The client decrypts and filters
out the relevant results. Query translation is handled in sec-
tion 5. We developed an initial prototype to experimentally
validate the techniques/mechanisms proposed in this paper.
Due to space restrictions we report the experimental results
in the full version of the current paper [16].

2 Encryption primitives for XML documents

This section briefly describes the encryption primitives
using which a client can specify security requirements
over both the structure as well as the content of XML
documents. The client may not wish to protect the XML
data in its entirety and may choose instead to protect
only the sensitive information. For instance, in an XML
document containing the name, address and credit card
information of customers, the client may wish to protect the
credit card information, but leave the address information
unencrypted. There are performance benefits of partial
encryption due to reduction in amount of decryption at the
client side.

The encryption primitives we use in this paper have sim-
ilarities with client based access control models on XML
documents[12, 13]proposed in the literature. The primary
purpose of the encryption primitives is to provide data confi-
dentiality to the client, while the access control models were
developed to provide access to different views of the XML
documents to different recipients. The client’s data confi-
dentiality needs can be modeled using XML access control
rules where the client wants to provide a partial view of the
XML documents to the service provider. The encryption
primitives described in this section provide more function-
ality to the client to express complex security policies than
that are possible using the access control models proposed
previously. During the course of the section, we will where
applicable, highlight the similarities between primitives we
use and the XML access control models.

Specifically three primitivesES(Encrypt structure
), EV (Encrypt Value), ET (Encrypt Tag) are explored,
using which the client can specify fairly complex security
policies over the structure, content and the metadata of the
XML documents. These primitives provide the user the
power to strike an appropriate balance between security
and performance. These primitives can be specified either
on the schema of the XML documents or on the individual
XML documents themselves. In this paper we assume that
encryption primitives are specified on the XML schema.
These primitives transform the original XML schema

to a new server side schema to which all the encrypted
XML documents adhere to. We will now individually
explain the affect of each of these primitives.EV primitive
when specified on a noden, encrypts thesubtree(n)(both
the content and tag of node n), and replaces it by an
encrypted node. This primitive is consistent with the W3C
recommendation for encrypting XML documents[2]. Since
subtree(n)contains other elements in its structure, the
subtree(n)is streamlined into text and this streamlined text
is encrypted. Consider fig 1 which demonstrates a Paper
XML schema on which anEV primitive is specified on
the author node. Fig 3 shows the aftereffects of such a
specification.ET primitive encrypts the content of the tags
of the XML documents. When specified on nodes which
are not the leaf nodes, the primitive cascades all the way
down to the leaf level and encrypts the tags which belong to
subtree(n). Access control models for XML operated at the
node level. Semantically, prohibiting/providing access to
a node meant prohibiting/providing access to all the nodes
belonging to the subtree of the node. These semantics were
dictated by the containment relationships inherit in the
XML documents. TheEV mimics the functionality of such
access control models.

In some situations, it becomes more useful to hide the re-
lationship shared between nodes than explicitly encrypting
either the tags or content. The client could prefer to publish
the information publicly, as long as the relationship between
some nodes is hidden. Consider the XML schema intro-
duced in fig 1. For blind reviewing1 to be successful, only
the relationship between theauthor and thepaper nodes
needs to be hidden. The community for a conference is well
known in most cases. The client may be willing to publish
the author name and email information as long as the re-
lationship between thepapernode and theauthor node is
hidden. ES(parentNode; hildNode) primitive achieves
the above objective by fragmenting the original XML doc-
ument. Fig 2 shows the affect ofES(paper; author)
primitive on the XML schema introduced in fig 1. If
fragmentation was not followed, the other option would
have been either to encrypt thesubtree(Author)or encrypt
subtree(Paper)- subtree(Author). By fragmenting the doc-
ument, queries such as “find the email of Jeff Ullman” can
be executed on the documents stored at the server. In fact,
query that can be answered bysubtree(Author)can be ex-
ecuted at the server. Reader should note that XML docu-
ments stored at the server side do not exactly correspond to
the changes described in this section due to the primitives.
The changes demonstrated in this section due to the primi-
tives describe the ideal view that the client wants the server
to see. For facilitating query processing, some additional

1A process used by some conferences to keep the name of the author
secret from the reviewer and vice versa

2

Paper

Author

FN
LN Email

Title

Es

Ev

Figure 1. Original XML file
with Encryption primitives spec-
ified on them

Paper

Author

FN
LN Email

Title

Figure 2. Affect of the ES
primitive

Paper

Encrypted_node Title

Figure 3. Affect of the EV
primitive

metadata will need to be stored. This will be explained in
more detail in the next section.

To the best of our knowledge no research work has ex-
plored hiding relationships between nodes (i.e.ES primi-
tive) and hiding metadata (i.e.ET primitive) of XML nodes
in the context of XML data outsourcing. Note that func-
tionality provided by primitives can be used to develop a
comprehensive XML access control model. Such a study is
outside the scope of this document.

3 Encrypted XML storage model

The previous section developed primitives on the XML
schema using which the client can specify the security
policy on the XML schema. This section develops a
mapping that takes as input, the XML schema as well as
the security policy specified using the primitives developed
in section 2 and outputs a server side XML representation
that facilitates query processing2. In our approach similar
to [1], as well as the work on secure indexes for enabling
keyword search on encrypted data [14, 15], the client
stores ancillary information at the server to facilitate query
processing. However, the specific ancillary information
stored differs from [1] and this will become clear in the
following sections.

Fig 4 illustrates our overall mapping strategy. For an
XML schema, all theEV primitives are handled first. When
the client specifiesEV (n) primitive ideally he/she desires to
replacesubtree(n)with an encrypted node. In the approach
proposed in this paper thesubtree(n)is replaced byestubm,
whose structure is shown in fig 6. Let L =f L1; L2 : : : LNg be the set of leaf nodes that are affected by the specifi-

2The server can store the encrypted XML documents using a native
XML database or an RDBMS using the translation techniques proposed
in [6, 9]. Our techniques are independent of the type of the database em-
ployed at the server

Input:
XML schema S of the unencrypted XML documentsEPrim = f E1; E2 : : : Ep g whereEi 2 f ES ; EV ; ET g
Mapping:
1. For everyEV (n) primitive 2 Eprim f
Replacesubtree(n)with estubm g
2. For everyES(parentNode; hildNode) primitive 2 Eprim f
Fragment the schema into two different trees and create
nodeid as the child ofparentNodeand nodesparentid
andpid as the children ofchildNodeg
3. For everyET (n1) primitive f
Encrypt the tag values of all the nodes2 subtree(n1) unless
the node is an encrypted node obtained from step 1.g

Figure 4. Schema mapping

cation ofEV (n) primitive, i.e all the leaf nodes that be-
long to subtree(n). Node E(Li : : : LN) stores the the en-
crypted string of the concatenation of all the leaf node val-
ues. NodesAnillary1(LV) andAnillary2(Lnv) store
the ancillary information required for querying on the leaf
nodes in L.LV is the set of leafNodes which do not have a
“*” or “+” from the path from the node where theEV prim-
itive is imposed, to themselves. SetLnv contains the other
leaf nodes which have a “*” or “+” in the path from the node
where theEV primitive is imposed to themselves. For the
nodes inLnv their cardinality is not known. The content of
this ancillary information is explained in the next section.

The ES primitives are handled next.ES(parentNode; hildNode) fragments the original
document tree structure into two different trees, one that
ends atparentNodeand another that is rooted atchildNode.
This implies isolation of subtree rooted atchildnodefrom
the original document. Two nodesid and parentid are
created, children ofparentNodeandchildNoderespectively.
Whenid = parentid, it implies that both these nodes belong
to the same document. Both theid and parentid nodes
are self generating attributes (i.e. automatically generated

3

Encrypted_Node

E(L ….. L)
1111 nnnn AAAAnnnncccciiiillllllllaaaarrrryyyy((((LLLL))))nnnnvvvvAAAAnnnncccciiiillllllllaaaarrrryyyy ((((LLLL))))VVVV

Figure 6. estubm
Root

parentNode

childNode

ES

Root

parentNode

childNode

id

E(parentid)

Ancillary(parentid)

Before After

Figure 7. Affect of theES primitive

Input:
XML query Q represented as< Q:T;Q:F >
XML schema S of the unencrypted XML documentsEPrim = f E1; E2 : : : Ep g whereEi 2 f ES ; EV ; ET g
Output:QS = f < QS1 :T;QS1 :F >, : : : < QSN :T;QSN :F > g
QueryTranslation:
1. < Q:T 0 ;Q:F > unravel(Q:T)
2. S SchemaMapping(< Q:T 0 ;Q:F >, Eprim)
where S =f < Q1:T;Q1:F >, : : : < QN :T;QN :F >, g
3. For every pattern tree< Qi:T;Qi:F > from step 2f
For every predicate inQi:F f
Translate the predicate to the server side predicateg g

Figure 5. Query Translation

by the client3) and one of them needs to be encrypted to
enforce theES primitive and hide the relationship between
parentNodeand childNode. The content ofparentid is
encrypted as the nodeparentNodecould potentially have
more than one child. Another nodeAncillary(parentid)is
created, which stores ancillary information required to pro-
cess a join operation between the nodesparentNodeand the
childNodeat the server. The content ofAncillary(parentid)
and its use is explained in the next section. Fig 7 shows the
effect of theES primitive.

We have previously shown howET (n) primitive en-
crypts tag value and this primitive cascades down to the
leaf level unless it encounters an already encrypted node.
No other changes are required to this mapping to facilitate
query processing.

4 Ancillary Information

This section explains the content of ancillary informa-
tion stored at the server to support query processing. The
ancillary information stored when theEV primitive is im-
posed (i.e. the content of the nodesAnillary1(LV) and

3The values of such self-generating attributes should be unique for dif-
ferent for XML document instances.

Anillary2(Lnv)) is discussed first. This is discussed un-
der two situations: a) when thesubtree(n)effected by theEV primitive does not contain multivalued operators (i.e
“*” or “+” operator); and b) when thesubtree(n)affected
by theEV primitive contains multivalued operators. After
the above two cases are handled, we will discuss the ancil-
lary information stored for theES primitive.

Subtree without multivalued operators: In this sit-
uation ancillary information is only stored in the nodeAnillary1(LV). Let the set L =fL1 : : : LN g be the set of
leaf nodes belonging tosubtree(n). Since there are no mul-
tivalued operators insubtree(n), setLv (all the leaf nodes
which do not have a “*” or “+” from the path from the node
where theEV primitive is imposed, to themselves) is equal
to L. Let dom(Li) represent the domain of the leaf nodeLi.
Let dom(L) = dom(L1) � dom(L2) � : : : dom(LN) be the
cartesian product of all the domains of leaf nodes elements
in L.

The domain of L can be viewed as a N-dimensional
space where each leaf nodeLi corresponds to a dimen-
sion. This N-dimensional space is partitioned into a set of
partitions and associated a random identifier for each par-
tition. The partitions should cover the whole domain and
should not overlap. While any partition multi-dimensional
histogram based technique[11] could be used to partition
the multidimensional space, the choice of specific partition-
ing policy has security implications. An attacker can an-
alyze the frequency distribution of the partition identifiers
to gather information of the underlying data. Therefore,
we propose the usage of the equi-width multidimensional
partitioning strategy to combat against such frequency at-
tacks. Detailed security analysis of our partitioning strategy
can be in the full version of the paper[16]. Due to space
restrictions we do not report the results here. The knowl-
edge of the partition boundaries and extent associated with
a partition identifier if revealed to the adversary will result
in information leakage. Thus, the partitioning information
including the mapping of the partition to the partition iden-
tifier is stored at the client and hidden from the server.

Table 8 shows an example multi dimensional partition-

4

Id FN LN Email Partition Identifier
0-15 0-700 0-600 0-900 28
15-30 0-700 0-600 900-

1600
99

30-35 0-700 0-500 160000-
1800

5000

.

Figure 8. Partitioning thesubtree(Author)domain

Email

ppppcccc

Title

Email = ‘I.M.Author@email.com’ &

Title = ‘Database stuff’

Name

AAAAdddd

Paper

AAAAdddd

TTTT:::: FFFF::::

Figure 9. Example of a Pattern

Encrypted_Node

P(L)
1

P(L)nE(L ….. L)1 n

Figure 10. estubs
N

Multi dimensional partitioning

* *

P2,P3 P4,P5

P1

Partitioned Single
dimensionally

P2P3P4P5

E
V

CCCCoooonnnntttteeeennnntttt ooooffff CCCCoooonnnntttteeeennnntttt ooooffff

AAAAnnnncccciiiillllllllaaaarrrryyyy ((((LLLL)))) 1111
VVVV

AAAAnnnncccciiiillllllllaaaarrrryyyy ((((LLLL)))) 2222
nnnnvvvv

Figure 11. Construction of the partitioning information

ing strategy. Note that string dimensions (FN, LN, Email)
have to be first mapped to an integer domain using hashing
techniques. The unencrypted leaf node values ofsubtree(n)
are points in the multi-dimensional space corresponding to
dom(L). The partition identifiers of these points are stored
as the content of the nodeAnillary1(LV) along with the
encrypted information i.e. E(L1 : : : LN). The ancillary in-
formation maintained in this paper is used for processing
Selection-projection-join queries only.

Note that we could have used the strategy in [1] where
the domain of every leaf nodeLi 2 subtree(n) is parti-
tioned and partition identifier is stored as the ancillary in-
formation. If we were to follow this strategy thensubtree(n)
will be replaced by theestubs which is shown in fig 10.P (Li) stores the partition identifier for leaf nodeLi. There
are two reasons for adoptingestubm instead ofestubs: a)
Multi dimensional partitioning is more secure than the sin-
gle dimensional partitioning (The relative relative security
merits of multidimensional and single dimensional parti-
tioning schemes is discussed in the full version [16]), and
b) estubs cannot handle the case whensubtree(n)contains
a multivalued operators (i.e. “* ” or “+”).

Subtree with multivalued operators: In this situation
ancillary information on both the nodesAnillary1(Lv)
andAnillary2(Lnv) is stored. The contents of setLV
andLnv have been explained in section 3. All the nodes
in LV can now be treated as a dimension and this space

can be multi dimensionally partitioned using the strategy
we discussed above. The partition identifier is stored as the
content ofAnillary1(LV).

Now we will explain the content of theAnillary2(Lnv)
node. For nodes inLnv the cardinality of the leaf nodes is
not known. It is difficult to use the multi dimensional parti-
tioning strategy for set based elements since the cardinality
of the leaf nodes is not fixed. We could have mined the max-
imum cardinality of the leaf nodes and used it to partition
the content space, but such an approach is not scalable. For
all leaf nodes inLnv we will partition their multiple values
single dimensionally and store the string concatenation of
all the partitions as the content of theAnillary2(Lnv). Fig
11 illustrates the construction for the content of the nodesAnillary1(LV) andAnillary2(Lnv).

Content of the nodeAncillary(parentid): To preserve
the privacy of theES(parentNode; hildNode) primitive,
a new nodeAncillary(parentid)was introduced as the child
of the nodechildNode. This section will explain the content
of the nodeAncillary(parentid).

Definition 1: Given a parentNodeP1 and any two
childNodesC1 andC2 , let the function Prob(n1, n2) give
the probability thatn1 is the parent ofn2 , then the privacy
ofES(parentNode, childNode) is only preserved if Prob(P1
, C1) = Prob(P1 , C2).

The above definition explains the requirement for the

5

preservation of the privacy of theES primitive. Two groups
of trees can be easily stored at the server. To execute a
path query which traverses the edge betweenparentNode
andchildNode, a join needs to be performed betweenpar-
entNodeand childNode. If the join is performed at the
server it would compromise the primitive. An approach to
preserve the privacy is to ship all the documents rooted at
childNodenode to the client. This is infeasible for large
databases. A similar problem is addressed by the PIR (pri-
vate information retrival) research [3]. In PIR, the client
wishes to retrieve a record from a database which belongs
to the server, without revealing any information about the
record that has been retrieved. The solutions involve us-
ing non colluding duplicate severs or secure coprocessors
which scan the whole database to fetch the required data.
Both these solutions are impractical in our setting.

Our technique is to ship only a subset of documents
rooted atchildNode. The client can control the number of
documents being shipped and this becomes a security pa-
rameter. Recall the creation of the nodesid andparentid.
The content of the nodeid is kept unencrypted and the con-
tent of the nodeparentid is encrypted. The domain of the
nodeid is single dimensionally partitioned as explained be-
fore and the partition identifier stored as the content of the
nodeAncillary(parentid). The metadata regarding theid
partitioning is stored with the server. When the join has to
take place between theparentNodeand thechildNode, the
partition identifierp where the content of theid node maps
to is found, and the XML documents rooted atchildNode
and having the content of the nodeAncillary(parentid)to
bep are shipped to the client. The client can now decrypt
all theparentidnodes and execute the join operation.

5 Query Translation

This section explores how a client query Q can be
transformed into a set of queriesQS = f QS1 , QS2 . . .QSN g,
that can be executed at the server side over the encrypted
data representation. The results of all the queries inQS
will be decrypted and filtered at the client side to compute
the actual answer. Our objective is to push the majority of
the work to the server side.

The XML query model developed in [10] is used to
model XML queries as pattern trees. Pattern trees are
pairs P = (T; F) whereT is a node labeled tree andF is a boolean combinations of predicates on nodes that
belong toT . Fig 9 shows the example of a pattern tree,
that corresponds to a query Q seeking the content ofName
in an XML document where theemail and title of the
paper has been specified as “I.M.Author@email.com” and
Title = “Database stuff” respectively. This is an example
query on the XML database conforming to the schema in

fig 1. Every edge of the pattern tree is either labeled as
PC (parent-child) and AD (Ancestor-dependency), which
describes the relationship between the nodes. For the rest
of the paper, XML queries are viewed as pattern trees.
Given XML query Q and its pattern tree representation(Q:T;Q:F), our objective is now is to map the query to
a set of server side queriesQS = f < QS1 :T;QS1 :F >,< QS2 :T;QS2 :F >, : : : < QSN :T;QSN :F >g, such that
queries inQS can be evaluated over the encrypted XML
representation. Note that all the queries inQS are sent
to the server at once without needing multiple rounds of
communication with the client.

Intuitively, the security primitives can be re applied onQ
to get the required set of queries to be executed at the server
side. Fig 5 describes our overall query translation strategy.
In step 1, the implicit structure hidden inQ:T is unraveled.
The edges with AD relationship inQ:T are resolved into
a path of PC edges using the original XML schema of the
unencrypted documents. This is done to uncover potential
nodes hidden in the AD edge that could have encryption
primitives specified on them. There could be leaf nodes inQ:T which do not correspond to leaf nodes in the schema of
the unencrypted documents. For instance, the nodeNamein
fig 9, is not a leaf node in the XML schema in fig 1. Thesub-
tree(Name)from the original XML schema is now placed
under the nodeNamein Q:T , to uncover other encryption
primitives specified on them. Fig 14 illustrates the pattern
tree resolved from the initial pattern tree in fig 9. In step
2, the encryption primitives are re applied on the resolved
pattern tree from step 1 to get a set of pattern trees which
have the same tree structure as the encrypted XML docu-
ments. In step 3, every predicate in the pattern trees derived
from step 2 is mapped to the corresponding server side con-
ditions. We will now explain the tree structure mapping and
the predicate mapping procedures in more detail.

Mapping the tree structure of the pattern tree: This
section describes the individual affect ofES , EV andET primitives onQ:T 0

(See fig 5). AnES(parentNode,
childNode) will impactQ:T 0

only if both theparentNode
andchildNodebelong to it. If that is the case,Q is split into
two pattern treesQ1 andQ2, similar to the effect of theES
primitive on XML schema described in section 2. Nodeid
is introduced as the child of the nodeparentNodeand nodes
parentidandAncillary(parentid)are introduced as the chil-
dren of the nodechildNode. Recall that content of the node
Ancillary(parentid)is a function of the nodeid, as during
encryption of the XML document, the content of theid node
is partitioned and partition identifier was stored as the con-
tent of Ancillary(parentid). Clearly, at the server side, the
server should first execute the pattern tree which contains
the id node, partition the contents of allid nodes in the re-
sult set (by using the metadata stored locally, see section 4)

6

and then do a selection on the nodeAncillary(parentid)for
these partitions. The FormulaQ:F also needs to be split
into Q1:F andQ2:F , but this is trivial as the pattern tree
can only have predicates in its formula on the nodes which
are present in its tree structure. For example, the effect ofES(paper; author) on the pattern in fig 14 is shown in fig
12. The predicateAncillary(parentid)= Part(Q1.id) in fig
12 is now explained. Function part(Q1.id) returns the set of
partitions to which the content of theid node fetched from
the execution ofQ1 at the server. These set of partitions
are placed as a predicate on theAncillary(parentid)node.
TheES primitive is primarily responsible for splitting the
original query Q into a set of server side queries.

TheEV (n) primitive will effect Q:T 0
if the noden be-

longs toQ:T 0
. If that is the case thesubtree(n)in QT̀

is replaced byestubm. Fig 13 shows the effect of theEV (Author) primitive on the pattern tree in fig 14.
TheET (node) primitive will also encrypt all the nodes

in subtree(n) in Q:T , using the same encryption keys used
during the enforcement of the security primitives.

Mapping predicates: Previously, it was shown how
query Q represented as< Q:T;Q:F > is split up into a
set of pattern treesf< Q1:T;Q1:F >, < Q2:T;Q2:F >,: : : < QN :T;QN :F >g . This section deals with the trans-
lation of the predicates on each these pattern trees to their
corresponding server side predicates. Each predicate inQi:F , wherei 2 f1; 2; : : :Ng, is mapped individually to
the server side. The predicates specified on the leaf nodes
are typically mapped to predicates on the ancillary infor-
mation. The predicate could be any one of the following
3 types a)leafnode.content = Valueb) leafNode.content<
Valuec) leafNodek.content =leafNodel.content, wherek 6= l. These are the types of predicates that are possible
in the XML query model[10] used in this paper. Notable
exception to the predicates mentioned above is the theta-
join that is not handled in this paper. We will only handle
a subset of these cases in the interest of brevity. It is hoped
that this gives the reader enough intuition to understand the
condition mapping procedure.

leafNode.content< Value: If the leafNodeis not en-
crypted when it was stored at the server, there isn’t any
requirement for condition mapping. Only if theleafNode2estubm there is a necessity to transform this condition to the
server side condition. If the leafNode2 estubm, and if the
path from the node where theEV primitive was specified to
the leafNodedoes not contain a multivalued operator, then
the leafNodeparticipated in the multi-dimensional parti-
tioning. All the multi-dimensional partitions which contain
points less thanValue in the leafNodedimension need to
be fetched from the server side. The condition now is trans-
formed onto theAnillary1(L1 : : : LN) node. For instance
consider the Multi-dimensional partitioning of thesub-
tree(Author)domain introduced in fig 8. For the condition

id < 36, partitions 28,99 and 5000 have at least one value
less than 36 in theid dimension. The server side condition
now isAnillary1(L1 : : : LN) 2 f28,99,5000g. If the path
from the node on which theEV primitive to theleafNode
contains a multi-valued operator, then theleafNodewas sin-
gle dimensionally partitioned. A LIKE query is executed on
theAnillary2(L1 : : : LN) node for all the partitions in the
leafNodedimension, which contain points less thanValue.
For example if the path from node where theEV primi-
tive was specified toleafNodecontained a “*” operator, the
conditionsid < 36 is mapped toAnillary2(L1 : : : LN) 2f%28%,%99%,%5000%g. Where the charecter % refers to
zero or more other partition identifiers.leafNodel.content = leafNodek.content: There is a
requirement to map such a join condition when at least
one ofleafnodel or leafnodek’s ancestor node has anEV
primitive imposed on it. The most complicated join con-
dition occurs when both the nodes belong to different en-
crypted subtrees. Such a case is possible when a join is
requested between two different XML documents conform-
ing to different XML schemas. Further complication oc-
curs if bothleafnodel andleafnodek are multi-valued at-
tributes. We will briefly explain only this particular case,
since it is the most complex and should give the reader
enough intuition for the other cases. To execute such a join
condition the server has to make sure there is a atleast one
partition id match between the ancillary information asso-
ciated with theestubs. For instance, letf200,40,60g be the
ancillary information of the multi-valued attributes associ-
ated tosubtree(n1) (i.e. Anlillary2Lnv) to which the
nodeleafnodel belongs. Letf40,78,1000g be the ancil-
lary information of the multi-valued attributes associated tosubtree(n2) to which the nodeleafnodek belongs. Now
the server can check that there exists an intersection be-
tween the two sets of partition ids (i.e. id 40) and will con-
form a potential match exits.

6 Related Work

There have been two previous works in the literature that
dealt with processing queries over encrypted XML docu-
ments [7, 8]. Schrefl et al[7] propose a technique that allows
xpath selection queries to be executed at the server side. The
limitations of the proposed strategy that are addressed in our
paper are: a) cannot support range queries; and b) requires
multiple rounds of communication between the client and
the server to answer a single query, thereby potentially un-
dermining the performance. Yang et al[8] propose XQEnc
an XML encryption technique based on vectorization and
skeleton compression of XML paths. The proposed XML
encryption technique is in accordance with W3C standard
[2]. To facilitate query processing the authors propose to
use any of the existing techniques such as single dimen-

7

Paper

Title

F :Title = ‘Database stuff’1

Author

Ancillary(parentid)

Email
Name

FN LN

F : Ancillary(parentid) = Part (Q . id)

Email = “I.M.Author@email.com”
2

id

T
1

T
2

1

Q
1111

Q
2222

parentid

Figure 12. Effect of the ES
primitive on the pattern

Paper

Encrypted_Node
Title

EEEE((((LLLL ……………………........ LLLL)))) 1111 nnnn AAAAnnnncccciiiillllllllaaaarrrryyyy ((((LLLL)))) 2222
nnnnvvvvAAAAnnnncccciiiillllllllaaaarrrryyyy ((((LLLL)))) 1111

VVVV

Figure 13. Effect of the EV
primitive on the pattern

Paper

Author

Email
Name

Title

Email = ‘I.M.Author@email.com’ &

Title = ‘Database stuff’

FN LN

TTTT:::: FFFF::::

Figure 14. Resolved pattern

sional partitioning or order preserving encryption.
We differ ourselves from the previous work on XML

data outsourcing in the following manner: a) We explore
a set of encryption primitives using which the client can
provide fairly complex set of security policies on the xml
documents. More specifically, out ofES , EV and ET
primitives explored in this work, onlyEV has been han-
dled previously in the literature; and b) We introduce a
novel multi-dimensional partitioning technique that facili-
tates query processing to take place at the server side on
the encrypted documents. The multi-dimensional partition-
ing technique allows range queries to be processed at the
server and overcomes the security limitations of the single
dimensional partitioning techniques. Previous approaches
to XML data outsourcing cannot support range queries.

7 Conclusions

This paper presented techniques to support query pro-
cessing on encrypted XML data in an outsourced database
model. We proposed a set of encryption primitives using
which a client can propose fairly complex set of security
policies on XML documents. We introduced a novel multi-
dimensional partitioning strategy that allows query process-
ing to take place at the server side and overcomes the limita-
tions of the single dimensional partitioning techniques pre-
viously proposed in the literature. Some of the techniques
proposed here could also be used in the context of relational
databases, but such a study is out of the scope of this paper.

References

[1] H.Hacigumus, B.Iyer, C.Li and S.Mehrotra. Executing SQL over
Encrypted Data in the Database-Service-Provider Model.ACM
SIGMOD Conference on Management of Data.Jun 2002.

[2] http://www.w3.org/Encryption/2001/
[3] B.Chor, O.Goldreich, E.Kushilevitz and M.sudan 1995. Private

information retrieval.In Proceedings of the thirty-sixth Annual
Foundations of Computer Science. IEEE Computer Society Press.
Los Alamitos, California, pp. 41-50.

[4] E.Damiani, S.De Capitani di Vimercati, Sushil Jajodia,Stefano
Paraboschi, Pierangela Samarati. Balancing Confidentiality and
Efficiency in Untrusted Relational DBMSs.Proceedings of the
Tenth ACM conference on Computer and Communication secu-
rity.

[5] L.Bouganim and P.Pucheral. Chip-secured data access: Confiden-
tial data on untrusted servers.In Proc. of the 28th International
Conference on Very Large Data bases.Pages 131-142, Hong
Kong, China, August 2002.

[6] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt,
and J. F. Naughton. Relational databases for querying XML docu-
ments: limitations and opportunities.In The Very Large Databases
Journal.Pages 302-314, 1999.

[7] M.Schrefl, K.Grun, J. Dorn. ”SemCrypt - Ensuring Privacyof
Electronic Documents Through Semantic-Based Encrypted Query
Processing,” icdew, p. 1191, 21st International Conference on
Data Engineering Workshops (ICDEW’05), 2005.

[8] Y.Yang, W.Ng, H.Lam Lau, and J.Cheng. An efficient Approach
to Support Querying Secure Outsourced XML Information. Caise
2006.

[9] P.Bohannon, J. Freire, P.Roy, J.Simeon. From XML Schemato
relations: A cost based approach to XML Storage. In the proceed-
ings of ICDE 2002.

[10] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, Keith
Thompson, TAX: A Tree Algebra for XML, In: Proceedings of
8th International Workshop on Databases and Programming Lan-
guages, Rome, Italy, September 2001.

[11] M. Muralikrishna, David J.Dewitt. Equi-depth multidimensional
histograms.Proceedings of the 1988 ACM SIGMOD International
conference on management of data.

[12] E.Damiani, S.C.Vimercati, S.Paraboschi, P. Samarati. Fine-
grained Access Control System for XML Documents.ACM Trans-
actions on Information and System Security (TISSEC). Volume 5,
Issue 2(May 2002) table of contents. Pages: 169 - 202.

[13] S.Hada, M.Kudo. Provisional Authorization for XML Documents.
http://www.trl.ibm.com/projects/xml/xss4j/docs/xacl-spec.html

[14] E.Goh. Secure Indexes. In submission
[15] D. Xiaodong Song, D.Wagner, A.Perrig. Practical Techniques for

Searches on Encrypted Data. IEEE Symposium on Security and
Privacy

[16] R.Jammalamadaka, S.Mehrotra. Querying Encrypted
XML Documents. Technical Report TR-RESCUE-06-15.
http://www.ics.uci.edu/r̃jammala.

8

