
Pvault: A Client Server System Providing Mobile Access to
Personal Data

Ravi Chandra Jammalamadaka, Sharad Mehrotra, Nalini Venkatasubramanian
Donald Bren School of Information and Computer Science University of California, Irvine Irvine, CA 92697

{rjammala,sharad, nalini}@ics.uci.edu

ABSTRACT
In this paper we describe the design for the Pvault software,
which is a personal data manager that stores and retrieves
data from a remote untrusted data server securely. The
major advantage of Pvault is that it allows users to access
their personal data from any trusted remote computer. We
will describe the issues and solutions for maintaining data
confidentiality and integrity when the data is stored at the
remote sever, since the server itself is untrusted. Pvault
also prevents Phishing and Pharming attacks and we will
describe the solutions for the same.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management—
Database Applications; H.3.2 [Information Systems]: In-
formation Storage and Retrieval—Information Storage; H.3.3
[Information Systems]: Information Storage and Retrieval—
Information Search and Retrieval

General Terms
Security

Keywords
database, security, encryption, cryptography, secure shar-
ing, mobile access, untrusted service provider model, secure
storage

1. INTRODUCTION
Widespread acceptance of Internet as a medium for do-

ing business has led to the emergence of many web services.
Services such as email, news, online shopping portals, online
banking . . . etc have become quite popular with the inter-
net savvy users. Such services are considered more the norm
than a privilege for a select few, as most of the services are
free for the user. All the services require users to authen-
ticate themselves using usernames, passwords and/or other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’05, November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-223-X/05/0011 ...$5.00.

personal information such as social security numbers. This
scenario has led to users generating lot of personal data and
that data is hidden in diverse systems across diverse soft-
ware. Take for instance popular auto-fill feature available in
many current browsers. This feature stores information en-
tered in web forms, remembers it and fills out the web forms
when they are visited in the future. Users have to fill out
web forms only once and needless to say this is very pop-
ular convenient feature. When the users switch to a differ-
ent computer or a different browser the auto-fill information
is not available. Other examples of information that users
want to be mobile include credit card numbers, pin num-
bers . . . etc. This information is nothing but the identity
information of the user and there is a genuine requirement
for mobility/transportability of the identity information se-
curely. Currently, users carry around their identity informa-
tion in USB drives for achieving mobility. Such a solution
is both insecure and inconvenient.

In this paper we propose a client-server architecture, sim-
ilar in spirit to Database as a Service(DAS) model, as so-
lution to the above problem. In this architecture, a client
outsources its personal data to a service provider who pro-
vides the data management services such as storage and
data access. Advantages of this solutions include a) lower
cost, since the service provider can amortize the cost across
clients b) mobile access to data, the client can connect to
the server from any trusted computer c) facilitation of data
sharing across organizational boundaries. There are two dif-
ferent types of security challenges that need to be addressed
here a) there is a distinct possibility of hackers/internet
thieves breaking into the service provider interface b) there
is the concern of trust in the service provider itself. An
approach to preserve the privacy of the client is through en-
cryption. The client can encrypt all its data before outsourc-
ing the data to the server/service provider. This further
raises more challenges which include a) processing queries
over encrypted data b) enabling data sharing/access control
on encrypted data.

Recently, there has been an emergence of sophisticated
online scams called Phishing and Pharming [3]. In a Phish-
ing scam, the user typically receives a spoofed email from a
financial institution urging it to update its personal infor-
mation. The email’s content generally contains a link which
directs the user to a spoofed website that contains a web
form. This website looks exactly like the original website
the user relates to, although hosted on a different domain.
Unsuspecting users can then enter their information and po-
tentially face dire consequences. In a Pharming scam, an at-

tacker exploits a vulnerability on a DNS server and changes
the content of the directory which contains the domain to
IP directory. Therefore, now a user can be directed to a
spoofed website whenever a request to original website is
forwarded to the DNS server. Similar to Phishing scam, an
unsuspecting users can give away their personal information
and become a victim of identity theft.

In this paper we describe the design of the Pvault system,
which is a versatile secure system that can hold people’s
secrets. The Pvault system supports the following features:

• Supports mobile access to secrets from anywhere, any-
time and from any machine.

• Generates strong passwords and helps registration of
these passwords with websites.

• Remembers and fills out auto-fill information.

• Sharing of secrets in a secure, controlled fashion.

• Prevents Phishing and Pharming attacks.

The rest of the paper is organized as follows, in section
2 we describe our related work. In section 3 we describe
the overall architecture of the Pvault system. In section
4 we describe the fundamental unit of data in the Pvault
system, the Pvault entry. In section 5, we illustrate the main
functionality provided by the Pvault client. In section 6, we
describe the functionality provided by the service provider.
In section 7 we list the weaknesses of the Pvault system.
Section 8 deals with future work. In section 9 we conclude
and in section 10 we acknowledge the contributors to the
building of the Pvault system.

2. RELATED WORK
There are many commercial systems/research prototypes

that offer some of the functionality of Pvault. Software for
managing passwords [1, 2] are available on the internet.
These softwares store encrypted passwords that belong to
the user on the local machine. The Autofill feature, where
the passwords are automatically filled for the websites the
user visits, is available in most of these applications thereby,
reducing the interaction between the user and the applica-
tion. But all these applications do not provide the mobility
of data since the data is stored encrypted on the local ma-
chine. The user is forced to carry the sensitive data manu-
ally with himself for achieving mobility. This further leads
to problems with synchronization when data is updated on
many other machines.

pwdhash[4] is a browser pluggin which generates a strong
password for a website by hashing a master password with
the domain name of the website. The user now has to
remember only the master password and a unique pass-
word is generated on the fly everytime a user visits a web-
site. This simple scheme gives users mobility with regard
to their passwords as passwords can be generated on any
trusted machine. The Drawbacks of this scheme are as fol-
lows a) Cannot store secrets other than passwords such as
credit card numbers and pin numbers b) Updates to pass-
words(belonging to websites) are an issue, since a single up-
date forces a change to the master password thereby requir-
ing updates to all other passwords c) Since pwdhash gener-
ates passwords rather than store them, a new user is forced
to register the new passwords generated with pwdhash.

AntiPhish[5] is a browser extension that tries to protect
against Phishing attacks. AntiPhish works similar to the
password managers describe above, where locally AntiPhish
keeps track of sensitive information and warns the user when-
ever sensitive information is sent to a untrusted website.
This tool has been implemented as an Mozilla extension.

Microsoft’s single signon passport protocol[14] allows users
to authenticate themselves to passport servers(microsoft run)
to procure the required credentials for logging into partici-
pating websites. The drawbacks for this ambitious service
are a) Requires changes in the authentication protocol of the
participating website b) Requires complete trust in the pass-
port service, since data is kept in plaintext in the passport
servers, thereby vulnerable to insider/outsider attacks.

Pvault distinguishes itself from the above systems in the
following manner a) It is based on the data outsourcing
model b) Allows mobile access to secrets from any trusted
remote machine c) Stores arbitrary secrets not just pass-
words.

3. ARCHITECTURE OF PVAULT
In this section we will briefly describe the overview of

the Pvault service architecture. The architecture of the
Pvault system is shown in fig 1. The two major entities
in the Pvault architecture are the user/client and the ser-
vice provider/server. The clients use the Pvault software to
store and retrieve personal data(secrets). The fundamental
data unit being outsourced by the client is a Pvault entry.
A Pvault entry, similar to XML documents, consists of both
structure and content. A Pvault entry besides storing per-
sonal data, optionally can store the required URLs (web
pages) to which the personal data pertains to. The Pvault
entry is described in more detail in section 4.

The users encrypts all the Pvault entries before outsourc-
ing them to the service provider. We used Blowfish encryp-
tion algorithm[12] for encryption/decryption. The service
provider now stores the Pvault entries and provides access
to the entries whenever the client requests them using a con-
ventional off the shelf relational database. The user has to
authenticate himself with the server by supplying a user-
name and password which the server can recognize. This
is the username and password that user submitted to the
server during the registration process. In the current im-
plementation of pvault the password supplied to the server
is the master password of the client encrypted with itself.
Master password is the only secret the user has to remem-
ber for using Pvault. The master password is used as the
key during encryption/decryption of clients secrets. The
master password has to be strong, otherwise the user’s data
is vulnerable to dictionary/brute force attacks. The server
then checks the set of <username,password> pairs available
with it and verifies if the request to login from a client is
legitimate. The server then transports all the sensitive data
stored at the server to the client(This not necessarily is the
case, but for simplicity, now we will assume that all the se-
crets are transferred). The Pvault client then decrypts the
sensitive data using the master password.

Once the secrets are transported back to the user, the aut-
ofill feature is activated. Whenever, the user visits a website
whose sensitive data is already stored as an pvault entry,
the Pvault client will automatically fill out the required se-
crets(personal data) on the webpage. This feature is very
important, since an advanced users of Pvault will use the

pVault_Entry

*

Secret

Metadata Actualdata

?

*

Individual_Secret

Metadata Actualdata

url

Name
id*

id

Figure 2: Schema of the Pvault entry

pVault_Entry

E(Secret)

?

*

E(Individual_Secret)

url

E(Name)
id

id

Figure 3: Schema of the encrypted Pvault entry

password generation feature to generate strong passwords
for every website they visit. Since the user cannot be ex-
pected to remember the strong passwords, which is the one
of the motivations for creating Pvault in the first place, there
is the requirement for automatically filling the passwords on
websites. Besides storing and retrieving secrets, Pvault also
prevents Phishing and Pharming attacks. Details of how
Pvault prevents the attacks will be explained in the coming
sections.

4. PVAULT ENTRY
In this section we will describe in detail about the funda-

mental data unit of the Pvault system, the Pvault entry.
The Pvault entry data model is based on the XML data

model. All the Pvault entries are XML documents which
follow a particular schema. XML documents are composed
of nested elements, where each element is delimited by a
start tag(eg. <secret>) and an end tag(eg. </secret>).
The schema for an XML documents provides a formal defi-
nition on the structure of the XML documents. The schema
of the Pvault entries is shown in fig 2. Operators(eg, *,? . . .

1.< Pvault entry >
2. < secret >
3. < metadata > username < metadata >
4. < actualdata > rav5678 < /actualdata >
5. < /secret >
6. < secret >
7. < metadata > password < metadata >
8. < actualdata > $%sdfg#&34FG < /actualdata >
9. < /secret >
10. < url >
11. < name > www.yahoo.com < /name >
12. < /url >
13. < url >
14. < name > www.rediff.com < /name >
15. < /url >
16.< /Pvault entry >

Figure 4: Example Pvault entry

etc) are used to describe the cardinality of the child nodes
for a particular node. “*” operator implies “zero or more
occurrences” and “?” operator implies zero or one occur-
rences. A Pvault entry could be potentially used to store
secrets(personal data) that belong to more than one URL.
For instance, the users are increasing maintaining profiles
with websites, which usually includes information such as
address, full name, email address . . . etc. Users can main-
tain the same profile with more than one website. The
Pvault entry schema in fig 2 states the following a) there
could be zero or more secrets in a Pvault entry b) each
Pvault entry can be associated with more than one URL c)
and each URL can contain more than one secret. All the
common secrets that belong to all the URLs are stored as
the content of the secret element. Secrets that belong only
to one url are stored as the content of the individual secret
element. The Optional operator “?” states that a Pvault
entry may or may not contain URLs, since Pvault entries
can store secrets that are not related to the web. The name
element which is child of the URL element stores the url
names. An example Pvault entry is shown in fig 4. We will
now explain the details of the secret element.

A secret is denoted by using a <metadata,actualdata>
pair. The actualdata element in the Pvault entry stores
the actual value of the secret. The metadata element stores
information which describes/provides information about the
value stored in the actualdata element. We will now give an
example about the data stored as the value of the metadata
element.

Webpages contain a web form created using <form ac-
tion = URL> tag, when user input is desired. Each form
could contain a list of inputs elements which take in user
input. The tag for an input element in HTML is <input>.
Consider the following example of the <input> tag:

<input type = “password” value = “secretkey”>

The above HTML code creates a password input textbox
on a webpage. The value attribute in the <input> tag “se-
cretkey”, describes the password textbox. This information
is stored as the value of the metadata element. The actual
password entered by the user is stored as the value of the
actualdata element. The metadata stored along with the
actual secrets serves as association information which will
guide Pvault to fill out the secrets at the appropriate place,
when the webpage is visited again. Therefore, in future if

Login and Password

Information for the service

Sensitive data that belongs to the user

Is sent back, if the user is legitimate
Decryption

Encrypted
Database

Plaintext pVault
entries

New

pVault entry

Encryption

Client/User

Trusted Computer

Service Provider

Untrusted Server

Encrypted pVault entry

Figure 1: Pvault Architechture

the same url is visited again and Pvault encounters a pass-
word textbox, that has a value attribute to be “secretkey”,
it will fill out the password textbox using the contents of the
actualdata element stored in the Pvault entry.

We have till now explained the client side representation
of the Pvault entry. All Pvault entries are created by the
Pvault client requiring little manual input from the user. Be-
fore outsourcing the Pvault entries, the user needs to encrypt
the Pvault entries to protect his privacy. One approach to
encrypting the Pvault entries is to encrypt the values of the
metadata, actualdata and name elements individually. In
our approach, we encrypt the secret subtree and replace the
subtree with an encrypted node E(secret). The content of
the secret element (which is the whole subtree rooted at se-
cret) is encrypted and placed as the content of the E(secret)
node. Similarly, the subtree rooted at Individual secret is
replaced by encrypted node E(Individual secret). This is
being done to optimize the encryption/decryption times. If
the metadata element and the actual element is encrypted
individually, then when these elements are shipped back to
the client, they have to decrypted individually decrypted.
All encryption algorithms have a startup time, therefore it
makes sense to do bulk encryption/decryption. We have
chosen not to replace the url subtree with an encrypted
node. Depending on user preferences, only a secrets belong-
ing to some URLs can be downloaded to the client. If the
URL subtree is encrypted, then a selection based on name
element cannot be made. Therefore, the name element is
individually encrypted. The name element can be left as
plaintext if the user wishes to do. Final structure of the
encrypted Pvault entry is illustrated in fig 3.

5. PVAULT CLIENT
In this section we will describe the main functionality of

the Pvault client.

5.1 Query Interface
Once the Pvault entries are downloaded from the server,

the Pvault client allows the user to query the Pvault en-
tries. When the user visits a webpage, Pvault checks if the
information pertaining to the webpage is already available
locally, if it is available locally, the data required is auto-

matically filled. If the data required for the webpage is not
available locally, the user is prompted to check if it wishes
to fetch the required data from the server. If the user wishes
to do so, then the data is fetched from the server.

5.2 Password Generation
Pvault has a password generation tool which generates

strong passwords with high entropy. It is widely known that
passwords chosen by users have low entropy and therefore
vulnerable to dictionary attacks. Pvault generates strong
passwords of a given length (usually, given by a user or
a system default is taken) by random choosing characters
from a alphabet which includes numeric characters and spe-
cial characters. Pvault creates strong passwords and helps
the user to register these passwords during the registration
process with a new website.

5.3 Autofill
Autofill is a convenient feature which allows users not to

worry about filling out forms on the websites. As described
before, once the Pvault entries are downloaded, the autofill
feature is activated. When the user visits a new webpage,
the Pvault client will try to find if there any Pvault en-
tries that correspond to the URL. If multiple Pvault entries
qualify, the Pvault client will prompt the user to disam-
biguate. This is usually done by the user clicking on the
right pvault entry. For instance, such a problem can occur
when a user has two accounts for a website, then Pvault will
be unsure which account to fill out on the webpage. When
the right Pvault entry is found, all the secrets that belong
to the webpage are filled out. Recall that secrets stored in
Pvault entries contain metadata and the actual data. Meta-
data guides the Pvault client software to find the appropriate
input element in the HTML code to fill out the actual data
in. Autofill feature does not guarantee that appropriate se-
crets are filled out in the required place, since the HTML
code/design can be changed anytime by the webmaster of
the website. Therefore, when Pvault does not correctly fill
out a webpage, the user can correct Pvault mistakes. The
Pvault entry pertaining to the webpage is then adjusted to
make sure that in the future the mistakes do not happen
again.

5.4 Phishing attacks
Phishing attacks are online scams where an adversary tries

to steal personal information such as passwords, credit card
numbers, social security numbers and other financial infor-
mation from an unsuspecting user. These online scams are
receiving much attention these days purely due to their fre-
quency and their effectiveness. According to a recent study,
57 million US Internet users have recognized emails linked
to Phishing scams, and about 1.7 million of them have given
their personal data to these scams.

In a typical Phishing attack, the adversary sends a spam
email to random users pretending to come from a financial
institution such as a bank or from a website which offers
some popular service. The email urges the user to update
its personal information under some false pretext which is
usually a security upgrade. This email will contain a link
which directs the user to a website which has a form for
the user to fill. This website is a spoofed website which
looks and feels exactly like the real website the user is ac-
customed to. An unsuspecting user could then enter its
personal information. Needless to say, this attack is very
effective with potentially catastrophic consequences for the
poor user. Recently, Phishing attacks are becoming more
sophisticated, where emails are sent to individual users not
necessarily spam to many users. This email contains indi-
vidual information that does belong to the user such as an
account number, date of birth . . . etc. Since the email has
some personal information, users are more likely to believe
that this email is legitimate and send personal information
to the spoofed website.

For a careful user who checks the domain names of all the
urls that he/she visits, Phishing attacks are not a problem,
since the attack can be manually caught. But to expect ev-
ery user to pay careful attention to every website he/she vis-
its is unreasonable especially, when the spoofed websites are
so close to the websites that users relate. With the Phishing
attacks getting more sophisticated, it is no wonder that these
attacks are so successful. We need solutions/applications
that prevent the user from submitting information to ma-
licious websites. Pvault prevents Phishing attacks by an-
alyzing the information being submitted to every website.
Pvault requires that user store sensitive data pertaining to
a websites such as passwords to be stored with it. Whenever
a user submits information to a webpage form, Pvault cap-
tures this event and compares this information with its local
database. If the information being submitted to the website
belongs to another website, Pvault will raise an alert. It
is now for the user to decide to continue to send the infor-
mation or not by clicking the Yes/No buttons on the alert
message box.

5.5 Pharming
Pharming attacks are online scams where an attacker/

adversary tries to exploit vulnerability in the DNS server.
The DNS server is responsible for mapping domain names
to IP addresses. Every DNS server maintains a directory
which essentially is a table that maps domain names to IP
addresses. The attacker tries to poison this table or change
the contents of it, thereby procuring the ability to redirect
users to a spoofed website rather than the original one. This
is far more sophisticated scam than Phishing attack that we
described before, since just checking the url will not help
here. To prevent this attack Pvault requests domain name

1. Alice Generates a random key k.
2. Encrypts Pvault entry PE with key k which
generates Ek(PE)
3. Requests the Bob’s public key Bpu from the server.
4. Encrypts key k with Bobs public key EBpu(k)
5. Stores Ek(PE) and EBpu(k) with Bob’s
account in the server

Figure 5: pVault entry sharing protocol

to IP address conversion to not one but three domain name
servers spread around the world. If all the three IP ad-
dresses returned do not match then Pvault detects a pos-
sible Pharming attack. This solution will not work in the
highly unlikely event of all three DNS servers being poisoned
and all of them returning the exact IP address for a domain
name. Even though the solution given here is not complete,
nevertheless it is practical. We have chosen to query three
DNS servers, although more than three can be queried, but
it comes at a cost since it will slow down the system.

5.6 Secure Sharing of Pvault entries
Pvault allows secure sharing of Pvault entries between

users. The sharing protocol is based on the Public key In-
frastrucure(PKI). When a new user registers with the Pvault,
a <public key,private key> key pair is generated and the
public key is stored/registered with the server. The private
key is stored with the Pvault client. Fig 5 describes the
sharing protocol. Alice a user of Pvault is try to share her
Pvault entry PE with Bob another Pvault user.

Alice generates a random key k, using which she encrypts
the Pvault entry that she wants to share. Here we use sym-
metric encryption, where the encryption and decryption are
done with the same key. Alice then requests the server for
Bob’s public key and encrypts the key k with Bob’s public
key. She then instructs the server to store both the en-
crypted Pvault entry and the key k encrypted with Bob’s
public key EBpu(k),in Bob’s account. Bob can now decrypt
(EBpu(k)) using his private key to find the key k used to
encrypt the Pvault entry PE. Now since Bob has the key
k, he can then decrypt Ek(PE) to access the Pvault entry
that has been sent by alice. A copy of the Pvault entry PE is
now stored in Bob’s account, with the server. All the above
protocol is executed by the Pvault clients at both Bob’s and
alice side. Alice just has to instruct the Pvault client to
share the appropriate PE with Bob and Bob has to accept
the request for sharing from alice.

6. PVAULT SERVER
In this section we will describe the major functionality of

the server in the Pvault architecture. We will be limiting
our discussion to the following a) How are the encrypted
Pvault entries represented/stored at the server b) How to
prevent server from tampering with the outsourced data.

The Pvault clients outsources encrypted Pvault entries
which are XML documents. These XML documents are
stored at server using a standard off the shelf relational
database. The encrypted documents are shredded into re-
lational tuples before being stored. We have used the inlin-
ing technique proposed in [9] to store the XML documents
in relational tables. In this technique, a table is created
for the root element and for every element that is under

a “*” operator in the XML schema. The other elements
are inlined/included as columns with the nearest ancestor
that has a table created for it. The relational schema at
the server side that stores XML documents that follow the
Pvault entry schema in fig 3 is as follows:

PV AULT ENTRY (id, etuple)
URL(id, etuple, parentid, ename)

The PV AULT ENTRY table stores the id of the Pvault
entry in plaintext and etuple attribute stores the content
of the E(secret) node. Recall that E(secret) stores all the
common secrets that belong to all the urls in encrypted form.
The URL table stores a tuple for every url that belongs to a
Pvault entry. Every url is given a unique id which is stored
in the id attribute, etuple attribute stores the content of the
E(Individual secret) node. The ename attribute stores the
encrypted URL name. The parentid attribute is the id of the
Pvault entry to which the url belongs to. This is necessary
to select the URL table tuples that belong to a Pvault entry.

Furthermore, the encrypted information stored at the server
can also include some indexing information to enable to
search over encrypted data. Using the indexing informa-
tion a superset of results can be retrieved that can be sent
back to the client. The client can then filter the unwanted
results after decryption. Such techniques have been previ-
ously explored in [10, 13, 12, 11] to execute SQL queries over
encrypted data. Exploiting such techniques in our context
adds the following challenges a) the techniques proposed in
the literature require metadata to be stored at the client,
which made the client side application fairly thick/ substan-
tially large b) the techniques were proposed for outsourced
database model, where the databases were very large, un-
like our case where we are concerned about personal data
which is considerably less in size c) the metadata stored at
the client will interfere with the sharing protocols. Enabling
search over encrypted data has high priority for our future
work and this feature has not been implemented in our cur-
rent version of Pvault system.

6.1 Maintaining Data Integrity
In this section we will describe how the client/user can

make sure that the data exported/outsourced to the server
is not tampered with. The server can a) delete data b) make
changes to the data c) insert new data. We will describe
cryptographic techniques using which can client can detect
if any changes have been made at the server side to its data.
We are essentially trying to guarantee both the soundness
and the completeness of the data sent from the server.

6.1.1 Guaranteeing Soundness
Recall that the client stores Pvault entries at the server.

Together with the Pvault entries, message authentication
codes (MACs) are computed and stored along with every
Pvault entry. The MAC generation algorithm which is a
cryptographic hash function, accepts the input message and
a secret key and produces the message digest or the MAC.
The input message here is the concatenated string of all the
leaf node values of the Pvault entry and the secret key is
the master password. When the server sends the Pvault
entries back to the user, the servers also sends the MACs
back to the user. The user recomputes the MAC for every
Pvault entry and compares it with the MAC received from
the server. If the MACs match, then the the Pvault entry

is sound. MACs are efficient to compute and therefore are
not a huge performance impediment.

6.1.2 Guaranteeing Completeness
In the previous section we have shown how we guaran-

tee soundness of the Pvault entries sent back to the user.
But guaranteeing soundness is only one part of the prob-
lem, how do we guarantee that the Pvault entries sent back
to the client are complete. The server can send only a sub-
set of the Pvault entries or insert some fake Pvault entries
(which could be a copy of a existing Pvault entries i.e a du-
plicate). A count of all the tuples can be maintained at the
server encrypted with the master password together with
its MAC, which prevents the server from manipulating the
count itself. The count can be sent back to the user, who
can then verify how many sound Pvault entries have been
sent back. But this does not solve the problem of receiv-
ing duplicate Pvault entries. To ensure that user does not
receive duplicate entries, every Pvault entry is assigned a
unique id(Refer to fig 2). Recall that id is used during MAC
generation of the Pvault entry. Now the duplicates can be
easily caught at the user side.

7. WEAKNESSES OF THE PVAULT
SERVICE

In this section we will list some of the drawbacks of the
Pvault software/service.

One point of failure: All the Pvault entries are guarded
by one master password. If the master password is compro-
mised, all the Pvault entries are easily known to the adver-
sary. It is important that users choose a strong password as
the master password. It is recognized that passwords cho-
sen by users have low entropy and are easily susceptible to
dictionary attacks. Recently authors of [6] have proposed
techniques for strengthening user passwords, by repeatedly
applying cryptographic hash functions on passwords. Simi-
lar techniques could be applied on the master password to
further strengthen the security.

Pvault client needs installation: The current imple-
mentation of the Pvault client requires users to install the
software on their local machine. Users have remote access
to their data as long as the computer has Pvault software.
When users are trying to access their passwords from a cy-
bercafe, it may not be possible to install software. There-
fore, to allow remote access to their data from any remote
computer, we are presently working on a web based imple-
mentation of Pvault.

8. FUTURE WORK
Pvault is currently only supported on Windows platform

and the autofill feature only works with Internet explorer.
The reason for choosing the Windows platform as the oper-
ating system and Internet explorer as the browser, is their
popularity. In the future, we will make Pvault supported
on other platforms such as Linux, Solaris and on browsers
such as Mozilla which is gaining popularity quickly. We
have already stated that we are currently working on web
based implementation of the Pvault software. Even though
tasks such as encryption/decryption can be implemented on
browser based scripting languages such as Javascript, cer-
tain features such as autofill cannot be implemented using
web technology.

Currently, Pvault service stores only secrets/personal data
of the users. In future Pvault will evolve into a tool that al-
lows users to share data. Users can outsource complex data
objects to the service provider and can enforce access control
to these objects through cryptography. The advantages of
such a solution include reduction of operation costs, mobile
access to data and facilitation of data sharing.

9. CONCLUSIONS
In this paper, we presented the Pvault software applica-

tion. Pvault allowed users to outsource personal data to
an untrusted server. Data confidentiality and Integrity were
preserved using cryptographic techniques. Pvault system al-
lowed users seamless mobile access to their personal data.
Pvault autofill feature fill outs passwords/other information
on websites, thereby relinquishing users of the responsibil-
ity. Pvault also prevents online scams such as Pharming and
Phishing. Our system is available on the internet. The re-
leased version of Pvault does not have the following features
described in this paper a)Secure sharing of Pvault entries
b)Pharming c) Maintaining data integrity. These features
are concurrently under development and a stable version of
Pvault with these features will be released soon. We encour-
age users to try it and give us some feedback. The Service
has been serving 20 beta testers for more than 6 months
now. Pvault is currently available for download here [7].

10. ACKNOWLEDGEMENTS
We would like to thank the privacy team at University of

California, Irvine, comprising of Bijit Hore, Jehan Wekra-
masinghe and Mahesh Datt (the list does not include the
authors who also belong to the team), for helpful comments
on Pvault. The authors are indebted to Yonghua Wu for
his help in implementing the Pvault system. Chris Davi-
son(Pvault administrator) has worked tirelessly to make sure
that Pvault server is running 24/7. Special thanks to Einar
Noronha Mykletun for providing the source code for Blow-
fish encryption algorithm. We thank the anonymous re-
viewers for providing helpful suggestions for improving the
quality of the paper.

11. REFERENCES
[1] Password Vault.

http : //www.rit.edu/ smo5024/projects/pvault/

[2] Password Safe.
http : //www.schneier.com/passsafe.html

[3] Anti-Phishing Working Group.
http : //www.antiphishing.org

[4] Blake Ross. Collin Jackson, Nicholas Miyake, Dan
Boneh and John C. Mitchell Stronger Password
Authentication Using Browser Extensions. To appear
in Proceedings of the 14th Usenix Security
Symposium, 2005.

[5] Engin Kirda and Christopher Kruegel. Protecting
Users Against Phishing Attacks with AntiPhish. In
Proceedings of the 29th Annual International
Computer Software and Applications Conference
(COMPSAC), IEEE Computer Society Press. United
Kingdom, July 2005.

[6] J. Alex Halderman, Brent Waters, Edward W.
Felten. A Convenient Method for Securely Managing
Passwords. In Proceedings of the 14th International
World Wide Web Conference (WWW 2005).

[7] pVault Homepage.
http : //www.itr − rescue.org/pV ault/

[8] B. Schneier. Description of a New Variable-Length
Key, 64-Bit Block Cipher (Blowfish). Fast Software
Encryption, Cambridge Security Workshop
Proceedings (December 1993), Springer-Verlag, 1994,
pp. 191-204

[9] Jayavel Shanmugasundaram, Kristin Tufte, Chun
Zhang, Gang He, David J. DeWitt, Jeffrey F.
Naughton: Relational Databases for Querying XML
Documents: Limitations and
Opportunities.International Conference on Very
Large Databases (VLDB 1999): 302-314

[10] Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad
Mehrotra. Executing SQL over Encrypted Data in
the Database-Service-Provider Model. 2002 ACM
SIGMOD Conference on Management of Data, Jun,
2002.

[11] Ravi Jammalamadaka, Sharad Mehrotra. Querying
Encrypted XML Documents. University of
California, Irvine. Technical report TR-DB-04-03.

[12] Bijit Hore, Sharad Mehrotra, Gene Tsudik. A
Privacy-Preserving Index for Range Queries.
International Conference on Very Large Databases
(VLDB 2004), Toronto, Canada 2004.

[13] H. Hacigumus, B. Iyer, and S. Mehrotra. Ensuring
Integrity of Encrypted Databases in Database as a
Service Model. IFIP Conference on Data and
Applications Security, Estes Park Colorado, 2003.

[14] Microsoft Passport Network.
http : //www.passport.net

